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A Biomimetic Tumor Tissue Phantom for Validating
Diffusion-Weighted MRI Measurements
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Purpose: To develop a biomimetic tumor tissue phantom
which more closely reflects water diffusion in biological tissue
than previously used phantoms, and to evaluate the stability of
the phantom and its potential as a tool for validating diffusion-
weighted (DW) MRI measurements.
Methods: Coaxial-electrospraying was used to generate
micron-sized hollow polymer spheres, which mimic cells. The
bulk structure was immersed in water, providing a DW-MRI
phantom whose apparent diffusion coefficient (ADC) and micro-
structural properties were evaluated over a period of 10 months.
Independent characterization of the phantom’s microstructure
was performed using scanning electron microscopy (SEM). The
repeatability of the construction process was investigated by
generating a second phantom, which underwent high resolution
synchrotron-CT as well as SEM and MR scans.
Results: ADC values were stable (coefficients of variation
(CoVs)<5%), and varied with diffusion time, with average values
of 1.44 6 0.03 mm2/ms (D¼12 ms) and 1.20 6 0.05 mm2/ms
(D¼45 ms). Microstructural parameters showed greater variabil-
ity (CoVs up to 13%), with evidence of bias in sphere size esti-
mates. Similar trends were observed in the second phantom.
Conclusion: A novel biomimetic phantom has been developed

and shown to be stable over 10 months. It is envisaged that such

phantoms will be used for further investigation of microstructural

models relevant to characterizing tumor tissue, and may also find

application in evaluating acquisition protocols and comparing

DW-MRI-derived biomarkers obtained from different scanners at

different sites. Magn Reson Med 80:147–158, 2018. VC 2017 The

Authors Magnetic Resonance in Medicine published by Wiley

Periodicals, Inc. on behalf of International Society for Magnetic
Resonance in Medicine. This is an open access article under
the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, pro-
vided the original work is properly cited.
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INTRODUCTION

The use of diffusion-weighted (DW) MRI in oncology is
motivated by the potential for inferring clinically useful
information related to microstructural properties of
tumors from the measured DW signal. Such information
typically comes in the form of a biomarker, which may be
used for a variety of applications including lesion detec-
tion, distinguishing between benign and malignant tissue,
and predicting or evaluating response to treatment (1,2).

Depending on the tissue being imaged and the sequence
parameters used for acquisition, a range of biomarkers can
be derived from DW data, by modeling the signal in dif-
ferent ways. These models can broadly be split into two
categories: phenomenological and biophysical (3). Exam-
ples of biomarkers from phenomenological models
include the apparent diffusion coefficient (ADC) (4–10),
diffusional kurtosis (11–16), and the stretched exponential
(17,18). Biophysical models attempt to describe the DW
signal in terms of specific microstructural tissue proper-
ties, potentially yielding biomarkers such as cell size,
intracellular volume fraction, and compartment diffusiv-
ities. The greater specificity offered by biophysical models
in comparison to phenomenological models has motivated
extensive research for white matter applications (19–22),
and recent applications to tumor tissue (23–26).

If such biomarkers are to become useful clinical tools,
it is important that they are subjected to a process of val-
idation to assess both their technical performance, for
example their accuracy and precision, and their relation-
ship to biological processes (27). To date, much of the
validation of DW-MRI methods in oncology has focused
on the technical validation of ADC using free-diffusion
phantoms. For example, ice-water phantoms have been
used to evaluate the repeatability and reproducibility of
ADC values on clinical (28,29) and preclinical (30) scan-
ners, as well as to investigate spatial variations in ADC
due to gradient non-linearities (31). ADC stability has
also been assessed using gels developed with a range of
diffusivities and relaxation times (32).
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While useful for ADC investigations, free-diffusion
phantoms are not suitable for the validation of other DW-
MRI-derived biomarkers, as they lack the cellular-level
structure which underlies quantities such as diffusional
kurtosis and microstructural parameters. As part of the
validation of such biomarkers, it is therefore desirable to
have physical phantoms which mimic the cellular struc-
ture of tissue, and whose microstructural properties can
be controlled and/or characterized. A number of such
phantoms have been used for studying diffusion in white
matter, including solid fibers (33), hollow silica microca-
pillaries (34,35), plant tissue (36,37), and electrospun hol-
low fibers (38), but there is a notable absence of systems
applicable to tumor tissue (1).

In addition, free-diffusion phantoms do not capture
potentially important ways in which ADC can vary with
sequence parameters. For example, free-diffusion phan-
toms do not exhibit a dependence of ADC on diffusion
time, which is a general phenomenon in biological tissue
(39) and has been observed in tumor tissue (40,41). As
such, although ice-water ADC has been shown to be
reproducible across acquisitions with different scan
parameters (30), this will not necessarily be the case for
tumor ADC.

These considerations motivate the current work, which
describes the construction and characterization of a
phantom designed as a simple mimic of tumor cellular
structure, building on a preliminary report of an earlier
phantom design (42). Results from DW-MRI experiments
performed to investigate the phantom’s temporal stability
are presented, allowing assessment of its potential use as
a long-term test object in multi-center studies. Experi-
ments designed to evaluate its potential as a tool for vali-
dating microstructural measurements and comparing
acquisition protocols are also presented, with DW-MRI
characterization compared with independent microstruc-
tural measurements (43).

METHODS

Phantom Construction and Characterization

The phantom consists of a collection of approximately
spherical, micron-scale hollow polymer spheres, which
mimic cells. The spheres were produced by coaxial elec-
trospraying (44), extending the approach described previ-
ously for generating solid spheres (45); a related
technique, coaxial electrospinning, has been used to gen-
erate hollow fibers for mimicking white matter (38). Coax-
ial electrospraying was performed using polyethylene
glycol (PEG) and poly(D,L-lactic-co-glycolic acid) (PLGA)
for the core and shell of the microspheres, respectively.
PEG and PLGA solutions were injected into the inner and
outer needles of a coaxial spinneret, at flow rates of 1 and
3 ml/h, respectively. A thin aluminium plate placed
20 cm below the spinneret was used as a ground electrode,
and a 12 kV voltage was applied. As the polymer jet trav-
els from the spinneret toward the electrode, the hollow
spheres form as the PLGA outer shell rapidly solidifies,
with the core solution subsequently evaporating through
the shell; this mechanism has been discussed in more
detail elsewhere, in the context of spheres generated with
a polycaprolactone shell (46). The hollow spheres were

collected on a copper wire connected to the ground elec-
trode, generating a bulk sample in approximately 1 h (Fig.
1a). The wire was then removed, leaving the bulk phan-
tom structured as a hollow cylinder approximately 4 cm
long, with inner and outer diameters of approximately
1.8 mm and 3 mm.

The phantom was then split into two sections, with
one used for MR experiments and the other for character-
ization with scanning electron microscopy (SEM). The
MR sample was placed in a 5 mm NMR tube which was
then filled with deionized water (Fig. 1b). At the same
time, the SEM sample was also immersed in deionized
water in a separate NMR tube. In order to assess the
effect of prolonged immersion on the phantom’s micro-
structure, sections of the SEM sample were scanned over
a 6-month period (see Supporting Information), quantify-
ing the outer radius of the spheres, Ro (42). The term
‘outer radius’ is used because the SEM measurements
reflect the exterior size of the spheres, and do not quan-
tify the non-zero wall thickness.

The repeatability of the construction process was inves-
tigated by generating a second phantom, keeping all elec-
trospraying parameters the same. Similar room
temperature and relative humidity conditions were used
in both cases (22.6�C, 30% and 23.5�C, 28%), as these var-
iables are known to influence the properties of electro-
sprayed fibers and particles (47). Analogous to the
methods described above for the first phantom, sections of
the second phantom were used for MR experiments and
SEM analysis. In addition, high resolution synchrotron-
CT (sCT) scans were performed on two sections of the sec-
ond phantom, with one section immersed in water and
one kept dry; full details of the sCT acquisition and analy-
sis are given in the Supporting Information. Briefly, these
scans were used to characterize the sphere wall thickness
(from manual measurements, Supporting Fig. S1) and the
sphere volume fraction (from segmenting the images into
‘sphere’ and ‘non-sphere’ regions, Supporting Fig. S2).
The first and second phantoms will be referred to as phan-
toms A and B, respectively.

FIG. 1. Phantom construction. (a) Schematic of the apparatus
used to generate the microspheres. Core (polyethylene glycol

[PEG]) and shell (poly(D,L-lactic-co-glycolic acid) [PLGA]) solutions
were injected into the inner and outer needles of a coaxial spin-
neret, with resulting hollow spheres collected on a copper wire.

(b) Bulk phantom used for MR experiments, immersed in water in
a 5 mm diameter NMR tube, shown with a centimeter scale.
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MR Acquisition

MR experiments with phantom A were carried out over
a period of approximately 10 months, at the following
post-immersion time points: �2, 6, 24, 72 h, 1, 2, 3, 4, 9,
16, 20, 26, and 42 weeks. All time points except the first
and last had corresponding SEM analysis. Scans with
phantom B were carried out over 1 month, at �7, 27 h, 1
and 4 weeks post-immersion. All scans were performed
on a 7 T horizontal bore magnet (Magnex Scientific Ltd.,
Abingdon, UK) interfaced to a Bruker Avance III console
(Bruker BioSpin, Ettlingen, Germany), with the phan-
tom(s) and a control NMR tube containing only deion-
ized water placed inside a transmit/receive volume coil.
Each scan session included pulsed gradient spin-echo
(PGSE) acquisitions for evaluating ADC and microstruc-
tural parameters. Room temperature was monitored and
varied by a maximum of 0.7�C within a given scan ses-
sion, with a mean 6 standard deviation (SD) of 24 6 1�C
over all time points.

For ADC calculations, DW data were acquired with
b¼ 0, 150, 500, 1000 s/mm2, d¼ 4 ms, D¼ 12 ms (G¼ 0,
117.6, 214.7, 303.7 mT/m) and 45 ms (G¼ 0, 58.3, 106.4,
150.5 mT/m), with TE¼ 21.3, 54.3 ms, respectively, and
TR¼ 2500 ms. In addition, DW data were also acquired
with G¼ 0, 70, 140, 210 mT/m, d¼ 4 ms, D¼ 12, 23, 45
ms, with TE¼ 21.3, 32.3, 54.3 ms, respectively, and
TR¼ 2500 ms; b-values were 53.1, 212.5, 478.1, 107.5,
430.0, 967.6, 216.3, 865.1, 1946.5 s/mm2. In a subset of
the experiments, the D¼ 12 ms ADC acquisition was
repeated at the end of the scan session, to assess short-
term (�2 h) repeatability. All imaging data were acquired
with a 30 mm � 30 mm field of view, 128 � 128 matrix,
and 10 axial slices of 1 mm thickness.

MR Analysis

ADC maps for D¼ 12 and 45 ms were generated using
maximum likelihood (ML) fitting (48), with the noise, s,
estimated from a region of interest (ROI) drawn in the
background: s ¼ Sbg

ffiffiffiffiffiffiffiffi
2=p

p
, where Sbg is the mean signal

intensity in the background ROI (49). Using a single
Rician probability density function (PDF) in the objective
function was appropriate here as the signals used for
ADC fitting were not averaged (50). The phantom mate-
rial region was obtained using a semi-automated method
which first separates the NMR tubes from the back-
ground, then thresholds the b¼ 0 s/mm2 images to
remove high signal voxels corresponding to free water;
minor manual adjustment then provided the phantom
ROI. Free water ADC values were obtained from the con-
trol NMR tube. The signal-to-noise ratio (SNR) was cal-
culated as Sb0=s, where Sb0 is the mean b¼ 0 s/mm2

signal in the phantom.
For the multi-G, multi-D dataset, signals for each D

acquisition were normalized to their G¼ 0 mT/m scan,
and these normalized signals were analyzed by fitting a
two-compartment microstructural model combining
restricted diffusion inside a sphere with hindered extra-
sphere (analogous to extra-cellular) diffusion, yielding
three model parameters: sphere radius, R, intra-sphere
(analogous to intra-cellular) volume fraction, fi, and free
diffusivity, D. As the same fluid is inside and outside of

the spheres, a single diffusivity was used in the model.
The normalized DW-MRI signal, S=S0, is given by

S=S0 ¼ fiSi þ ð1� fiÞSe; [1]

where
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�
: [3]

Equation [2] is the PGSE signal for diffusion restricted
within an impermeable sphere, assuming a Gaussian phase
distribution; am is obtained from the mth root of
amRJ 03=2ðamRÞ � 1

2 J3=2ðamRÞ ¼ 0, where J3=2 is the Bessel
function of the first kind, order 3/2 (51,52). Equation [3]
gives the signal for hindered extracellular diffusion with
the diffusivity reduced by a tortuosity factor, 1þ fi/2 (53).

Two fitting procedures were performed: first, all model
parameters were estimated in the fitting; second, D was fixed
to the median ADC (at D¼ 12 ms) measured in the water-
only NMR tube, which serves as a ground truth for D. For
both procedures, fitting was performed both on a voxel-wise
basis and using whole-ROI averaged signals (fitting to the
mean signal from the entire phantom ROI). In each case, fit-
ting was performed for 100 starting values, taking the final
result as the fit with the lowest value of the objective func-
tion. As the microstructural model fitting involves averaging
and/or normalizing signals, a single Rician PDF no longer
characterizes the distribution of the signals and cannot be
used in the objective function, making the ML fitting method
described above no longer appropriate. Instead, least squares
fitting was used, with potential bias mitigated by discarding
signals lower than 2Snoise, where Snoise is the mean signal in a
noise ROI (54). Fitting was performed using a Nelder-Mead
simplex algorithm, with parameters constrained to be within
plausible biological limits: 0.1�R� 25 mm, 0.1�D� 3 mm2/
ms, 0.01� fi� 1. When fitting to whole-ROI averaged signals,
the precision of the model parameters was assessed by boot-
strapping the residuals. Due to the SNR differences for differ-
ent D acquisitions, bootstrapped datasets were generated for
a given D using the residuals for that D; for example, a resid-
ual for a D¼45 ms data point would not be added to a D¼12
ms data point. One thousand bootstrap samples were gener-
ated, and 95% confidence interval (CI) limits were taken as
the 2.5% and 97.5% quantiles of the bootstrap distribution
(55). The bootstrapping results were also used to investigate
correlations between the model parameters. The effect of
acquisition protocol on microstructural estimates was
assessed by fitting the model to whole-ROI averaged signals
using only the data from the D¼ 12 ms and 23 ms acquisi-
tions, that is, excluding all data from the longest diffusion
time.

Coefficients of variation (CoVs) were calculated to assess
measurement repeatability, and two-sample t-tests were
used for statistical analyses, with P< 0.05 taken to indicate
significant differences. All analyses were carried out with
MATLAB 2014a (The MathWorks, Inc., Natick, MA).
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RESULTS

SEM Characterization of Phantom Microstructure
and Stability

SEM images (Fig. 2a, phantom A) show that the spheres

tend to group together, indicating that the phantom’s

microstructure is not simply a packing of discrete ideal-

ized spheres, but consists of extended clumps of spheres.

The mean 6 SD of the baseline radii was 5.7 6 0.7 mm.

The CoV of the mean post-immersion values was 4.2%,

and the maximum difference in means between the first

post-immersion time point and subsequent points was

0.46 mm. Averaging over the mean values at each post-

immersion time point gave Ro¼ 5.2 6 0.2 mm, which was

taken as the ground truth outer sphere radius for phan-

tom A (Fig. 2b). For phantom B, measurements over 1

month gave a CoV of 4.7% and Ro¼ 5.6 6 0.3 mm. Com-

paring Ro values for the two phantoms at equivalent

post-immersion time points gave a mean difference of

0.4 mm.

Stability and Time-Dependence of Phantom ADC

Figure 3a shows example DW images and ADC maps for

phantom A at the 6-h time point. The lower signal annu-

lar region corresponds to the phantom, with the water in

the center filling the space left by the wire used to col-

lect the spheres during production. Mean 6 SD SNR in

phantom A, averaged over all slices and time points, was

27 6 3 and 17 6 2 for the first D¼12 ms and the D¼45

ms scans, respectively. ADC was consistently higher at

the shorter diffusion time, with a mean 6 SD of ROI

median values over each time point of 1.44 6 0.03 mm2/

ms and 1.20 6 0.05 mm2/ms for the first D¼ 12 ms and

the D¼ 45 ms scans, respectively (Fig. 3b). Median ADC

values at the two diffusion times were significantly dif-

ferent (P<0.001), with a mean percentage difference of

16%. Such a dependence was not observed in the free

water, where the mean 6 SD of ROI median values over

each time point was 2.01 6 0.04 mm2/ms and 2.01 6 0.03

mm2/ms for the first D¼ 12 ms and the D¼45 ms scans,

respectively (P¼ 0.62).
Figure 3b also demonstrates the stability of ADC

values over the 10-month period, with CoVs of 2.4% and
4.3% for D¼ 12 ms and 45 ms, respectively. In the seven
scan sessions where the D¼ 12 ms acquisition was
repeated, the mean absolute percentage difference in
median ADC values in the phantom was 1.1%, and no
significant difference was found (P¼ 0.18). While weeks
9, 16, and 26 showed a trend for a lower ADC at the end
of the experiment, both in the phantom and free water,
this was not observed consistently.

Phantom B also exhibited stable ADC values, with
CoVs of 1.0% and 2.1% for D¼12 ms and 45 ms, respec-
tively, over a month. ADC values for both diffusion times
were lower than in phantom A, with 1.32 6 0.01 mm2/ms
and 1.02 6 0.02 mm2/ms for the first D¼ 12 ms and the
D¼ 45 ms scans, respectively.

Application of Phantom for Microstructural Model
Evaluation

Figure 4 shows example maps and histograms of R, D,
and fi, at the 1-week time point for phantom A. Large
variations in parameter values were observed, indicating
that voxel-wise estimates had poor precision. In particu-
lar, fits in a number of voxels resulted in values at or
near the fit constraints. For example, at the 1-week time
point the percentage of voxels with values within 1% of
the constraints was 21%, 8%, and 14% for R, D, and fi,

FIG. 2. SEM characterization of phantom A microstructure. (a) Example images at baseline (before immersion) and three post-immersion

time points, with mean 6 SD outer radius values. (b) Box plots of outer radii determined from SEM images, for all post-immersion time
points; solid line shows the mean of mean values, and dashed lines show 95% CI. Note that time points are plotted evenly spaced, as
opposed to on an absolute time scale.
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respectively. Fixing D had little impact on these percen-
tages (for R and fi), showing that fixing the diffusivity
did not improve the precision of parameter estimates

(Supporting Fig. S3). The relatively low spread in Ro val-
ues from SEM suggests that the variation in R stems
from imprecision, rather than reflecting genuine

FIG. 3. Phantom A ADC. (a) Example DW images and ADC maps for the two diffusion times, acquired at 6 h post-immersion. As the
bulk phantom is structured as a hollow cylinder, the phantom appears as an annulus on these axial slices. (b) Box plots of ADC at
D¼12 ms (black) and 45 ms (red) at each time point; solid lines show the mean of median values, and dashed lines show 95% CI.
Note that time points are plotted evenly spaced, as opposed to on an absolute time scale. Seven time points have two D¼12 ms scans
separated by approximately 2 h, to investigate short-term repeatability.

FIG. 4. Voxel-wise microstructural estimates, for phantom A. Top row: example maps of each model parameter, when fitting all parame-
ters; images are a representative slice from the 1-week time point. Bottom row: histograms of each model parameter, when fitting all
parameters. Quoted values are the median 6 IQR, for all phantom voxels (black) and, where applicable, excluding voxels where at least
one parameter value was within 1% of the fit constraints (red).
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heterogeneity in the phantom. In general, parameter esti-
mates suffered from poor precision with voxel-wise fitting,
an observation which was consistent across time points.

Figure 5a shows example fits using whole-ROI aver-
aged signals, when fitting all parameters; model parame-
ters and the coefficient of determination, R2, are shown
in each case. The model fits the data well, with a mean
R2 value (over all time points) of 0.9998 for both fitting
procedures. At 6 and 72 h, and 42 weeks, the 2Snoise

threshold applied to remove low SNR data points
resulted in the highest-G, highest-D signal being
excluded from the fitting, while it was included at all
other time points. Compared with fits where this data
point was explicitly excluded, including it for weeks 1–
20 tended to slightly increase R estimates and slightly
decrease D estimates (mean percentage differences of 5%
and �2%, respectively), with negligible effect on fi; at
week 26 it had negligible effect on any parameter. For
consistency across time points, subsequent analyses
focus on fits where the highest-G, highest-D signal was
always excluded. Mean R2 values for these fits were
0.9998 (fitting all parameters) and 0.9996 (fixing D).

Example parameter correlations, obtained from boot-
strapping, are shown in Figure 5b, where the boot-
strapped parameter values for the 1-week time point are
plotted as bivariate histograms. Here, the strongest corre-
lation was between R and fi (q¼ 0.70, Pearson’s correla-
tion coefficient), reflecting the fact that larger cells with
higher volume fractions and smaller cells with lower vol-
ume fractions can give rise to similar signals. Trends in
correlations over time were broadly consistent with those
in Figure 5b, except at 6 h and 9 weeks, where positive
correlations between R and D were observed (q¼ 0.14,
0.11), along with stronger correlations between D and fi

(q¼ 0.74, 0.81).

Phantom A’s microstructural estimates are shown in
Figure 6. R was consistently overestimated compared
with SEM measurements of Ro. When fitting all parame-
ters, the mean 6 SD over all time points for R was
8.3 6 0.4 mm, compared with 5.2 6 0.2 mm from SEM.
Mean 6 SD over all time points for D was 1.91 6 0.05
mm2/ms, showing that D was consistently underesti-
mated compared with the free water ADC of 2.01 6 0.04
mm2/ms (P<0.001, comparing median free water ADCs
from the first D¼ 12 ms acquisition and D values from
whole-ROI averaged fitting). Fixing D resulted in slightly
lower R and higher fi estimates, trends expected based
on the correlations shown in Figure 5b. Note that as D
was fixed to the free water ADC measured at each time
point, the blue data points in Figure 6’s central plot
reflect the variation in free water ADC (CoV¼ 1.8%).

For phantom B, R¼ 7.9 6 0.3 mm, again overestimated
compared with Ro¼ 5.6 6 0.3 mm from SEM. In contrast
to phantom A, D for phantom B was consistent with free
water ADC; fixing D therefore had less impact on R and
fi than for phantom A. Figure 7 plots microstructural
estimates for both phantoms, averaged over 10 months
(A) and 1 month (B), for both fitting procedures. In terms
of percentage differences, the intracellular volume frac-
tion differs most between the two phantoms, with fi val-
ues significantly higher for B (P< 0.01 for both fitting
methods).

For both fitting procedures, fi showed the greatest vari-
ability, with the other parameters yielding CoVs of less
than 5% (Table 1). Fixing D had the greatest effect on
the fi CoV for phantom A, with a reduction by a factor of
1.3 compared with fitting all parameters, but in general
fixing D had little impact on the stability of R or fi.

Repeating the fitting with whole-ROI averaged signals
from only the D¼ 12 ms and 23 ms acquisitions resulted

FIG. 5. Microstructural estimates from fitting to whole-ROI averaged signals, for phantom A. (a) Example fits (dashed lines) for a range
of time points, with model parameters and coefficient of determination, R2, shown in each panel. Signals (circles) are plotted as a

function of G (x-axis) for different D (colors). (b) Correlations between parameters, obtained from bootstrap simulations and plotted as
bivariate histograms. Plots are from the 1-week time point, and Pearson’s correlation coefficient, q, is quoted in each panel.
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in lower mean R and fi values for both phantoms when

fitting all parameters (decreases � 15–20% for R and fi

relative to fitting to the full dataset).
sCT images obtained from sections of phantom B

showed a clear difference in contrast between the

immersed and dry conditions, with the hollow structure

of the spheres evident in the immersed state (Fig. 8). This

difference in contrast is hypothesized to be related to the

influence of water on the core polymer, PEG, which is

water-soluble, and as such is expected to dissolve when

FIG. 6. Microstructural estimates for phantom A (excluding the 24-h and 4-week time points, due to misalignment between acquisitions
and severe image artefacts, respectively). Data points are the values obtained from whole-ROI averaged fitting, and error bars represent
95% CI limits obtained from bootstrapping. Results from the two fitting procedures are shown in different colors; when D is fixed (blue

points), D values have no error associated with them from bootstrapping. Solid lines show mean parameter estimates over all time
points, and dashed lines show 95% CI. Note that time points are plotted evenly spaced, as opposed to on an absolute time scale.

FIG. 7. Microstructural estimates for phantoms A and B, for both fitting procedures. Mean 6 SD values are plotted, averaged over 10
months and 1 month for A and B, respectively.
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the spheres are immersed. The wall thickness, estimated
from manual measurements of 50 spheres in the immersed
state (Supporting Fig. S1), was 2.1 6 0.3 mm. Note that
such measurements will tend to overestimate the true wall
thickness, as the slices cut through spheres at different
angles (56). Although the manual method used for the
thickness measurements does not satisfy all criteria for
using stereological corrections, applying the p/4 factor
stated in (56) brings the estimate down to 1.6 mm, which is
consistent with the lower end of the measured values (see
histogram in Fig. 8), and is likely more representative of
the wall thickness. Figure 8 also shows an example of the
segmentation obtained from one slice of the dry spheres
(also see Supporting Fig. S2). From area fraction measure-
ments from 150 ROIs, the sphere volume fraction was esti-
mated as 0.22 6 0.05 (Fig. 8).

DISCUSSION

The low CoV of mean Ro values in phantom A, and the
fact that the maximum difference post-immersion was
less than half a micron, suggest that the phantom micro-
structure shows little variation over 6 months. Although
phantom A’s baseline Ro was higher than all post-
immersion time points, a trend not observed in phantom
B, the similarity in post-immersion Ro values for the two
phantoms provides evidence of the repeatability of the
construction process, in that samples with comparable
sphere sizes can be generated. SEM characterization
demonstrates the stability of both phantoms, and also
shows that the sphere size is appropriate for mimicking
tumor cells (25,57).

The observed tendency for the spheres to group
together has both negative and positive implications. On
the one hand, the aggregation is not ideal in that such a
structure is not generally considered in the types of
microstructural model the phantom is designed to vali-
date, where tissue is modeled as a collection of individ-
ual spherical cells. But on the other hand, the
aggregation may better reflect biological tissue, where
cell adhesion plays an important role in forming and
maintaining tissue structure (58). It is hypothesized that
the extent of the aggregation in the bulk phantom

Table 1
CoVs for microstructural parameters from phantoms A and B, for

both fitting procedures.

R CoV (%) D CoV (%) fi CoV (%)

A B A B A B

Fit all parameters 4.7 3.9 2.7 2.5 13 8.1
Fix D 4.6 4.2 1.9 1.6 9.9 7.3

FIG. 8. sCT images of phantom B. Example images are shown for immersed and dry spheres, along with an example segmentation of a
dry sphere image. The wall thickness histogram (from measurements of 50 spheres) and area fraction estimates (from measurements on

50 slices, with 3 ROIs per slice) are shown on the bottom row.
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depends on the electrospraying parameters, and further

work is required to assess the degree to which it can be

controlled. While the size and aggregation of the spheres

show similarity to tumor tissue, it should be noted that

the current phantom clearly oversimplifies the tumor

microenvironment. For example, structures such as cell

nuclei, collagen fibers, and blood vessels are not mim-

icked, nor are different cell populations, such as tumor

and immune cells. While future work could increase the

complexity of the phantom, the current phantom still

has utility in investigating microstructural models which

are themselves simplifications and do not attempt to cap-

ture all aspects of tumor microstructure. By controlling

the phantom’s ground truth microstructure and investi-

gating the resulting DW-MRI parameters, insight may be

gained into the sensitivity of DW-MRI to different

aspects of tissue structure, with the phantoms potentially

aiding the development of microstructural models.
The observation of a higher ADC at a lower diffusion

time provides evidence of hindered and/or restricted dif-

fusion in the phantom, consistent with the dependence

of ADC on diffusion time that has previously been

observed in biological tissue in general and in tumor tis-

sue specifically. Also, the absence of such a dependence

in freely diffusing water is expected due to the lack of

structures to impede diffusion, as is the case with the

free-diffusion phantoms previously used for DW-MRI

validation (e.g., ice-water and gels). These findings,

along with the observation that the multi-G, multi-D data

are well described by a microstructural model, demon-

strate that this phantom more closely reflects diffusion

in tissue than previous phantoms, and emphasize the

need to consider diffusion times, and not only b-values,

when comparing ADC values across studies. For exam-

ple, if different studies use different diffusion times but

the same b-values, in vivo ADC values may differ while

free-diffusion phantoms may give comparable values. As

such, it should be emphasized that b-values alone do not

fully characterize a scan when measuring diffusion in

systems such as biological tissue (59), and this should be

considered when discussing standardizing acquisitions

(1,2). Using the biomimetic phantom in multi-center

studies could therefore enable a more comprehensive

validation of DW-MRI, enabling comparison of ADC time-

dependence, and microstructural estimates, between scan-

ners. This would be another way of addressing the

recently noted need for ‘more data on interplatform repro-

ducibility’ (2), in addition to studies utilizing free-

diffusion phantoms and healthy volunteers (60,61). The

fact that this is a water-based phantom is advantageous

for multi-center studies, as the phantoms could be distrib-

uted dry and immersed in water on-site. This is more

practical than using phantoms immersed in organic sol-

vents (38,42), which require the use of protective clothing

and fume cupboards. Although the structural robustness

of the phantoms has not been fully evaluated, initial expe-

rience suggests that they can be successfully transported

between sites without obvious degradation. The small

size of the bulk phantom is a limitation in terms of its use

on clinical scanners, making the current phantom better

suited to preclinical scanners. Developing larger

phantoms suitable for clinical scanners is a focus of ongo-
ing work.

The CoVs of less than 5% indicate that ADC repeat-
ability in the phantom is very good, and provide evi-
dence that the phantom remains stable over 10 months.
As PLGA is known to degrade over time, with many fac-
tors influencing the degradation process (62,63), it is
expected that the phantom will eventually become
unstable, potentially limiting the extent to which it can
be used as a long-term test object. This study suggests
that the phantom can be used for at least 10 months,
with further longitudinal analysis required to track
longer-term stability.

While SEM characterization showed that phantoms A
and B had comparable sphere sizes, providing evidence
of the repeatability of the construction process, the ADC
differences suggest that the underlying microstructure
does vary between the two phantoms. The microstruc-
tural modelling suggests that phantom B has a higher fi

than phantom A, which is consistent with the observed
lower ADC in phantom B, as ADC is expected to
decrease as intracellular volume fraction increases
(64,65). This suggests that phantom A’s sphere volume
fraction is lower than 0.22, the sCT-derived volume frac-
tion for phantom B, although the lack of a ground truth
volume fraction for phantom A precludes a full valida-
tion of this finding. Note that as the sphere volume frac-
tion obtained from the segmented sCT images includes
both the sphere wall and the hollow interior, it is
expected to be larger than the MR-derived fi, which is
taken to reflect only the hollow interior. As such, there
is a clear overestimate from the microstructural model,
which yields fi¼ 0.37 6 0.03 for phantom B.

While the similarity of MR-estimated radii for the two
phantoms is consistent with the similarity observed on
SEM, the difference in absolute values between the two
modalities indicates the microstructural model also over-
estimates the sphere size. As R is expected to reflect the
inner radius, as opposed to the outer radius seen with
SEM, the overestimation is even greater when consider-
ing the relatively thick walls observed with sCT. Micro-
structural modelling in white matter has revealed a
tendency to overestimate axonal radii (21), with recent
work suggesting that this trend may be driven by the
unmodeled influence of time-dependent extracellular
diffusion (66). However, the time-dependence of extra-
cellular diffusion is expected to be weaker in three-
dimensional geometries, such as the sphere packings
considered in the present work, than in the two-
dimensional geometries relevant to axonal packings (25).
As such, neglecting such time-dependence may have
less of an impact on compartment size estimates in
three-dimensions, and the present work’s use of a time-
independent extracellular diffusivity is consistent with
that used in previous approaches to tumor microstruc-
tural modelling (23,25).

Exchange of water across the sphere wall is another
unmodeled effect that may contribute to bias in R and fi

(67). As longer diffusion times are expected to increase
sensitivity to exchange, it may be hypothesized that,
depending on the rate of exchange, excluding the longest
diffusion time data from the fitting would reduce such
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sensitivity and therefore improve the accuracy of R.
Excluding the D¼ 45 ms data did reduce R, bringing the
estimate closer to the SEM Ro, though a bias still
remains, suggesting that sensitivity to exchange may still
be present at D¼ 23 ms. As faster exchange is expected
to lead to a greater underestimate in fi if not accounted
for (67), it may be hypothesized that fi estimates would
increase when using an acquisition less sensitive to
exchange, such as excluding longer diffusion times; how-
ever, the opposite trend was observed here, suggesting
that exchange is not the dominant effect on fi estimates.
Moreover, the sCT data suggests that fi is overestimated,
not underestimated, from the microstructural model.
Again, further work, such as a filter exchange imaging
(FEXI) experiment (68), is needed to characterize the per-
meability of the spheres in order to assess these effects,
and, more generally, the dependence of microstructural
estimates on acquisition parameters warrants further
investigation. Another factor which may influence the
microstructural parameters is the presence of large pores
in the extracellular space, due to the extended clumping
of the spheres. Depending on the size of these regions in
relation to the diffusivity and diffusion time, water here
may appear restricted at longer diffusion times, therefore
contributing to the proportion of restricted signal, which
would increase fi and may also increase R. This effect is
also consistent with fi decreasing when excluding the
longest diffusion time, as diffusion in these regions may
appear free, again, depending on their size.

Compartmental differences in T2 may also contribute
to the observed bias in R and fi, with simulations (not
shown) indicating that if T2 is higher inside than outside
the spheres, all model parameters are overestimated,
with the magnitude of the bias increasing as the T2 dif-
ference increases. Such an effect is consistent with the
experimentally observed overestimation of R and fi,
although an overestimation of D was not seen. A combi-
nation of compartmental differences in T2 and perme-
ability may influence the model parameters, and further
work is needed to understand potential surface effects as
water interacts with the spheres’ inner and outer shells.

A limitation of the comparisons between modalities is
that different sections of the bulk phantom have been
used for sCT, SEM and MR, and further work is required
to characterize the homogeneity of the microstructure
within a given sample as well as between different sam-
ples. Such developments would enhance the utility of
the phantoms as tools for validating DW-MRI microstruc-
tural measurements.

CONCLUSIONS

A novel biomimetic tumor tissue phantom has been
developed and shown to be stable over a period of 10
months. The phantom exhibits time-dependent diffusion
and signals are well described by a microstructural
model, indicating that the phantom more closely reflects
diffusion in tissue than previously used free-diffusion
phantoms. Microstructural estimates were found to be
more variable than ADC measurements, with evidence of
bias in R and fi. It is envisaged that such phantoms will
be used for further investigation of microstructural

models relevant to characterizing tumor tissue, and may

also find application in evaluating acquisition protocols

and comparing DW-MRI-derived biomarkers obtained

from different scanners at different sites.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Fig S1. Wall thickness measurement for phantom B. Four measurements
were made for each sphere, with positions guided by perpendicular lines
through the sphere centre, as well as by comparing overlays on original
(left) and mean filtered (right) images.
Fig S2. sCT segmentation for estimating phantom B’s sphere volume frac-
tion. On a single cropped slice, manual labelling of ‘sphere’ (green) and
‘non-sphere’ (red) regions was performed, and used to train a classifier to
segment the entire image. The classifier was then applied to 49 other sli-
ces, providing segmentations from which regional area fractions, af, were
obtained.
Fig S3. Voxel-wise microstructural estimates, for phantom A. (a) Example
maps of each model parameter are shown (columns) for two fitting proce-
dures (rows). Images are a representative slice from the 1 week time point.
(b) Histograms of each model parameter (columns) for two fitting proce-
dures (rows). Quoted values are the median 6 IQR, for all phantom voxels
(black) and, where applicable, excluding voxels where at least one parame-
ter value was within 1% of the fit constraints (red). The first and third row
form Figure 4 in the main text.
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