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Abstract: Vascular calcification (VC) is the pathological precipitation of calcium salts in the walls
of blood vessels. It is a risk factor for cardiovascular events and their associated mortality. VC
can be observed in a variety of cardiovascular diseases and is most prominent in diseases that are
associated with dysregulated mineral homeostasis such as in chronic kidney disease. Local factors
and mechanisms underlying VC are still incompletely understood, but it is appreciated that VC is a
multifactorial process in which vascular smooth muscle cells (VSMCs) play an important role. VSMCs
participate in VC by releasing extracellular vesicles (EVs), the extent, composition, and propensity
to calcify of which depend on VSMC phenotype and microenvironment. Currently, no targeted
therapy is available to treat VC. In-depth knowledge of molecular players of EV release and the
understanding of their mechanisms constitute a vital foundation for the design of pharmacological
treatments to combat VC effectively. This review highlights our current knowledge of VSMCs in VC
and focuses on the biogenesis of exosomes and the role of the neutral Sphingomyelinase 2 (nSMase2).

Keywords: vascular calcification; vascular smooth muscle cells; exosomes; neutral sphingomyelinase 2

1. Introduction

Vascular calcification (VC) is the mineralization of vascular tissue and is considered a
pathological process with high prevalence in the aging population of industrialised countries.
VC is a risk factor and predictor of cardiovascular morbidity and mortality [1]. VC can
develop in almost all arterial tissues and can occur in both the intimal and medial layer, also
referred to as calcific atherosclerosis and Mönckeberg’s sclerosis, respectively [2]. Calcifica-
tion can occur also in aortic valves [3] and small blood vessels of adipose tissue and skin
(calciphylaxis) [4]. To date no pharmacological therapeutics targeting VC are available.

VC was thought to be a passive process [5] but is currently described as an active
process controlled in part by vascular smooth muscle cells (VSMCs). The molecular
mechanisms through which VSMCs regulate intimal and medial calcification are still
not fully understood. It is clear, however, that these are closely linked to VSMC phenotypic
switching in response to local cues. VSMCs can transdifferentiate across a spectrum of
phenotypes from calcification-suppressing cells (contractile phenotype) into calcifying cells
(osteo/chondrogenic phenotypes) [6,7]. VSMC apoptosis [8] and senescence [9] have also
been demonstrated to contribute to VC.

Recent studies have highlighted the prominent role of VSMC-derived extracellular
vesicles (EVs) in the regulation of VC [10,11]. Such EVs can either promote or inhibit VC
dependent on the phenotype of the EV-producing cell [10]. Interestingly, EVs derived from
other vascular cells such as endothelial cells can contribute to VC [12,13]. Also, platelet EVs
induce VSMCs to switch towards a pro-inflammatory phenotype [14] and are thought to
augment downstream processes such as VC [11]. These studies point towards a central role
for EVs in VC.
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EVs can be produced by different biogenetic pathways that determine their size
and composition and, hence, their bioactivity. The enzyme neutral sphingomyelinase 2
(nSMase2, also known as sphingomyelin phosphodiesterase 3, SMPD3), which generates
ceramide by cleaving its substrate sphingomyelin [15], has been revealed as an important
enzyme in the formation of EVs and the sorting of cargo into EVs. Pharmacological inhibi-
tion of nSMase2 reduces the secretion of EVs by VSMCs and VSMC-driven calcification
in vitro [16], and diminishes atherogenesis in a mouse model of atherosclerosis in vivo [17].

This review describes our current understanding of the role of VSMCs in VC and
focuses on EV-biogenesis and nSMase2.

2. Vascular Smooth Muscle Cells in Vascular Calcification

The healthy arterial wall is composed of several cell types including VSMCs which are
predominantly present in the tunica media of the vessel wall. VSMCs are highly specialized
cells that maintain vascular structure and regulate vascular tone and blood pressure.
VSMCs have prominent roles also in vascular pathologies such as atherosclerosis [18] and
aneurysm formation [19]. They participate in early- and late-stage atherosclerosis and
display great plasticity in phenotype during atherogenesis. VSMCs can adopt a wide range
of phenotypes including contractile, synthetic, macrophage-like, adipocyte-like, osteogenic
and stem cell-like phenotypes. These phenotypes can be distinguished by their protein-
expression profiles and their abilities to contract, synthesise extracellular matrix proteins,
migrate and proliferate. Literature about VSMC phenotypic switching in atherosclerosis
has been excellently reviewed recently [18,20].

VSMCs have been assigned the protagonist role in our current models of the VC pro-
cess. In physiology, VSMCs are predominantly in the contractile phenotype and suppress
the precipitation of calcium-phosphate crystals in an environment that is supersaturated
with calcium ions (Ca2+) and inorganic phosphate-ions (PO4

3−, Pi). On the other hand, it
has been demonstrated that osteochondrogenic VSMCs, a phenotype frequently observed
in vascular pathology, actively promote extracellular matrix calcification [6]. The difference
in calcification-modulation between the contractile and osteochondrogenic phenotype is
largely explained by differences in the expression of inhibitors and activators of calcification.
Contractile VSMCs synthesise Matrix Gla Protein (MGP) which is a strong inhibitor of pre-
cipitation of calcium salts in the vascular wall and which can reverse VC [21,22]. Knocking
out the MGP gene results in massive calcification of the aorta in vivo [21,23]. MGP is a vita-
min K-dependent protein that needs to undergo post-translational gamma-carboxylation
of four glutamate residues in order to express its full anti-calcification activity [24]. Interest-
ingly, dietary intake of vitamin K lowers the levels of circulating dephosphorylated and
uncarboxylated MGP, an inactive isoform of MGP which is positively correlated with the
severity of VC [25] and mortality [26]. The mechanisms of action of MGP are still not fully
understood but likely include inhibition of calcium-crystal growth by shielding properties
and maintaining VSMCs in the contractile phenotype through blocking bone morphogenetic
protein 2 (BMP-2) functions [21]. Interestingly, the in vitro phenotypic switch of contractile
VSMCs by elevated Ca2+ is accompanied by a transient upregulation of MGP followed by
a loss of MGP expression [27]. This was associated with osteogenic transdifferentiation
of the VSMCs. Another potent inhibitor of calcification is extracellular pyrophosphate
(P2O7

4−, PPi) which is produced by ectonucleotide pyrophosphatase/phosphodiesterase-1
(eNPP1) [28]. PPi can be degraded into pro-calcifying Pi by tissue-nonspecific alkaline phos-
phatase (TNAP) [29]. Hence, eNPP1 and TNAP activity regulate a balance that determines
the growth of calcium crystals. This type of regulation occurs in mineralizing bone and is
driven mainly by osteoblasts [30]. A similar regulation of VC by Pi-stimulated VSMCs in
aorta explants has been proposed [31]. Similar to calcifying osteoblasts that produce miner-
alizing matrix vesicles, pro-calcifying VSMCs generate EVs that form nucleation sites for
calcification [32,33]. Pro-calcifying EVs can be released by apoptosis (apoptotic bodies, [8]),
budding of vesicles from the plasma membrane (matrix-like vesicles, [34]) and fusion of
multivesicular bodies (MVBs) with the plasma membrane giving release of exosomes [35].
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EVs derived from VSMCs can contain Ca2+ and Pi [36], and proteins and lipids that either
inhibit (MGP, Fetuin-A, prothrombin) [27,37] or stimulate calcification (annexins A1, A2
and A6, phosphatidylserine (PS), TNAP, glucose-regulated protein 78 (GRP78)) [27,38–41].
The balance between inhibitors and stimulators is believed to determine whether EVs
promote calcification. Recently it was proposed that contractile VSMCs, which secrete low
amounts of exosomes, respond to injury by switching to a proliferative phenotype that
secretes enhanced amounts of reparative non-calcifying exosomes. Prolonged exposure to
an inflammatory environment and high levels of Ca2+ and Pi push proliferative VSMCs
further towards a calcifying phenotype secreting high amounts of calcifying exosomes [16].
There is, hence, a link between VSMC phenotype and the amount and composition of
secreted exosomes. Recent research has focused on the biogenetic pathways of exosomes
and has unveiled parts of the molecular machinery that sort cargo for loading into exo-
somes. Knowledge of these machineries and understanding how they operate may offer
possibilities to design targeted therapies to intervene with VC. The next section reviews the
literature on EVs with emphasis on exosomes.

3. Extracellular Vesicles: Nomenclature, Structure and Biogenesis

EVs are cell-derived particles that are encapsulated by a phospholipid bilayer. Initially,
EVs were regarded as a waste-disposal system of the cell to discard superfluous and
noxious material. This view has changed dramatically over the past decade. Currently,
EVs are seen as important structures, which are generated by well-orchestrated processes
and which serve relevant functions such as intercellular communication in physiology and
pathology as for example in the developing brain [42–44].

Unfortunately, literature still encompasses high inconsistency regarding the nomen-
clature used to describe EVs. For example, EV is used to indicate exosomes and vice
versa and the usage of the terms is based on the authors’ preference [44]. In order to
provide guidance, the International Society for Extracellular Vesicles (ISEV) proposed a
consensus nomenclature in which EV is used as a generic term to describe all lipid bilayer
encapsulated particles released from cells and unable to replicate due to the lack of a
functional nucleus [45]. EV subtypes are distinguished on the basis of biogenesis, size,
composition and mechanism of release [46]. Exosomes are the smallest vesicles with a
size from 30 nm to 100 nm in diameter. Microvesicles range in diameter from 100 nm
to 1000 nm and apoptotic bodies have diameters larger than 500 nm. EV subclasses can
be isolated by methods that separate on size, density, and antigen expression [46]. Over-
lapping characteristics between the different subtypes have hampered the assignment
of unique parameters to either subtype and, consequently, an exact description of the
EV subtype and its biogenetic pathway, features and bioactivity are not possible. Hence,
one has to realise that published research on EVs has been performed with mixtures of EVs
that are enriched for a specific EV subclass. Apoptotic bodies have a broad size distribution
and result from a process that orchestrates the demise of the cell and that produces lipid
membrane delimited cellular fragments containing a broad variety of cellular components
including organelles, proteins, DNA and RNA [47,48]. Apoptotic bodies are removed from
the tissue by phagocytosis [49]. Unphagocytosed apoptotic bodies of VSMCs have been
shown to stimulate calcification [8]. The second subclass of EVs, the microvesicles, are
generated from plasma membrane segments by outward budding and regulated “pinch-
ing off” of a vesicular membrane structure, a process indicated with the term scission.
Microvesicle formation requires cytoskeletal actin and microtubules, molecular motors
such as dynein, kinesis and myosin, soluble N-ethylmaleimide sensitive factor (NSF) at-
tachment protein receptors (SNAREs), Ras-associated binding proteins (Rab) guanosine
triphosphatases (GTPases) and tethering factors [50,51]. Microvesicles produced under
pathological conditions such as atherosclerosis can enhance calcification [34]. The third
subclass of EVs, the exosomes, are the smallest EVs and they are formed by the complex
multistep endocytic membrane transport pathway. This pathway starts with the formation
of early endosomes by invagination and inward budding and scission of the plasma mem-
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brane. Early endosomes evolve into late endosomes and multivesicular bodies (MVBs)
carrying small lipid bilayer encapsulated vesicular structures that are termed intraluminal
vesicles (ILVs) [46]. Endosome maturation is mainly mediated by the small GTPases Rab5
and Rab7 in a process called Rab conversion. Rab5, the marker of early endosomes, is
replaced by Rab7, the marker of late endosomes [52,53]. Once formed, MVBs can either
fuse with lysosomes for lysosomal degradation or with the plasma membrane for secretion
of the ILVs as exosomes [54]. Recently it was demonstrated that nSMase2-activity increases
exosome secretion by inhibiting disrupting Vacuolar-type ATPase (V-ATPase) assembly
on MVB and inhibiting, consequently, acidification of MVBs and MVB sorting towards
lysosomes [55]. Once rescued from lysosomal degradation by nSMase2-activity, MVBs can
dock to the plasma membrane to release their exosomes. Rab27a and Rab27b have been
shown to play a key role in exosome secretion through targeting MVBs to the cell periphery
and their docking at the plasma membrane [56].

The cargo that exosomes carry does not arise from a stochastic process but is deter-
mined by sorting mechanisms closely linked to the ILV biogenetic pathways. ILVs are
generated by inward budding and scission of the limiting membranes of late endosomes
through two distinct pathways: (i) the well-studied endosomal sorting complexes required
for transport (ESCRT) dependent pathway and (ii) the ESCRT independent pathway. The
ESCRT dependent pathway is driven by a protein machinery consisting of four complexes
(ESCRT-0,-I,-II,-III) which are sequentially recruited to the limiting membrane of the late
endosome and which cause sorting of ubiquitinated proteins, inward budding and scis-
sion [54,57,58]. Depletion of key ESCRT subunits could not fully inhibit MVB formation
and exosome secretion demonstrating existence of ESCRT-independent pathways [59]. The
ESCRT-independent pathway is driven by ceramide, which is generated in the limiting
membrane by the action of the enzyme nSMase2 and which promotes inward budding [60]
(see also next section). The ESCRT-independent pathway selects cargo by the sorting prop-
erties of ALG-2-interacting protein X (ALIX) [61] and the microtubule-associated protein
1A/1B-light chain 3 (LC3), a key component of the autophagy machinery [62]. Interestingly,
VSMCs submitted to calcifying conditions switch phenotype and upregulate the release of
calcifying exosomes which depends on the activity of nSMase2 [16,37]. Proteomic analyses
of these exosomes reveal a composition that contains both pro- and anti-calcifying proteins,
the balance of which determines their propensity to induce and propagate calcification.
Kapustin et al. demonstrated that part of the cargo was derived from endocytosis of ex-
tracellular components [16,37] (Figure 1). Their experiments also strongly suggest that
switching of contractile VSMCs towards the pro-calcifying phenotype is accompanied by
upregulation of nSMase2-dependent secretion of pro-calcifying exosomes.
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Figure 1. The nSMase2-dependent pathway of ILV-formation in MVBs. nSMase2 produces ceramide
which bends the membrane inward by its cone-shaped structure. nSMase2 is likely activated by FAN,
which is recruited to the limiting membrane by LC3, which also selects cargo for the ILVs. VSMCs can
secrete exosomes that either stimulate or inhibit VC depending on the balance of their cargo. Cargo is
composed of endocytosis of extracellular compounds and sorting of intracellular compounds during
ILV formation. Whether LC3 is involved in sorting anti- and pro-calcifying compounds is not known
to date. ILV: intraluminal vesicle. MVB: multivesicular body. II: prothrombin. PS: phosphatidylserine.
A1, A2, A6: annexins A1, A2 and A6. TNAP: tissue non-specific alkaline phosphatase. GRP78,
glucose-regulated protein 78,000.

4. Neutral Sphingomyelinase 2: Structure and Function in Exosome Release

Sphingomyelinases (SMases) are intracellular enzymes that catalyse the formation
of ceramide by hydrolysis of sphingomyelin. SMases can be classified into acid, neutral
and alkaline SMases on the basis of their respective optimal pH for the expression of
enzymatic activity. Mammalian neutral SMases (nSMases) can be categorised into 4 types:
nSMase1, nSMase2, nSmase3 and mitochondria-associated nSMase (MA-nSMase) [63]. The
different nSMases are believed to function in different cellular compartments and to support
different cellular functions [64–66]. For example, nSMase1 is associated with endoplasmic
reticulum (ER) and nucleus [67] and believed to be important for ceramide production
during ER-stress [63], nSMase2 is predominantly localised to the plasma membrane, and to
the membranes of the Golgi and the endosomal recycling compartments [68,69] and crucial
for the production of ceramide in support of ILV-formation of MVBs [60]. MA-nSMase
is detected at mitochondria-associated membranes [70] and believed to participate in
apoptotic pathways [63,71]. The catalytic activity of nSMases is enhanced by divalent
cations such as magnesium ions (Mg2+). The negatively charged aminophospholipid
PS activates all nSMases but has no effect on nSMase1 activity [72]. Except for a set of
conserved residues of the catalytic site, suggesting that nSMases catalyse hydrolysis of
sphingomyelin by a common mechanism, the 4 types of nSMases share little structural
homology [63].

Human nSMase2 is encoded by the SMPD3 gene and has a single polypeptide chain of
655 amino acids which is organised in functionally distinct domains. The polypeptide chain
has an N-terminal region (residues 1–84) containing two hydrophobic segments, a collage-
nous domain (residues 119–340) and a C-terminal catalytic domain (residues 341–655) [69].
Tagging experiments indicated that the two hydrophobic segments are inserted into the
plasma membrane without spanning the entire membrane [73] (Figure 2).
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Figure 2. Membrane topology of nSMase2 and tertiary structure of the C-terminal part of the catalytic
domain. The domain organisation and topology of the domains are derived from [73]. The tertiary
structure is based on coordinates taken from [74]. N: N-terminus. HS1 and HS2: Hydrophobic
segments 1 and 2. JX: domain juxtapositioned to the domain with the hydrophobic segments and
critical for allosteric activation. C: C-terminus.

The N-terminal region harbouring the two hydrophobic segments is necessary for
PS binding [75]. The N-terminus, the catalytic domain and the C-terminus are located at
the cytosolic side of the plasma membrane. This topology poses an interesting problem in
the light of our understanding that its substrate sphingomyelin is preferentially located
in the outer plasma membrane leaflet. During apoptosis lipid scrambling moves sphin-
gomyelin from the outer to the inner leaflet where it is cleaved by SMases [76]. Whether
a similar mechanism operates during nonapoptotic ceramide production by nSMase2
remains unknown to date. Recently the crystal structure of the catalytic domain of human
nSMase2 was elucidated at 1.85-Å resolution revealing that the region connecting the
catalytic domain with the N-terminal domain contains a binding site for the positive al-
losteric effector PS [74,77]. The widely used non-competitive inhibitor GW4689 of nSMase2
exerts its inhibitory activity through competing with PS for binding to the allosteric site of
nSMase2 [74,78].

Ceramide generated by nSMases can activate various intracellular signalling pathways
including the apoptotic cascade [79,80]. For example, apolipoprotein C-I (ApoC-I) activates
nSMases of human aortic VSMCs resulting in increased production of ceramide, which can
mediate cytochrome C-release, procaspase 3 activation and subsequently apoptosis [81]. A
causal connection between nSMase-produced ceramide, apoptosis and calcification was
shown with OxLDL stimulated human femoral artery VSMCs [82]. In addition, ceramide
produced by nSMases can activate a nonapoptotic pathway towards calcification. It causes
clustering of cholesterol-rich domains [83] and bending of the phospholipid bilayer with a
negative curvature as a consequence of its cone-shaped structure [84]. Trajkovic et al. were
the first to demonstrate that this property of ceramide is involved in biogenesis of MVBs by
mediating ILV formation in a manner that does not depend on the ESCRT-machinery [60].
The properties of ceramide to coalesce cholesterol-rich microdomains and to bend the
phospholipid membrane are believed to drive ILV formation. Using the nSMase inhibitors
GW4689 [78] and spiroepoxide [85], and RNA interference the authors were able to show
that the ceramide necessary for ILV formation and exosome secretion was produced by
nSMase2. This landmark study on ceramide’s role in exosome secretion triggered numerous
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investigations into the role of sphingolipids and sphingomyelinases in EV biogenesis
(for recent review see [86]. Many studies utilised GW4869 and spiroepoxide to show a
role for nSMase2. The selectivity and efficacy of these inhibitors, however, have never
been demonstrated unambiguously. It has been reported that GW4869 had no effect on
the secretion of exosomes by several cancer cell lines whereas nSMase2 knockout had a
profound inhibitory effect on these cells [87]. Hence, inhibitors cannot be used alone to
prove a role for nSMase2. Methods should also be included that inactivate the SMPD3 gene
(CRISPR/Cas9) or interfere with nSMase2 mRNA translation (shRNA, siRNA). Table 1 lists
a series of published studies that utilised these methods to demonstrate the involvement of
nSMase2 in the secretion of exosomes by cultured cells.

Table 1. Studies that examined the role of nSMase2 in exosome composition and release by cells in
culture. TEM: Transmission Electron Microscopy, WB: Western Blotting, NTA: Nanoparticle Tracking
Analysis, siRNA: small interfering RNA, shRNA: short hairpin RNA, miR: micro RNA.

Cell Type Exosome Verification
Method

Method to Demonstrate
Role of nSMase2

Examined Cargo of
the Exosomes Reference

Oli-neu TEM GW4869, spiroepoxide, siRNA ProteoLipid Protein [60]
HEK293 WB (CD63) GW4869, siRNA, overexpression miR-16, miR-146a [88]
Neuro2A TEM, WB (Alix, Tsg101) GW4869, siRNA pro-Aβ fibrillogenesis activity [89]

THP-1 TEM, WB (CD63) GW4869, spiroepoxide, shRNA anti-viral activity [90]
MDA-MB-231 SEM, WB (CD63) GW4869, overexpression miR-106 [91]

Primary human
VSMCs NTA, WB (CD9, CD63) GW4869, spiroepoxide, siRNA pro-calcifying activity [16]

Primary murine
microglia IEM (Tsg101) GW4869, siRNA Tau46 [92]

GT1-7 TEM, WB (Tsg101, Flotillin-1) GW4869, RNAi Prion protein [93]
Primary human

cardiosphere-
derived cells

TEM, NTA, WB
(CD63, HSP70) siRNA pro-angiogenic and

pro-survival activity [94]

Primary mouse
astrocytes TNA, WB (Alix, Tsg101) m-nSMase2fro/fro Aβ oligomers [95]

SKBR3 TEM, NTA, WB
(Alix, Tsg101, CD81) GW4869, siRNA Hsc70 [96]

PC3 TEM, NTA, WB (CD63) CRISPR/Cas9 PD-L1 [87]
TIG-3 TEM, NTA siRNA, overexpression none studied [97]

HEK293T TEM, WB (Alix, Tsg101, CD9) GW4869, shRNA LC3-II, SAFP, HNRNPK [62]

Hela NTA, WB (Alix, CD63,
CD81, syntenin) GW4869, siRNA V-ATPase transmembrane

subunit [55]

Genetic deficiencies of nSMase2 by full knockout or local knockdown strategies un-
derscored the relevance of nSMase2 to exosome secretion in vivo. Dinkins et al. crossed the
5XFAD mouse, which is a model of Alzheimer’s Disease, with the m-smpd3fro/fro mouse,
which is deficient in functional nSMase2 [98]. The fro;5XFAD mice produced significantly
less exosomes in the brain as compared to the 5XFAD mice [95]. Dickens and co-workers
showed that intrastriatal injection of IL-1β in C57BL/6J mice caused neutrophil influx
which was absent in m-smpd3fro/fro mice [99]. The authors did not measure the effect of
IL-1β on exosome secretion in situ but were able to demonstrate convincingly that the neu-
trophil influx was invoked by an nSMase2-dependent secretion of exosomes by astrocytes.
Lecuyer et al. performed intracortical injections of CRISPR-Cas9 constructs designed to
inactivate the SMPD3 gene in the mouse brain. Inactivation of the SMPD3 gene suppressed
the secretion of exosomes by microglia as demonstrated in vitro after isolation of microglia
from brain tissue [100]. They also studied the uptake of exosomes by isolated microglia
and found that diminishing nSMase2 activity changed recognition of exosomes suggesting
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involvement of nSMase2 in cargo selection. A comparable conclusion was reached by
Guo and coworkers who found that nSMase2 was involved in packaging of prion protein
into exosomes [93]. Leidal et al. who investigated secretory autophagy in HEK293T cells,
proposed an LC3-dependent EV loading and secretion (LDELS) process [62]. This pathway
depends on the activity of nSMase2 as demonstrated by nSMase2 knockdown. Employing
proximity-dependent biotinylation proteomics the authors revealed that LC3 recruits factor
associated with neutral sphingomyelinase activation protein (FAN) to the limiting mem-
brane where it is required for ILV-formation, likely by activating nSMase2 [15]. LC3 also
captures proteins such as the RNA binding proteins scaffold-attachment factor B (SAFB)
and heterogeneous nuclear ribonucleoprotein K (KHNRNPK), which are then loaded into
the ILVs that get secreted as exosomes. This study is the first to provide a link between
nSMase2 and a molecular machinery for cargo selection (Figure 1).

5. Future Perspectives

Recent studies have unveiled nSMase2 as one of the key enzymes in exosome secretion
by a broad range of cell types. nSMase2-activity participates in biogenesis, cargo selection
and the fate of MVBs and, consequently, in the bioactivity of exosomes. It was demonstrated
that nSMase2-activity is required for the release of pro-calcifying exosomes by VSMCs.
Hence, nSMase2 is a potential target for treating VC pharmacologically. Currently, only
few inhibitors have been described to target nSMase2 of which PDCC seems to have the
most favourable features from a pharmacological perspective [101]. PDDC, a noncom-
petitive inhibitor, was the result of chemical optimization of the main hit from a human
nSMase2 high throughput screen. Whether PDDC has satisfactory selectivity remains to
be determined. The availability of the crystal structure of the catalytic domain of human
nSMase2 has opened possibilities to discover superior competitive inhibitors by virtual
screening strategies. Inhibitors targeting nSMase2 will face great challenges on their route
towards their application in the pharmacological treatment of patients with VC because
of the anticipated ubiquity of the nSMase2-exosome axis in the patient. The anticipated
major challenge will be the effects of inhibitors on the brain and the bone since nSMase2
plays prominent roles both in brain and bone physiology [102,103]. Targeted delivery of
inhibitors to vascular tissue would be a strategy to reduce potential adverse effects of
nSMase2-inhibitors on brain and bone. Such strategy is considered feasible since targeting
inflamed blood vessel walls with nanostructures containing pharmacons has demonstrated
efficacy in treating atherosclerotic lesions of the aorta in mouse models [104,105].
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