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Graphene’s unique physical and chemical properties make it an attractive platform for use in micro- and
nanoelectronic devices. However, electrostatically controlling the flow of electrons in graphene can be
challenging as a result of Klein tunneling, where electrons normally incident to a one-dimensional potential
barrier of height V are perfectly transmitted even as V R ‘. In this study, theoretical and numerical
calculations predict that the transmission probability for an electron wave normally incident to a
one-dimensional array of localized scatterers can be significantly less than unity when the electron
wavelength is smaller than the spacing between scatterers. In effect, placing periodic openings throughout a
potential barrier can, somewhat counterintuitively, decrease transmission in graphene. Our results suggest
that electrostatic potentials with spatial variations on the order of the electron wavelength can suppress
Klein tunneling and could find applications in developing graphene electronic devices.

S
ince graphene’s initial discovery1, much research has been undertaken into studying graphene’s unique
physical and chemical properties2,3, which are a consequence of its two-dimensional structure. Graphene
consists of carbon atoms arranged in a honeycomb lattice made up of two trigonal sublattices that each

contribute a carbon atom to the unit cell, thereby imparting a pseudospin character to the electrons in graphene.
From tight-binding calculations4, the quasiparticle spectrum of graphene is linearly proportional to the mag-

nitude of the wave vector, ~k
��� ���, when expanded about two distinct wave vectors, +~K~+

4p
ffiffiffi
3
p

9b
x̂ with b 5 1.42 Å

being the C-C bond length. The wave vectors +~K are referred to as Dirac points due to the similarity of the
electronic spectrum in graphene to that of a massless two-dimensional Dirac fermion5. A consequence of the
linear dispersion and the pseudospin nature of electron waves in graphene is Klein tunneling6, where massless
Dirac fermions normally incident to a potential step barrier are not reflected even when the potential barrier
height becomes infinite [Figure 1(A)]. Klein tunneling makes it difficult to stop the flow or transmission of
electrons electrostatically, which poses a significant challenge for incorporating graphene into new electronic
devices.

One proposed method for controlling and modifying the electronic properties in graphene has been to use
superlattice potentials, V̂ x,yð Þ. In this case, graphene’s effective Hamiltonian, when expanded about the +~K
Dirac points, is given by7:

Ĥ+~K~+nF ŝX p̂XzŝY p̂Y

� �
zV̂ x,yð Þ ð1Þ

where ŝX and ŝY are pauli spin matrices, p̂X and p̂Y are momentum operators, and �hvF 5 1.0558 3 10228 J-m. In
writing Eq. (1), the spatial variations of V̂ x,yð Þ are assumed to be on length scales much greater than the C-C bond
length. Such superlattice potentials can, in principle, be patterned on graphene using either localized chemical
modifications8,9 or by locally manipulating the voltages of metallic islands or electrodes10,11 placed on top of
graphene. Previous theoretical work12–17 has mainly focused on using periodic potentials along a single dimen-
sion, e.g., a periodic array of square potential barriers like the one shown in Fig. 1(A). For such a Kronig-Penney
potential, there is no suppression of Klein tunneling for electrons at normal incidence. Other types of superlattice
potentials, such as the muffin-tin superlattice potential12,18, which consists of a two-dimensional array of cylin-
drically symmetric step potentials, have been theoretically shown to generate electron localization and signifi-
cantly alter graphene’s dispersion relationship although the transport properties through such superlattice
potentials have not been examined.
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For single or multiple square potential barriers, Klein tunneling is
still not suppressed since normally incident waves are only allowed to
undergo direct backscattering (specular reflection) from such poten-
tials, which is prohibited due to time-reversal symmetry in graphene.
Therefore, to suppress Klein tunneling, electrostatic potentials are
required that generate non-specular or diffuse reflection, which is not
prohibited by time-reversal symmetry. One such potential that can
exhibit diffuse reflection is a one-dimensional periodic array of loca-
lized scattering potentials as shown in Figure 1(B). Such potentials
appear often in optics and in atomic/matter wave diffraction experi-
ments and can be patterned on graphene9. As shown in this work,
when the electron’s wavelength, l, becomes comparable to the spa-
cing between scatterers, d, non-specular reflection can lead to a dra-
matic reduction in the transmission through such potentials even at
normal incidence. As a result, Klein tunneling in graphene can be
suppressed when using a periodic array of localized scatterers.

Results
In the absence of an electrostatic potential V̂ x,yð Þ~0

� �
, the positive

energy solutions to Eq. (1) with energy E~�hnFk1~
hnF

l
§0 and nor-

malized to unit flux along the x̂-direction are the Dirac plane wave

spinors w
~K
inc ~rð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

2nF kX1

s
e
~k1
:~r 1

eih~k1

� 	
~K

and w{~K
inc ~rð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

2nFkX1

s
e
~k1
:~r

1
{eih~k1

� 	
{~K

with wave vector ~k1~k1 cos h~k1


 �
x̂zsin h~k1


 �
ŷ

h i
:

kX1x̂zkY1ŷ, wavelength l~
2p

k1
, and h~k1

[ {
p

2
,
p

2

h i
. Consider a Dirac

plane wave spinor w+~K
inc ~rð Þ incident to an array of localized cylindric-

ally symmetric scattering potentials as depicted in Fig. 2(A). Each
scatterer is modeled by a simple step potential with an effective radius
of rs so that the potential for the nth scatterer is given by V0H ~r{~rnð Þ
where H ~r{~rnð Þ~1 if ~r{~rnj jƒrs and H ~r{~rnð Þ~0 for ~r{~rnj jwrs.

To consider only intravalley scattering ~k+~K?~k’+~K
h i

and to neglect

intervalley scattering ~k+~K ~k’+~K
h i

, rs must be greater than the C-C

bond length in graphene, i.e., rs?1:42 A.
As derived in Supporting Information, the transmitted wave function

x?d½ �, y+~K
T ~rð Þ, can be written as a sum of Dirac plane wave spinors

with wave vectors along the Bragg directions, ~k nð Þ
1 ~k nð Þ

Y1 ŷzk nð Þ
X1 x̂

for integer n where k nð Þ
Y1 ~kY1z

2pn
d

and k nð Þ
X1 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1{ k nð Þ
Y1


 �r
for

k1§k nð Þ
Y1 . In this case, the transmitted wave function through the

one-dimensional array of localized scatterers can be written as a
sum over Dirac plane wave spinors propagating along the Bragg
directions for x?d as:

y+~K
T ~rð Þ~

X
n[N

Tnei k nð Þ
Y1 yzk nð Þ

X1 xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1

2nFk nð Þ
X1

s
1

+e
ih
~k

nð Þ
1

 !
+~K

ð2Þ

where Tn is the transmission coefficient for the nth Bragg direction
or open scattering channel. The sum in Eq. (2) is over all open
scattering channels, n[N~ Nmin,Nmax½ � where Nmin~

{ k1zkY1ð Þd
2p

� 

z

and Nmax~
k1{kY1ð Þd

2p

� 

{

, where {z}1

corresponds to the smallest integer greater than z, and {z}2 corre-
sponds to the largest integer less than z.

Likewise, the reflected wave function x={d½ � is given by:

y+~K
R ~rð Þ~

X
n[N

Rnei k nð Þ
Y1 y{k nð Þ

X1 xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1

2nFk nð Þ
X1

s
1

+e
{ih

~k
nð Þ

1

 !
+~K

ð3Þ

where Rn is the reflection coefficient for the nth open scattering chan-
nel in N . Due to the unitarity condition,

X
n[N Rnj j2z Tnj j2~1.

Expressions for Rn and Tn are given in Supporting Information.
In Fig. 2, numerical calculations of the total transmission prob-

ability, Ttot~
X

n[N Tnj j2, for w+~K
inc ~rð Þ normally incident h~k1

~0
h i

to a one-dimensional array of localized cylindrically symmetric scat-

terers of radius rs 5 20 nm as a function of
d
l

are shown for the

following scattering potentials and lattice spacings: (black) V0 5

0.8 eV and d 5 150 nm, (green) V0 5 0.2 eV and d 5 150 nm,
and (blue) V0 5 20.9683 eV and d 5 156.5 nm. For reference,
Ttot 5 1 is represented by a red line, which is the exact transmission
probability for a wave normally incident to a constant one-dimen-

sional potential barrier19 as shown in Fig. 1(A). For
d
l

v1, Ttot 5 1 for

all V0 since only the n 5 0 scattering channel is open, i.e., N~ 0f g.
As a result, the incident electron wave is prohibited from direct back-
scattering due to time-reversal symmetry leading to Ttot 5 1. This

can also be understood by the fact that when
d
l
=1, the scattering

array effectively appears as a constant one-dimensional potential
barrier [Fig. 1(A)] where Ttot 5 1 for h~k1

~0. However, when
d
l

§1, the incident wave can now backscatter into additional open

scattering channels, k nð Þ
X1 and k nð Þ

Y1 for n ? 0 in Eq. (3), that do not
correspond to direct backscattering, thereby leading to Ttot # 1.
Although additional open scattering channels are now available for

the incident electron wave to scatter into when
d
l

§1 for h~k1
~0, Ttot

depends on V0. For example, Ttot decreased to 0.6277 at
d
l

~1:01 for

V0 5 0.8 eV and d 5 150 nm [Fig. 2, black curve] and Ttot 5 0.0134 at
d
l

~1:1855 for V0 5 20, 9683 eV and d 5 31.3 nm [Fig. 1, blue curve].

At non-normal incidence, the incident Dirac plane wave can
undergo specular reflection and therefore have Ttot , 1. In

~

~

Klein Tunneling
Transmission = 100%

Bragg Diffraction
Transmission ≤ 100%

(A) (B)

dx̂

ŷ

θk1 = 0 

Figure 1 | Scattering of Dirac plane wave spinors at normal incidence
h~k1

~0
h i

to either (A) a one-dimensional potential barrier or (B) a one-

dimensional array of localized cylindrically symmetric scatterers in
graphene where the nth scatterer is centered at~rn~ndŷ with d being the
spacing between nearest neighbor scatterers. (A) For a one-dimensional

barrier, a normally incident wave is perfectly transmitted as a result of

Klein tunneling19. (B) For a one-dimensional array of localized scatterers, a

normally incident wave can be backscattered into other open scattering

channels when
d
l

§1 thereby leading to transmission probabilities that can

be considerably less than unity.
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Figure 3, a comparison of Ttot as a function of
d
l
[

ffiffiffi
2
p

200p
,3z

ffiffiffi
2
p

200p

� �

and incident angle, h~k1
[

0:1p

180
,
89:9p

180

� �
, in graphene is shown [Fig. 3,

right]. For comparison, the total transmission probability for non-
spinor or achiral plane waves found in a regular two-dimensional

electron gas (2DEG) with Ĥ2DEG~
p̂2

2m
zV̂ x,yð Þ is also shown

[Fig. 3, left]. The same scattering potentials and lattice spacings used
in Figure 2 were also used in the calculations shown in Fig. 3:
[Fig. 3(A)] V0 5 0.2 eV and d 5 150 nm, [Fig. 3(B)] V0 5 0.8 eV
and d 5 150 nm, and [Fig. 3(C)] V0 5 20.9683 eV and d 5

156.5 nm. Further details of the calculations in Fig. 3 are given in
Supporting Information. For the 2DEG, Ttot was similar for all scat-
tering potentials studied [Fig. 3(A)–3(C), left], with Ttot R 1 only

after
d
l

§1 at h~k1
~0. For

d
l
=1, there was negligible transmission of

the incident wave in the 2DEG for all h~k1
. In graphene, however, the

dependence of Ttot on
d
l

and h~k1
in Fig. 3 (right) was sensitive to V0.

For
d
l

v1 and h~k1
<0, Ttot < 1 in all cases as a result of Klein tunneling

as previously illustrated in Fig. 2. However, for h~k1
=0, specular

reflection can occur leading to Ttot , 1 even for
d
l

v1. Again, above

d
l

§1, the incident wave can backscatter along the Bragg directions,

thereby leading to a reduction in Ttot even at normal incidence.
In Fig. 3, sharp features in Ttot (indicated by * in Fig. 3) were also

observed around the following values of
d
l

in graphene: [Fig. 3(B),

right]
d
l

~1:6915 for V0 5 0.8 eV, [Fig. 3(A), right]
d
l

~0:8887 for

V0 5 0.2 eV, and [Fig. 3(C), right]
d
l

~1:18725 for V0 5

20.9683 eV. These sharp changes in Ttot appear to result from the

interference between partial waves from the individual scatterers at
values of k1d where sl R 21 for at least one of the higher partial waves
with l $ 2 while at the same time js0jg [0.8, 1] and/or js1jg [0.8, 1].
Approximate values for these k1d where sl R 21 can be determined
from sl [Eq. (6)] and are solutions to the following equation:

Jlz1 k2rsð ÞYl k1rsð Þ{Jl k2rsð ÞYlz1 k1rsð Þ~0 ð4Þ

where Yl(z) is a bessel function of the second-kind. In Figure 3, the
interference between the l 5 0 and l 5 2 partial waves was observed in

Fig. 3(A) and Fig. 3(C) at
d
l

~0:8887 (js0j5 0.9355 and js2j5 0.9999)

and
d
l

~1:18725 (js0j 5 0.8863 and js2j 5 0.9994), respectively,

whereas the interference between the l 5 0, l 5 1, and l 5 3 partial

waves was observed in Fig. 3(B) at
d
l

~1:6915 (js0j 5 0.7964, js1j 5
0.8005, and js2j5 1). Note that a similar interference between higher

partial waves was also observed in the 2DEG near
d
l

<1:50225

[Fig. 3(C), left] with an attractive scattering potential, V0 5

20.9683 eV, which was a result of the interference between the l
5 0 and l 5 3 partial waves (js0j 5 0.9436 and js3j 5 0.8609).
Furthermore, calculations of Ttot in the 2DEG using the scattering
amplitudes in graphene [sl in Eq. (6)] also exhibited sharp features in
Ttot at the same values of k1d (data not shown). The effects of partial
interference between higher partial waves that suppress forward scat-
tering have been previously noted in graphene20 and for Mie scatter-
ing in optical systems21.

Discussion
A theory for scattering of electron waves incident to a one-
dimensional array of localized cylindrically symmetric scatterers
[Figure 2(A)] in graphene was used to study the transmission prob-
ability through the scattering array as a function of angle of incid-
ence, h~k1

, and wavelength l [see Supporting Information for a
derivation of the theory]. When the spacing between scatterers, d,

x̂

ŷ

d

φinc(r)
+K

Ttot
θk1 = 0 

d
λ

0.2

1.0

0.6

0.8

0.4

0 1 2 3

V0 = 0.8 eV, d = 150 nm

V0 = 0.2 eV, d = 150 nm

V0 = -0.9683 eV, d = 156.5 nm

V0 = one-dimensional 
        square potential 

(A) (B)

Figure 2 | (A) Scattering of an incident Dirac plane wave spinor of energy E 5 �hvF k1 $ 0, w+~K
inc ~rð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

2nF kX1

s
ei~k1

:~r 1
+eih~k1

� 	
, from a one-dimensional

array of localized cylindrically symmetric scatterers in graphene. The unit cell for the scattering array consists of a single scatterer with the position

of the nth scatterer given by~rn~ndŷ. (B) Transmission probability, Ttot, for a plane wave normally incident h~k1
~0

h i
to either a (red line) one-dimensional

potential barrier of width 40 nm [Ttot 5 1 for all potentials studied in this work] or a one-dimensional array of localized cylindrically symmetric scatterers

of radius rs 5 20 nm with the following scattering potentials and lattice spacings: (blue) V0 5 20.9683 eV and d 5 156.5 nm, (green) V0 5 0.2 eV and d

5 150 nm, and (black) V0 5 0.8 eV and d 5 150 nm. For
d
l
=1, the one-dimensional array of scatterers appear as a uniform one-dimensional potential

barrier (black and green) or well (blue) and thus Ttot 5 1. When
d
l

§1, however, the incident electron wave can be reflected into waves with wave vectors

{k nð Þ
X1 x̂zk nð Þ

Y1 ŷ for n ? 0 that do not correspond to direct backscattering. As a result, Ttot # 1 when
d
l

§1.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8435 | DOI: 10.1038/srep08435 3



is much less than l
d
l
=1

� �
, the scattering array in Fig. 2(A) acts like

a continuous one-dimensional potential barrier/well [Fig. 1(A)]. In
this case, electron waves normally incident to the scattering array are
perfectly transmitted as a consequence of Klein tunneling15,19.

However, when
d
l

§1, the incident electron waves are able to

‘‘resolve’’ the fact that the scattering array is made up of discrete,
localized scatterers that can reflect the incident electron wave along
the Bragg directions that do not correspond to direct backscattering
[Fig. 1(B)]. As a result, the transmission probabilities can be signifi-

cantly less than one when
d
l

§1, even at normal incidence [Fig. 2]. In

effect, placing periodic openings into a constant one-dimensional
potential barrier/well can, somewhat counterintuitively, reduce the
transmission probability at normal incidence, i.e., suppress Klein

tunneling, in graphene. It was demonstrated [Fig. 3, right] that the
dependence of the transmission probabilities on incident angle, h~k1

,
and electron wavelength was more sensitive to the scattering potential
in graphene relative to that observed for a regular two-dimensional
electron gas (2DEG). Furthermore, when sl9 R 21 for at least one
higher partial wave with l9 $ 2 while jsl9j< js0j and/or jsl9j< js1j, the
interference between the partial waves from the individual scatterers
resulted in sharp features in the transmission probabilities [Fig. 3,
right]. Similar features were also observed in the transmission prob-
ability for a 2DEG with an attractive scattering potential [Fig. 3(C),
left]. While only a one-dimensional periodic array of localized scat-
terers was considered in this work, any potential that has spatial
variations larger than the incident electron wavelength will generate
non-specular or diffuse reflection that will suppress Klein tunneling.
Such potentials could be useful in realizing future graphene elec-
tronic devices, such as a graphene field effect transistor22. Finally,
the results presented in this work could be applied to other physical
systems that behave like massless Dirac fermions, such as the surface
states of topological insulators23–25, optical analogues of graphene26,
and trapped ions27.

Methods
The theory for scattering of a massless Dirac plane wave spinor from a one-
dimensional array of localized cylindrically symmetric scatterers [Fig. 1(B)] is derived
in Supporting Information28–32, where it is shown that the full scattering solution for

w+~K
inc ~rð Þ incident to the scattering array shown in Fig. 1(B), y+~K ~rð Þ, can be written as

[for x ? 0]:

y+~K ~rð Þ~Q+~K
inc z

Xlmax

l~0

X?
n~{?

2sl

d
ei k nð Þ

Y1 yzk nð Þ
X1 xj jð Þ

k nð Þ
X1

sign xð Þð Þl

|
e

isign xð Þlh
~k

nð Þ
1 +sign xð Þe

{isign xð Þ lz1ð Þh
~k

nð Þ
1

+sign xð Þe
isign xð Þ lz1ð Þh

~k
nð Þ

1 e
{isign xð Þlh

~k
nð Þ

1

0
B@

1
CA

+~K

T̂l,+~K y+~K ~r0ð Þ

ð5Þ

where T̂l,+~K is the single scatterer lth-partial wave t–matrix operator, lmax is the
maximum number of partial waves that are included in the calculations,

k nð Þ
Y1 ~kY1z

2pn
d

for integer n, and either k nð Þ
X1 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1{ k nð Þ
Y1


 �2
r

and

e
+ih

~k
nð Þ

1 ~
k nð Þ

X1+ik nð Þ
Y1

k1
for k1§k nð Þ

Y1 or k nð Þ
X1 ~i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k nð Þ

Y1


 �2
{k2

1

r
and e

+ih
~k

nð Þ
1 ~i

k nð Þ
X1+k nð Þ

Y1

k1

for k1ƒk nð Þ
Y1 . In Eq. (5), y+~K ~rð Þ consists of a series of plane waves n[N½ � that are

either transmitted [x . 0] or reflected [x , 0] from the scattering array along with an
infinite number of waves n6[N½ � that are evanescent along the x̂-direction and freely
propagating along the ŷ-direction. These evanescent waves are a consequence of the
periodicity of the one-dimensional array of scatterers. The transmission [Tn in Eq. (2)
for n[N ] and reflection [Rn in Eq. (3) for n[N ] coefficients can be determined from
Eq. (5), and explicit expressions for Tn and Rn are given in Supporting Information.

In all simulations, each scatterer was modeled as a cylindrically symmetric barrier/
well of potential V0 and radius rs. For an individual scatterer, the lth partial wave
scattering amplitude is given by28,33:

sl~
Jl k2rsð ÞJlz1 k1rsð Þ{Jl k1rsð ÞJlz1 k2rsð Þ

Jlz1 k2rsð ÞH 1ð Þ
l k1rsð Þ{Jl k2rsð ÞH 1ð Þ

lz1 k1rsð Þ
ð6Þ

where k2~
E{V0

�hnF
, and Jl(z) and H 1ð Þ

l zð Þ are first-order bessel and hankel functions of

order l, respectively. The maximum partial wave used in the calculations, lmax, was
chosen to take into account 99.9% of the total scattering amplitude for an individual

scatterer, i.e.,
Xlmax

l~0
slj j2<0:999

X?

l~0
slj j2. For the calculations of Ttot in a 2DEG

[Fig. 3 (left)], previous work32 on scattering from one-dimensional periodic grating in
a 2DEG was generalized to include higher partial waves. Details of these calculations
are also given in Supporting Information.
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Figure 3 | Total transmission probability, Ttot, for a plane wave incident
to an infinite one-dimensional array of localized cylindrically symmetric
scatterers of radius rs 5 20 nm as a function of incident angle,

h~k1
[

0:1p

180
,

89:9p

180

� �
, and the ratio of lattice spacing to wavelength,

d

l
[

ffiffiffi
2
p

200p
,3z

ffiffiffi
2
p

200p

� �
, in a (left) 2DEG and in (right) graphene for

following scattering potentials and lattice spacings: (A) V0 5 0.8 eV [lmax

ranging up to lmax 5 4 in both graphene and the 2DEG] and d 5 150 nm,
(B) V0 5 0.2 eV [lmax ranging up to lmax 5 4 in both graphene and the
2DEG] and d 5 150 nm, and (C) V0 5 20.9683 eV [lmax ranging up to
lmax 5 6 for graphene and lmax 5 4 for the 2DEG] and d 5 156.5 nm. In

Figs. 3(A) and 3(B), the wave vector within the scattering potential was

given by k2~k1{
V0

�hnF
in graphene and 2ik2 in the 2DEG since k1v

V0

�hnF

for the range of
d
l

plotted in Figs. 3(A) and 3(B). In Fig. 3(C), the wave

vector inside the scattering potential was given by k2~k1z
V0j j
�hnF

in both

graphene and the 2DEG. Asterisks (*) denote those values of
d
l

where

interference between higher partial waves from the individual scatterers

generate sharp features in Ttot [Eq. (4)].
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