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Yiwei Zhou, Huanwen Chen* and Yijun Wang*

The School of Automation, Central South University, Changsha, China

Newborn animals, such as 4-month-old infants, 4-day-old chicks, and 1-day-old
guppies, exhibit sensitivity to an approximate number of items in the visual array. These
findings are often interpreted as evidence for an innate “number sense.” However,
number sense is typically investigated using explicit behavioral tasks, which require a
form of calibration (e.g., habituation or reward-based training) in experimental studies.
Therefore, the generation of number sense may be the result of calibration. We built a
number-sense neural network model on the basis of lateral inhibition to explore whether
animals demonstrate an innate “number sense” and determine important factors
affecting this competence. The proposed model can reproduce size and distance effects
of output responses of number-selective neurons when network connection weights
are set randomly without an adjustment. Results showed that number sense can be
produced under the influence of lateral inhibition, which is one of the fundamental
mechanisms of the nervous system, and independent of learning.
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INTRODUCTION

Lateral inhibition is widespread in the animal nervous system, one of the fundamental mechanisms
of information processing in the brain, and is present in the primary visual cortex (Lu and Zuo,
2017) and neocortex (Zhou and Yu, 2018) associated with visual processing. Excitatory neurons
inhibit the activity of surrounding neurons when neurons in these cortical areas are stimulated.
The intensity of inhibition decays with the increasing distance between neurons and results in
a “Mexican hat” interaction relationship (Field et al., 2020). This interaction can disrupt the
attractor state and produce rich responses to encode different characteristics of external stimuli,
such as duration, intensity, and number (Miller, 2013). A previous study showed that the width
of lateral inhibition can affect the encoding mode of number-selective units (Chen et al., 2020).
Many studies have also shown that lateral inhibition contributes to the generation of number sense
in animals (Miller, 2013; Cappelletti et al., 2014; Sengupta et al., 2014). Therefore, adding lateral
inhibition to the model and discussing the influence of lateral inhibition on the number sense of
the model are necessary.

Many number sense models based on artificial neural networks directly or indirectly use lateral
inhibition function and can qualitatively or quantitatively reproduce the results of biological
experiments (Dehaene and Changeux, 1993; Sengupta et al., 2014; Nieder, 2016; Hannagan et al.,
2017; Nasr et al., 2019). However, these models fail to explain the role of lateral inhibition
systematically in the production of number sense due to the following reasons. First, the majority
of models only use lateral inhibition without analyzing its role (Dehaene and Changeux, 1993;
Hannagan et al., 2017; Nasr et al., 2019; Chen et al., 2020). Second, human beings can estimate
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the number of items (i.e., numerosity) without visual training.
However, some models must be trained to realize the number
sense; therefore, these models are unsuitable for analyzing the
impact of lateral inhibition on number sense (Nieder, 2016; Burr
et al., 2017). Third, some researchers use deep convolutional
neural network calculation models with complex structures to
solve the numerical cognition problem in complex real visual
scenes (Nasr et al., 2019). Analyzing the effect of lateral inhibition
alone is difficult due to the large number of hyperparameters
and parameters in these models. Therefore, establishing a model
with a simple network structure and lateral inhibition function
is necessary to investigate the role of lateral inhibition in the
generation of number sense from the perspective of function.

We built a number sense model on the basis of lateral
inhibition to investigate whether neonatal animals present an
innate “number sense” and determine important factors that
affect the number sense. The dataset was inputted into the
untrained model (i.e., randomly set network connection weights
without adjustment), and the output response was observed to
assess whether the model presents the number sense. Based on
this, the role of lateral inhibition in each layer of the neural
network was analyzed by canceling the lateral inhibition function.

MATERIALS AND METHODS

Stimulus Datasets
We constructed four different stimulus sets to test the response
of the model to different numerosities and exclude the influence
of non-numerical visual stimulus cues. The area and perimeter
of each item were maintained at 21 and 12 pixels, respectively,
in the first control set. The total area of items was maintained
at 600 pixels in the second control set. The total perimeter of
items was maintained at 180 pixels in the third control set.
Convex hull of items was a regular pentagon with an outer circle
diameter of 60 pixels and shapes of individual items varied in the
fourth control set, with possible shapes of cross, rectangle, circle,
triangle, square, and diamond. Four control sets are established
to test whether the response of the model will change when items
are distributed centrally rather than uniformly on the image and
examine the influence of the item shape on the model response.
Each image in the stimulus set contained 64× 64 pixels, and the
stimulus intensity of each pixel ranged from 0 to 1. Each control
set consisted of 30 images with n = 1, 2, 3, 4, 5, 6, . . ., 30 items.
Thirty images of the control set were inputted into the model,
and the response curve of each unit was recorded when testing
numerical capabilities of the model. This process was repeated 30
times, and weights of the model and 30 images included in the
control set were randomly regenerated each time. The average
tuning curve of each numerosity-selective unit was calculated
by averaging the response of each unit to the same numerosity
in 30 repeated runs. Four different stimulus sets are shown in
Figure 1A.

Lateral Inhibition Model
The programming language Python was used on the open-source
machine learning platform TensorFlow to build a two-layered

number sense model on the basis of lateral inhibition (Figure 1B).
The network size of the input layer is 64× 64 pixels, and each
unit corresponds to one pixel of the input image. The network
size of the output layer is 20× 20 pixels. Units located in different
layers are fully connected, and initial weights follow the Gaussian
distribution of µ = 0.5 and σ2

= 0.1. This distribution pattern is
qualitatively similar to the synaptic weight distribution observed
in biological experiments (Peng et al., 2017).

All units simultaneously inhibited one another in the same
layer after the input layer received the image stimulus or the
output layer received the input layer stimulus. The inhibition
intensity is a function of the Euclidean distance R between units
and the unit output intensity ax,y that conforms to characteristics
of the Gaussian curve. Hence, the inhibition intensity between
units decreases with the increase of R.

The lateral inhibition process of input and output layers is
expressed as follows:

ainh
x0,y0
= ax0,y0 −

rows∑
x=1

cols∑
y=1

e
−

R2

2×σ2
x,y × a2

x,y
(
x 6= x0,y 6= y0

)
, (1)

where ax0,y0 is the output of the unit located in row x0 and column
y0 in the input or output layer before lateral inhibition, ainh

x0,y0
represents the output of the unit after lateral inhibition, and ax,y
is the output of the unit located in row x and column y in the
input or output layer before lateral inhibition. The intensity of
lateral inhibition should be higher than that of the excitatory
stimulus, given that the neural network must avoid overexcitation
(Scharfman and Brooks-Kayal, 2014; Hattori et al., 2017).
Therefore, the inhibitory intensity of any unit on surrounding
units was set to be two times as strong as its input stimulus ax,y.
R represents the Euclidean distance between units ax0,y0 and ax,y,
and σx,y is the standard deviation that determines the range of
lateral inhibition of the unit located in row x and column y in the
input or output layer. The lateral inhibition range of each neuron
in the cerebral cortex is different (Olson et al., 2021). Therefore,
the lateral inhibition standard deviation σx,y of each unit that
follows the Gaussian distribution (µinput = 0.67,σinput = 0.40,
and µoutput = 26, and σoutput = 22) was randomly generated.
The setting of lateral inhibition standard deviation in the input
layer was inspired by structural characteristics of the visual
pathway from the retina to the occipital lobe. The setting of
lateral inhibition standard deviation in the output layer was
inspired by structural characteristics of the visual pathway from
the occipital lobe to the temporal lobe. Although each layer
of the model only performs lateral inhibition once, it reflects
the result of multiple lateral inhibitions at different levels of
the visual pathway. We preliminarily noted that the range of
lateral inhibition of various layers of the model was different.
The comparison of the simulation results and experimental data
revealed that the fitting degree between the simulation results and
experimental data is high when the lateral inhibition range of the
input layer is large and that of the output layer is small.

The input of each unit of the output layer was
equal to the output response of the input layer after
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FIGURE 1 | Schematic of the stimulus set and neural network structure. (A) Examples of four stimulus sets used to assess the number sense. (B) Number sense
model based on lateral inhibition.

lateral inhibition was multiplied by the weight and
summed.

bi,j =

rows∑
x=1

cols∑
y=1

ainh
x,y × wx,y,i,j, (2)

where bi,j is the output of the unit in row i and column j of the
output layer without lateral inhibition, ainh

x,y is the output response
of the unit located in row x and column y of the input layer after
lateral inhibition, and wx,y,i,j is the weight between the unit in
row x and column y of the input layer and the unit in row i and
column j of the output layer.

Detection of Number Sense
Four control sets were inputted into the neural network, and
responses of each unit in the output layer were recorded under
30 repeated runs. If the average response curve of a unit
contains the maximum response to a certain numerosity, then,
the unit prefers the numerosity. Meanwhile, the distribution of

preferred numerosities of numerosity-selective network units at
each repeated run was recorded, and the average distribution
of preferred numerosities was calculated in the process of 30
repeated runs. First, output responses of units with the same
preference (n = 1, 2, 4, 6, 8, , 28, 30) were averaged to observe
whether response curves on the linear scale demonstrate scale
and distance effects and obtain average tuning curves. Average
tuning curves for network units preferring each numerosity were
plotted on a linear scale (f (x) = x). Second, a bar graph was
used to plot the average distribution of preferred numerosities
obtained under 30 repeated runs to examine the distribution
of preferred numerosities of numerosity-selective network units.
Finally, the study of the brain showed that response curves of
quantity-selective neurons present a positive bias characteristic
(Kutter et al., 2018). We fitted Gaussian functions to network
tuning curves plotted on a linear scale and three different
non-linearly compressed scales (f (x) = x,f (x) = x

1
2 ,f (x) =

x
1
3 , andf (x) = log2(x)) and calculated the ratio of the regression
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FIGURE 2 | Output response of the lateral inhibition model under four different stimulus sets. (A) Average tuning curves for network units that prefer each numerosity
plotted on a linear scale. The horizontal axis is the numerosity in the image, and the vertical axis is the average response after normalization. (B) Distribution of
preferred numerosities of numerosity-selective network units. The horizontal axis is the numerosity, and the vertical axis is the proportion of the number of units that
prefer a specific numerosity in the total number of units. (C) Average tuning curves for network units that prefer each numerosity plotted on a logarithmic scale. The
horizontal axis is the numerosity in the image and plotted on a logarithmic scale of f (x) = log2(x), and the vertical axis is the average response after normalization.
(D) Average goodness-of-fit measure for fitting Gaussian functions to tuning curves on different scales. The average response curves with the preferred numerosity
ranging from 1 to 30 were combined via Gaussian fitting, and the goodness of fit was calculated using the four scales

(
f (x) = x0.5, f (x) = x0.33, f (x) = log2 (x)

)
.

(E) Standard deviation of the Gaussian function with an optimal fit for each tuning curve of numerosity-selective network units on different scales. The horizontal axis
is the preferred numerosity, and the vertical axis is the standard deviation. Left to right images show the results of the output response of the number sense model
when four control sets are inputted.

sum of squares to the total sum of squares to investigate whether
tuning curves of the model showed a positive bias characteristic.
If the logarithmic scale is suited to tuning curves, then these
curves should become symmetric around preferred numerosities
when plotted on that scale, and the goodness of fit (r-square) of
the Gaussian function to tuning curves should be increased. The
average goodness of fit to tuning curves on different scales was
plotted on a bar graph. We also plotted the standard deviation of
the Gaussian function with optimal fit for each tuning curve of
numerosity-selective network units on different scales.

We further canceled the lateral inhibition of the input or
output layer and observed the output response of the model
under the four control sets to analyze the influence of lateral
inhibition on the number sense of the two-layered model.
First, the lateral inhibition of the input layer was canceled

and response curves, distribution of preferred numerosities,
and Gaussian fitting results of the model were obtained. The
standard deviation σ of the lateral inhibition of the output
layer was also set to 0.10, 0.15, 0.20, 0.26, 0.30, 0.35, or
0.40, and the average distribution of preferred numerosities
under 30 repeated runs was calculated to explore the influence
of the standard deviation on the distribution of preferred
numerosities. Second, the lateral inhibition of the output layer
was canceled, and the response curve, preference distribution,
and Gaussian fitting results of the model were obtained. Based
on this, the distribution of preferred numerosities of numerosity-
selective network units was obtained when the lateral inhibition
standard deviation of the input layer was 0.55, 0.60, 0.65,
0.67, 0.70, 0.75, or 0.80. Finally, the lateral inhibition of
input and output layers was canceled, and the response curve,
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preference distribution, and Gaussian fitting results of the model
were obtained.

RESULTS

Number Sense Model With Lateral
Inhibition in Input and Output Layers
The number sense results when input and output layers of the
model demonstrate lateral inhibition are shown in Figure 2.
Images from left to right represent numerical abilities of the
model when control sets 1–4 are the input. As shown in
Figure 2A, the unit produced the maximum response when
the input numerosity was equal to the preference numerosity;
otherwise, the unit response decreased. A large distance between
input and preferred numerosities indicates a small response
of the unit. Therefore, the response curve of output units
can reproduce the distance effect. Moreover, a large preferred
numerosity of the output unit corresponds to a slow decline
of the output response when the input numerosity deviates
from the preferred numerosity. Therefore, the response curve
can reproduce the size effect. The tuning curve of the model
conformed to characteristics of “labeled-line code” because
it reached the peak at the preferred numerosity instead of
monotonically increasing or decreasing.

Figure 2B shows that the number of units with preference
numerosity 1 is the largest among the four stimulus sets.
The number of units preferring this numerosity decreased as
the numerosity increased but increased until the numerosity
was close to 30. Therefore, the distribution of preferred
numerosities of numerosity-selective network units showed high
distribution characteristics at both ends and low distribution
characteristics in the middle.

The similarity between response curves and the Gaussian
function on different scales requires further investigation for the
quantitative exploration of the distance and size effects of output
units. Average response curves of the preferred numerosity
n = 1, 2, 4, 6, 8, 28, 30 were plotted on the logarithmic
scale (f (x) = log2(x), (Figure 2C). The comparison between
Figures 2A,C showed that response curves are symmetrical on
the logarithmic scale. Figures 2D,E quantitatively demonstrated
these observations. Figure 2D presents that the average goodness
of fit of response curves on the linear scale was the minimum
(r2

linear = 50.13%). The average goodness of fit of the Gaussian
fitting of tuning curves increased with the increase of abscissa
non-linearity. Figure 2E illustrates that the standard deviation
increases with the increase of the preferred numerosity, and the
average slope of the four stimulus sets is rlinear = 0.49 on the
linear scale. The standard deviation of other non-linear scales
was nearly unchanged, and the average slope was rnonlinear =

0.04. The consistency between these results and experimental
data of the prefrontal cortex of the monkey (Nieder and Merten,
2007) indicated that the untrained (i.e., randomly set and
unadjusted network connection weights) lateral inhibition model
demonstrates number sense.

The lateral inhibition model was compared with other
number sense frameworks. A previous study used hierarchical

convolutional neural network (HCNN) and showed that
numerosity-selective network units spontaneously emerge in a
biologically inspired deep neural network (DNN) that was merely
trained on visual object recognition (Nasr et al., 2019). However,
the HCNN consisted of fifteen layers, namely, one output, eight
convolutional, and six pooling layers. Therefore, analyzing the
influence of various factors on the number sense is difficult. In
addition, although Nasr et al. (2019) proved that numerosity
selectivity can emerge simply as a by-product of exposure to
natural visual stimuli, without requiring any explicit training for
numerosity estimation, they did not study whether the model
has number sense before training on visual object recognition.
In contrast, DNN of Kim et al. (2021) can spontaneously
generate number sense without learning. Numerical abilities of
the DNN model can be improved after pretraining. However,
this neural network consisted of five convolutional and three
fully connected layers; hence, analyzing the visual information
process in each layer and distinguishing effects of various factors
on numerical abilities are difficult. Zorzi and Testolin (2017)
realized the number sense using the genetic algorithm in a three-
layered neural network. This finding showed that numerical
abilities can be supported by domain-specific representations
emerging from evolutionary pressure. However, the input of
this model is a binary vector, and determining whether the
evolutionary simulation with a realistic sensory input still shows
the appearance of numerical cognition is a problem that needs
further investigation. Moreover, the model ignores ontogeny of
numerical abilities.

In comparison, the proposed lateral inhibition model in this
study consists of only two layers of neural networks. Notably, the
model can reproduce the distance and size effects when network
connection weights are set randomly without adjustment.
Compared with other networks (Zorzi and Testolin, 2017; Nasr
et al., 2019; Testolin et al., 2020a; Kim et al., 2021), our lateral
inhibition model can help analyze the generation of number sense
and discuss important factors affecting the number sense.

Number Sense Model Without Lateral
Inhibition in the Input Layer
The model was tested without input layer lateral inhibition
using the stimulus scheme in Figure 2 to analyze the effect of
input layer lateral inhibition on number sense. Figure 3A shows
the responses of input layer units when the input layer lateral
inhibition is canceled or retained. The response of each unit
of the input layer was equal to the stimulation intensity of the
corresponding pixel in the image when the input layer lacked
lateral inhibition. Non-numerical visual features of the item, such
as area, shape, perimeter, and radius, were inhibited, and the total
response intensity of the input layer was related to the numerosity
but unrelated to non-numerical visual characteristics when
the input layer demonstrated lateral inhibition. Therefore, the
function of input layer lateral inhibition is to extract numerical
features of items and suppress non-numerical visual features.

Response curves of units in the output layer without lateral
inhibition in the input layer are shown in Figure 3B. The
model can sense numerosities less than 10, and average tuning
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FIGURE 3 | Output response of the neural network model without lateral inhibition in the input layer under four types of stimulus sets. (A) Response of the input layer
unit in both cases of deleting and retaining the input layer lateral inhibition. The upper layer is the response of the input layer unit after deleting the input layer lateral
inhibition. The lower layer is the response of the input layer unit when the input layer presents lateral suppression. (B) Average tuning curves for network units that
prefer each numerosity plotted on a linear scale. (C) Distribution of preferred numerosities of numerosity-selective network units. (D) Average tuning curves for
network units that prefer each numerosity plotted on a logarithmic scale. (E) Average goodness-of-fit measure for fitting Gaussian functions to tuning curves on
different scales. (F) Standard deviation of the Gaussian function with optimal fitting for each tuning curve of numerosity-selective network units on different scales.
(G) Distribution of preferred numerosities of numerosity-selective network units under different standard deviations.

curves fluctuate significantly under the stimulation of control
sets 1, 3, and 4. However, the model failed to produce number
sense when the total area of items was fixed (i.e., control set

2). Figure 3C presents that more than 50% of units prefer
numerosity 1 for control sets 1, 3, and 4. Figure 3D illustrates
the response curves of output layer units on the logarithmic
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FIGURE 4 | Output response of the model without lateral inhibition in the output layer under four types of stimulus sets. (A) Average tuning curves for network units
that prefer each numerosity plotted on a linear scale. (B) Distribution of preferred numerosities of numerosity-selective network units. (C) Average tuning curves for
network units that prefer each numerosity plotted on a logarithmic scale. (D) Average goodness-of-fit measure for fitting Gaussian functions to tuning curves on
different scales. (E) Standard deviation of the Gaussian function with optimal fitting for each tuning curve of numerosity-selective network units on different scales.
(F) Distribution of preferred numerosities of numerosity-selective network units under different standard deviations.

scale (f (x) = log2(x)). Response curves were more asymmetric
on the logarithmic scale compared with those in Figure 3B. We
then examined the similarity between response curves and the
Gaussian function on different scales. First, the average goodness
of fit of the Gaussian function fitting on different scales was
calculated (Figure 3E). The results indicated that the goodness
of fit on the linear scale increases with the input of control sets
1, 3, and 4 but decreases with the increase of abscissa non-
linearity. Second, the standard deviation of the Gaussian function
with optimal fitting for each tuning curve of numerosity-selective
network units on different scales was calculated (Figure 3F). The
results showed that the standard deviation increases with the
increase of preferred numerosity on the linear scale but remains
unchanged on other non-linear scales. Figure 3G shows the
distribution of the number of numerosity-selective units when
standard deviations σ of the Gaussian function of the output layer
is different. Although the standard deviation σ of the Gaussian

function of the output layer changed, the model failed to perceive
all numerosities within 30.

The comparison of Figures 2, 3 showed that canceling the
lateral inhibition of the input layer changes the response of
the model. First, the absence of lateral inhibition in the input
layer led to sharp fluctuations in the response curve because
failure of this model to inhibit non-numerical visual features
of the item results in the reduction of correlation between the
total response intensity of the input layer and the numerosity of
items. Second, the absence of lateral inhibition in the input layer
changed the range of number sense of the model. The preferred
numerosity was within 10 for control sets 1 and 4 because
the increased intensity of the input stimulation of the output
layer subsequently increased the lateral inhibition intensity of
output layer units when lateral inhibition was absent in the input
layer. Therefore, the response of all units approached zero, and
numerosities greater than 10 are not preferred when the number
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FIGURE 5 | Output response of the neural network model without lateral inhibition in input and output layers under four stimulus sets. (A) Average tuning curves for
network units that prefer each numerosity plotted on a linear scale. (B) Distribution of preferred numerosities of numerosity-selective network units. (C) Average
tuning curves for network units that prefer each numerosity plotted on a logarithmic scale. (D) Average goodness-of-fit measure for fitting Gaussian functions to
tuning curves on different scales. (E) Standard deviation of the Gaussian function with optimal fitting for each tuning curve of numerosity-selective network units on
different scales.

of items was large due to mutual inhibition. The model can also
distinguish numerosities within 10 for control set 3 because the
total area of the item and the intensity of the input stimulus of the
output layer decreased with the increase of the item numerosity
when the total circumference of items remained unchanged.
Therefore, producing the maximum response to the numerosity
exceeding 10 was impossible. The numerical cognitive ability of
the model was absent when control set 2 was the input because
the intensity of the input stimulation of the output layer and
the mutual inhibition intensity of each unit of the output layer
remained unchanged when the total area of the item remained the
same. Therefore, the response of the output layer unit remained
unchanged and failed to produce the maximum response to
any number. In summary, number sense is absent in the model
without lateral inhibition in the input layer because the model
fails to produce number sense stably when controlling the input
of non-numerical visual stimulus cues.

Number Sense Model Without Lateral
Inhibition in the Output Layer
Four types of stimulus sets were used to test the model without
output layer lateral inhibition and examine the effect of output

layer lateral inhibition on numerical abilities of the model.
Average response curves on the linear scale are shown in
Figure 4A. The output response of the model increased with the
increase of numerosity because the total response strength of the
input layer and the response of units in the output layer increased
with the increase of numerosity. Figure 4B presents that some
units also demonstrate the maximum response to numerosities
close to 30. Combined with the influence of the initial weight
conforming to the Gaussian distribution, units also preferred
numerosities of less than 30. Average response curves on the
logarithmic scale (f (x) = log2(x)) are shown in Figure 4C.
Response curves were fitted with the Gaussian function on linear
and non-linear scales. The average goodness of fit of response
curves decreased with the increase of the abscissa non-linear scale
(Figure 4D). The standard deviation of the Gaussian function
with optimal fitting for each tuning curve on different scales
(Figure 4E) is qualitatively the same as that in Figure 2E.
Figure 4F presents the distribution of preferred numerosities of
numerosity-selective network units in the total number of units
after adjusting the standard deviation σ of the Gaussian function
of the input layer. We revealed that generating the number sense
from 1 to 30 was impossible although the standard deviation σ

of the Gaussian function of the input layer changed. Notably,
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failure of the model without output layer lateral inhibition to
develop Gaussian-centered tuning curves does not imply that an
approximate representation of numerosity is absent in the model.
Monotonic tuning curves may be sufficient to encode numerical
information coarsely (Chen and Verguts, 2013).

Number Sense Model Without Lateral
Inhibition in Input and Output Layers
The lateral inhibition function of input and output layers
was removed to investigate whether the model without lateral
inhibition demonstrates number sense. Average response curves
of the model are shown in Figure 5A. Average output responses
of the model increased with serious fluctuations with the
increase of numerosity. Network units of the output layer
demonstrated the maximum response only when the preferred
numerosity was close to 30, and control sets 1, 2, and 4
were the input. However, units only preferred numerosity 1
when control set 3 was the input (Figure 5B). Figure 5C
presents the average tuning curves for network units that prefer
each numerosity. Gaussian fitting was performed on response
curves on the four scales. The average goodness of fit increased
with the increase of abscissa non-linearity only when control
set 2 was the input (Figure 5D). The standard deviation of
the Gaussian function with optimal fitting increased with the
increase of the preferred numerosity only on the linear scale
(Figure 5E). Number sense is absent in the model without
lateral inhibition in input and output layers because of the
lacking of stable numerical abilities of the model under different
control sets.

DISCUSSION

Compared with other number sense models, the lateral inhibition
model presents three main advantages. First, we simplified the
number of network layers and parameters. Number sense models
typically use complex deep and convolutional neural networks
to process complex visual images (Nasr et al., 2019; Testolin
et al., 2020b). In contrast, our model used the two-layered
neural network to analyze the generation process of number
sense. Second, the numerical cognition generation process
demonstrated spontaneity. Unlike previous number sense models
that rely on quantity-dependent training (Chen and Verguts,
2012, 2017; Miller, 2013; Sengupta et al., 2014), training and
transfer learning are unnecessary in our model. The model can
reproduce the distance and size effects when network connection
weights were set randomly without adjustment. Finally, our
model simulated the visual information pathway of newborn
animals in a minimalist way. The input layer represents the visual
pathway from the retina to the occipital lobe, whereas the output
layer represents the visual pathway from the occipital lobe to
the temporal lobe. Based on this, we qualitatively added lateral
inhibition, which is one of the fundamental mechanisms of the
brain. Although models generally adopt the lateral inhibition
function (Miller, 2013; Zorzi and Testolin, 2017; Nasr et al.,
2019; Kim et al., 2021), they failed to explain the specific role of

lateral inhibition in the generation of number sense. We revealed
the different effects of lateral inhibition in each layer of the
network by selectively removing the lateral inhibition of input
and output layers. Lateral inhibition in the input layer inhibits
the area, shape, perimeter, radius, and other non-numerical visual
characteristics of the item to ensure that the total input layer
stimulation intensity is positively correlated with numerosity.
Meanwhile, lateral inhibition in the output layer allows output
layer units to demonstrate a preference for different numerosities
because output responses of units in the output layer are related
not only to excitatory stimuli in the input layer but also to
lateral inhibition in the output layer. Units located in different
locations of the neural network suffer from different degrees
of lateral inhibition, given that lateral inhibition intensity is
correlated with the Euclidean distance between units. Lateral
inhibition is weak when the unit is close to the edge of the neural
network. Hence, the numerosity of unit preferences increases as
the Euclidean distance between the unit and the geometric center
of the neural network increases. In summary, lateral inhibition
is an important factor that affects numerical abilities of our
two-layered model.

Avoiding the correlation between numerosities and all visual
features at the same time and presenting images with the
same non-numerical visual features and different numerosities
are impossible in the experimental design (Testolin et al.,
2020a). Therefore, we adopted the method of maintaining
different non-numerical visual features while the numerosity
changed to assess whether the number sense of the model
was the result of the change of other visual features. Although
the lateral inhibition model can generate number sense
under these four control sets, numerical processing can
be carried out through non-numerical visual features. For
example, the model without lateral inhibition in the input
layer (Figure 3) can distinguish numerosities within 10 when
the total stimulation area was positively correlated with the
numerosity. This finding suggested that non-numerical visual
features can also influence the number sense of animals.
Effects of non-numerical visual features on the response
of numerical preference neurons need to be systematically
explored in both neurophysiology and deep learning simulation
(Leibovich et al., 2017).

Our stimulus sets consisted of customized multiple gray
images that aimed to simplify the number of network layers
and parameters. Although non-numerical visual stimulus cues
were controlled, a gap between stimulus sets and actual visual
images still existed. For example, in the actual visual scene, two
or more items can overlap. In this case, whether our model can
accurately perceive the number of items is unknown. Moreover,
items in actual visual images present complex shapes and rich
colors. Therefore, testing the number sense of the neural network
model on the basis of lateral inhibition in the actual visual scene
is necessary. At the same time, our results showed that the simple
neural network with lateral inhibition can realize spontaneous
numerical cognition without training. However, whether or not
number sense can be improved considerably if the neural network
is trained is unknown. Moreover, recognition of abstract numbers
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in our model needs further exploration, given that stimulus sets
only contain non-symbolic numerosities.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

YZ contributed to the conceptualization, data curation, formal
analysis, investigation, methodology, and writing of the original
draft of the manuscript. HC contributed to the conceptualization
as well as writing, review, and editing of the manuscript.

YW contributed to the writing, review, and editing of the
manuscript. All authors contributed to the article and approved
the final version.

FUNDING

Publication costs are funded by the Natural Science Foundation
of Hunan Province (2021JJ30863).

ACKNOWLEDGMENTS

A preprint version of this work is also available from
https://www.biorxiv.org/content/10.1101/2021.09.19.460638v1
(Zhou et al., 2021).

REFERENCES
Burr, D. C., Anobile, G., and Arrighi, R. (2017). Psychophysical evidence for the

number sense. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 373:20170045. doi:
10.1098/rstb.2017.0045

Cappelletti, M., Didino, D., Stoianov, I., and Zorzi, M. (2014). Number skills are
maintained in healthy ageing. Cogn. Psychol. 69, 25–45. doi: 10.1016/j.cogpsych.
2013.11.004

Chen, H. W., Xie, L. J., Wang, Y. J., and Zhang, H. (2020). Effect of Suppression
Width in Spontaneous Detection Of Numerosity. Available online at: https://dx.
doi.org/10.2139/ssrn.3551615 (accessed March 17, 2020).

Chen, Q., and Verguts, T. (2012). Spatial intuition in elementary arithmetic: a
neurocomputational account. PLoS One 7:245–265. doi: 10.1371/journal.pone.
0031180

Chen, Q., and Verguts, T. (2013). Spontaneous summation or numerosity-selective
coding? Front. Hum. Neurosci. 7:886. doi: 10.3389/fnhum.2013.00886

Chen, Q., and Verguts, T. (2017). Numerical proportion representation: a
neurocomputational account. Front. Hum. Neurosci. 11:412. doi: 10.3389/
fnhum.2017.00412

Dehaene, S., and Changeux, J. P. (1993). Development of elementary numerical
abilities: a neuronal model. J. Cogn. Neurosci. 5, 390–407. doi: 10.1162/jocn.
1993.5.4.390

Field, R. E., D’Amour, J. A., Tremblay, R., and Miehl, C. (2020). Heterosynaptic
plasticity determines the set point for cortical excitatory-inhibitory balance.
Neuron 106, 842–854. doi: 10.1016/j.neuron.2020.03.002

Hannagan, T., Nieder, A., Viswanathan, P., and Dehaene, S. (2017). A random
matrix theory of the number sense. Philos. Trans. R. Soc. Lond. 373:20170253.
doi: 10.1098/rstb.2017.0253

Hattori, R., Kuchibhotla, K., Froemke, R. C., and Komiyama, T. (2017). Functions
and dysfunctions of neocortical inhibitory neuron subtypes. Nat. Neurosci. 20,
1199–1208. doi: 10.1038/nn.4619

Kim, G., Jang, J., Baek, S., Song, M., and Paik, S.-B. (2021). Visual number sense
in untrained deep neural networks. Sci. Adv. 7:eabd6127. doi: 10.1126/sciadv.
abd6127

Kutter, E. F., Bostroem, J., Elger, C. E., Mormann, F., and Nieder, A. (2018). Single
neurons in the human brain encode numbers. Neuron 100, 753.e4–761.e4.
doi: 10.1016/j.neuron.2018.08.036

Leibovich, T., Katzin, N., Harel, M., and Henik, A. (2017). From “sense of number”
to “sense of magnitude”: the role of continuous magnitudes in numerical
cognition. Behav. Brain Sci. 164:e164. doi: 10.1017/S0140525X16000960

Lu, J., and Zuo, Y. (2017). Clustered structural and functional plasticity of dendritic
spines. Brain Res. Bull. 129, 18–22. doi: 10.1016/j.brainresbull.2016.09.008

Miller, P. (2013). Stimulus number, duration and intensity encoding in randomly
connected attractor networks with synaptic depression. Front. Comput.
Neurosci. 7:1–13. doi: 10.3389/fncom.2013.00059

Nasr, K., Viswanathan, P., and Nieder, A. (2019). Number detectors spontaneously
emerge in a deep neural network designed for visual object recognition. Sci.
Adv. 5:eaav7903. doi: 10.1126/sciadv.aav7903

Nieder, A. (2016). The neuronal code for number. Nat. Rev. Neurosci. 17, 366–382.
doi: 10.1038/nrn.2016.40

Nieder, A., and Merten, K. (2007). A labeled-line code for small and large
numerosities in the monkey prefrontal cortex. J. Neurosci. 27, 5986–5993. doi:
10.1523/JNEUROSCI.1056-07.2007

Olson, E. G. N., Wiens, T. K., and Gray, J. R. (2021). A model of feedforward, global,
and lateral inhibition in the locust visual system predicts responses to looming
stimuli. Biol. Cybern. 115, 245–265. doi: 10.1007/s00422-021-00876-8

Peng, Y., Barreda Tomás, F. J., Klisch, C., Vida, I., and Geiger, J. R. P. (2017). Layer-
specific organization of local excitatory and inhibitory synaptic connectivity in
the rat presubiculum. Cereb. Cortex 27, 2435–2452. doi: 10.1093/cercor/bhx049

Scharfman, H. E., and Brooks-Kayal, A. R. (2014). Is plasticity of GABAergic
mechanisms relevant to epileptogenesis? Adv. Exp. Med. Biol. 813, 133–150.
doi: 10.1007/978-94-017-8914-1_11

Sengupta, R., Surampudi, B. R., and Melcher, D. (2014). A visual sense of number
emerges from the dynamics of a recurrent on-center off-surround neural
network. Brain Res. 1582, 114–124. doi: 10.1016/j.brainres.2014.03.014

Testolin, A., Dolfi, S., Rochus, M., and Zorzi, M. (2020a). Visual sense of number
vs. sense of magnitude in humans and machines. Sci. Rep. 10:10045. doi: 10.
1038/s41598-020-66838-5

Testolin, A., Zou, W. Y., and McClelland, J. L. (2020b). Numerosity discrimination
in deep neural networks: initial competence, developmental refinement and
experience statistics. Dev. Sci. 23:e12940. doi: 10.1111/desc.12940

Zhou, S., and Yu, Y. (2018). Synaptic E-I balance underlies efficient neural coding.
Front. Neurosci. 12:46. doi: 10.3389/fnins.2018.00046

Zhou, Y., Chen, H., and Wang, Y. (2021). Role of lateral inhibition on visual
number sense. bioRxiv [Preprint] Available online at: https://doi.org/10.1101/
2021.09.19.460638 (accessed September 22, 2021).

Zorzi, M., and Testolin, A. (2017). An emergentist perspective on the origin of
number sense. Philos. Trans. R. Soc. B 373:20170043. doi: 10.1098/rstb.2017.
0043

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhou, Chen and Wang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 June 2022 | Volume 16 | Article 810448

https://www.biorxiv.org/content/10.1101/2021.09.19.460638v1
https://doi.org/10.1098/rstb.2017.0045
https://doi.org/10.1098/rstb.2017.0045
https://doi.org/10.1016/j.cogpsych.2013.11.004
https://doi.org/10.1016/j.cogpsych.2013.11.004
https://dx.doi.org/10.2139/ssrn.3551615
https://dx.doi.org/10.2139/ssrn.3551615
https://doi.org/10.1371/journal.pone.0031180
https://doi.org/10.1371/journal.pone.0031180
https://doi.org/10.3389/fnhum.2013.00886
https://doi.org/10.3389/fnhum.2017.00412
https://doi.org/10.3389/fnhum.2017.00412
https://doi.org/10.1162/jocn.1993.5.4.390
https://doi.org/10.1162/jocn.1993.5.4.390
https://doi.org/10.1016/j.neuron.2020.03.002
https://doi.org/10.1098/rstb.2017.0253
https://doi.org/10.1038/nn.4619
https://doi.org/10.1126/sciadv.abd6127
https://doi.org/10.1126/sciadv.abd6127
https://doi.org/10.1016/j.neuron.2018.08.036
https://doi.org/10.1017/S0140525X16000960
https://doi.org/10.1016/j.brainresbull.2016.09.008
https://doi.org/10.3389/fncom.2013.00059
https://doi.org/10.1126/sciadv.aav7903
https://doi.org/10.1038/nrn.2016.40
https://doi.org/10.1523/JNEUROSCI.1056-07.2007
https://doi.org/10.1523/JNEUROSCI.1056-07.2007
https://doi.org/10.1007/s00422-021-00876-8
https://doi.org/10.1093/cercor/bhx049
https://doi.org/10.1007/978-94-017-8914-1_11
https://doi.org/10.1016/j.brainres.2014.03.014
https://doi.org/10.1038/s41598-020-66838-5
https://doi.org/10.1038/s41598-020-66838-5
https://doi.org/10.1111/desc.12940
https://doi.org/10.3389/fnins.2018.00046
https://doi.org/10.1101/2021.09.19.460638
https://doi.org/10.1101/2021.09.19.460638
https://doi.org/10.1098/rstb.2017.0043
https://doi.org/10.1098/rstb.2017.0043
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Role of Lateral Inhibition on Visual Number Sense
	Introduction
	Materials and Methods
	Stimulus Datasets
	Lateral Inhibition Model
	Detection of Number Sense

	Results
	Number Sense Model With Lateral Inhibition in Input and Output Layers
	Number Sense Model Without Lateral Inhibition in the Input Layer
	Number Sense Model Without Lateral Inhibition in the Output Layer
	Number Sense Model Without Lateral Inhibition in Input and Output Layers

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


