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ABSTRACT
Graph theoretical studies have been designed to investigate network topologies during life.
Network science and graph theory methods may contribute to a better understanding of brain
function, both normal and abnormal, throughout developmental stages. The degree to which
childhood epilepsies exert a significant effect on brain network organisation and cognition remains
unclear. The hypothesis suggests that the formation of abnormal networks associated with epilep-
togenesis early in life causes a disruption in normal brain network development and cognition,
reflecting abnormalities in later life. Neurological diseases with onset during critical stages of brain
maturation, including childhood epilepsy, may threaten this orderly neurodevelopmental process.
According to the hypothesis that the formation of abnormal networks associated with epilepto-
genesis in early life causes a disruption in normal brain network development, it is then manda-
tory to perform a proper examination of children with new-onset epilepsy early in the disease
course and a deep study of their brain network organisation over time. In regards, graph theoret-
ical analysis could add more information. In order to facilitate further development of graph theory
in childhood, we performed a systematic review to describe its application in functional dynamic
connectivity using electroencephalographic (EEG) analysis, focussing on paediatric epilepsy.

ARTICLE HISTORY
Received 3 November 2021
Accepted 25 January 2022

KEYWORDS
Graph theory; paediatric
epilepsy; brain
network; childhood

Introduction

The first year of life marks the most rapid period of
brain development on a micro- and macroscopic scale.
On a cellular level, the brain grows an abundance of
synaptic connections and those superfluous connections
are pruned early in post-natal life (Flavell and
Greenberg 2008). Moreover, long-distance axons start to
be myelinated to improve signal transfer to the distant
brain areas. This process continues until the fourth dec-
ade of life (Lebel et al. 2008; Tamnes et al. 2010;
Yap et al. 2011). Literature data show that such matur-
ational processes lead to network topologies with brain
functional networks shifting from more random towards
a more ordered configuration (Smit et al. 2010; Boersma
et al. 2011; Smit et al. 2012).

Graph theoretical studies have been designed to
investigate network topologies during life. Network
science and graph theory methods may contribute to a

better understanding of brain function, both normal
and abnormal, throughout developmental stages
(Bullmore and Sporns 2009; Griffa et al. 2013). In par-
ticular, they could contribute to connecting brain struc-
ture to its function, clarify the link between structural
changes and functional derangement, and explore how
cognitive processes emerge from their morphological
substrates (Sporns et al. 2005). Several research groups
have recently focussed on brain functional analysis
implementing the graph theory applications Sporns
and Zwi 2004; Stam and Reijneveld 2007; Fallani et al.
2007; He et al. 2007; Rubinov and Sporns 2010; Vecchio
et al. 2014a; 2014b; Vecchio et al. 2015a; 2015b;
Vecchio et al. 2016a; 2016b), using a variety of meth-
odological approaches and datasets. Particularly in epi-
lepsy, the graph theory could add to a fast-growing
research field focussed on network abnormalities in epi-
leptogenesis, seizure propagation and refractoriness. In
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order to facilitate further development of graph theory
in this new field, we performed a systematic review to
describe its application in functional dynamic connect-
ivity using electroencephalographic (EEG) analysis,
focussing on paediatric epilepsy.

Methods

This review was performed in accordance to the
“preferred reporting items for systematic review”
(PRISMA) (Figure 1), and “the assessment of the meth-
odological quality of systematic reviews” (AMSTAR-2)
guidelines (Moher et al. 2009; Shea et al. 2017). We car-
ried out a systematic review of available literature on
several medical electronic databases (including Cochrane
Library, Medline, PubMed Central, Scopus and Web of
Science). We used the following keywords: “graph the-
ory” OR “brain network connections” OR “EEG graph
theoretical studies,” AND “epilepsy,” AND/OR “EEG
application,” AND/OR "computational EEG network." The
studies considered were published in English from
inception to December 2020. Studies from the reference
lists of relevant articles retrieved were also analysed.

Eligibility criteria

We selected studies performed on children with
epilepsy (age ranging from 1month to 18 years), in

whom graph theory was applied for both diagnostic
and predictive purposes, i.e., to evaluate the
recurrence of seizures. Only the studies in which graph
theory was applied to the evaluation of the surface
EEG were selected.

Exclusion criteria

Review articles, case report, case series and studies
with incomplete details or from which the required
data could not be extracted were excluded from
our revision.

Study selection

One author (S.D.M.) searched all the databases accord-
ing to the search strategies, and duplicate studies
were excluded. Three authors (R.F, S.D.M, G.V.)) inde-
pendently screened titles, abstracts and full texts to
identify eligible studies. All reasons for excluding stud-
ies were recorded.

Quality appraisal

Two authors (S.D.M. and G.V.) independently assessed
the risk-of-bias of the selected studies according to
the 11-item instrument recommended by the Agency
for Healthcare Research and Quality (AHRQ) for cross-

Records identified through 
database searching  (n=66) 

Addition records identified 
through other sources  (n=2) 

Records after duplicates removed (n=64) 

Screened (n=64) 
Record excluded (n=51) 

Reasons: 

Irrilevant title or abstract: 49 

Non English articles: 2 

Full-text article assessed for eligibility 
(n=13) 

Record excluded (n=3) 

Reasons 

Incomplete details: 3 

Studies included in final analysis (n=10) 

Studied excluded in final analysis (n=3) 

Figure 1. Flowchart of the literature search process.
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sectional studies (Chang et al. 2012). For each item,
we answered “yes,” “no,” or “unclear,” and studies that
received a score of seven stars or more were consid-
ered high-quality papers. Disagreements between the
two independent reviewers (S.D.M. and G.V.) were dis-
cussed and resolved by a third reviewer (R.F.). We
used the Cohen kappa statistic to calculate the level
of disagreement and an achieved good agreement
was considered for value >80% (Sim and Wright
2005). (Table 1).

Results

64 titles and abstracts were screened, 51 were
excluded because they did not focus on the topic; 13
full texts were read and 3 were excluded for incom-
plete details. In this review, 10 articles were included
(Figure 1).

The graph theory approach

The human brain can be thought of as a complex of
interconnected networks. Research studies on the
complexities of brain networks are relatively new but
rapidly expanding. Most studies refer to the connec-
tion matrix of the human brain as the human "connec-
tome" (Gaal et al. 2010; Vecchio et al. 2017). Graph
theory applied to the human brain is essentially a
mathematical representation of the real brain architec-
ture with a set of nodes (vertices), representing brain
regions, and links (edges), representing anatomical,
functional, or effective connections, interposed
between them (Rubinov and Sporns 2010).

In this theory, the network is composed of a matrix,
in which each row represents a node, and each col-
umn represents the relationship between nodes in the
network. Links between nodes can be weighted or
unweighted. Weighted links represent the density, size
and coherence of anatomical tracts in anatomical net-
works, symbolising the strength of correlation or
causal interactions in functional networks (Vecchio
et al. 2017). Unweighted (binary) networks are created
by applying a threshold to a weighted network, in
which links indicate the presence or absence of any
connection (Vecchio et al. 2017). Although literature
data often use unweighted networks, interest in
weighted network analysis is increasing because of
more specific information provided by the weighted
connections (Telesford et al. 2011).

Algorithms based on network connections provide
parameters that define the global organisation of the
brain and its alterations (Griffa et al. 2013).

Researchers have applied the graph theory to EEG
data analysis in order to investigate the brain network
organisation changes associated with ageing (Vecchio
et al. 2014a; 2014b). It was observed that both meas-
ures of local segregation (clustering as an index of
local interconnections and network segregation) and
global integration (path length as an index of informa-
tion transfer efficiency) could discriminate cortical net-
work features, which represent the confine between
physiological and pathological neurodegenerative
brain ageing. This new approach resulted in the devel-
opment of functional connectivity models with the
aim to clarify whether there is an optimal balance
between global integration and local independence as
a favourable condition for information processing
(Gaal et al. 2010).

Parameters derived by graph theory analysis

Recent literature data have applied graph theory to
brain imaging with promising results as an interpret-
able and generalisable way to draft model brain net-
works (Rubinov and Sporns 2010). In this theory, a
graph is a mathematical construct to represent a
model in which the relationship between objects is
described. These objects are named vertices and their
interconnecting links are called edges (Rubinov and
Sporns 2010).

In this brain network, regions of interest (ROIs) can
be drafted by these vertices in a graph, and some
measures of connectivity between ROIs, are repre-
sented by the edges. One important advantage of this
model is that simple, numerical summary descriptors
of graph organisation can be derived, describing the
graph structure with a topology graph in terms of the
whole network (Rubinov and Sporns 2010; Telesford
et al. 2011).

The metrics mostly used to describe this graph are
named: characteristic path length (that measures how
easy to easy it is to traverse the whole graph), cluster-
ing coefficient (a measure of local connectivity), and
small-worldness (that represents the state of being
highly clustered, even having a short average path)
(Rubinov and Sporns 2010).

These measures provide a way to characterise the
underlying structural and functional brain networks,
allowing comparison across subjects and time. In a
graph theory analysis, segregation refers to the degree
to which network elements form separate clusters and
reflect a clustering coefficient (C) (Rubinov and Sporns
2010), while integration refers to the capacity of net-
work exchange information to become interconnected,
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and it is defined by the characteristic path length (L)
coefficient (Rubinov and Sporns 2010).

The mean clustering coefficient is computed for all
the studied nodes of the graph and then averaged
(Rubinov and Sporns 2010). This allows a measure of
the tendency of network elements to form local clus-
ters (de Haan et al. 2009). According to Figure 2a
healthy brain is represented, while in Figure 2b the
epileptic brain is designed.

Starting with the definition of the L coefficient
(Rubinov and Sporns 2010), the weighted characteris-
tic path length (defined as Lw) represents the shortest
weighted path length between two nodes. (Rubinov
and Sporns 2010).

The Small-world (SW) parameter represents the
ratio between normalised C and L – Cw and Lw – with
respect to the frequency bands (Rubinov and Sporns
2010). The SW coefficient describes the balance
between the global integration of a network and local
connectivity. SW organisation is an intermediate step
between random networks -the short overall path

length associated with a low level of local clustering -
and regular networks - the high level of clustering
which is associated with a long L coefficient (Vecchio
et al. 2014b). This means that most nodes maintain a
few direct connections and are linked by a rela-
tively few.

Application of graph theory to EEG for the
study of childhood epilepsy

Studies focussing on graph theory application to EEG
analysis to study the physiological brain maturation
(Vecchio et al. 2017). have been expanding. Boersma
and colleagues investigated the records of resting-
state eyes-closed EEG of young children (5–7 years).
The graphs were weighted using synchronisation
likelihood (SL). The authors showed an increase in
average C and L coefficients with age and suggested
that there is a shift from random to more organised
SW functional networks during brain maturation in
childhood (Boersma et al. 2011).

Figure 2. Visual example of the connectome in healthy brain (A) vs epileptic brain (B).
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Micheloyannis et al published a study of SL in the
EEG of children (8–12 years) and young adult students
(21–26 years). They found that beta and gamma values
of the C coefficient were higher in children than in
young adults. The authors also found that SW in the
beta band was significantly higher in children than in
young adults. They concluded that in children there is a
higher synchronisation of fast frequencies, reflecting
brain maturational processes (Micheloyannis et al. 2009).

Brain networks have been shown to change their
dynamic state, switching between rest and movement,
cognitive and behavioural tasks, and wakefulness and
sleep. In patients with epilepsy, brain networks may
show the transient occurrence of paroxysmal firing
within neuronal groups, which could evolve into a
seizure over time (Vecchio et al. 2017). In this context,
characterisation of neural networks in epilepsy has
become more relevant since focal epilepsy could be
related to abnormal functioning of specific brain net-
works without any structural damage (Vecchio
et al. 2017).

Seizures are considered the result of an imbalance
between excitatory and inhibitory signals, leading to a
hyperexcitable state in which the abnormal rhythms
of neural firing cannot be sufficiently controlled by
physiological inhibitory mechanisms. This imbalance
would then generate a paroxysmal depolarisation shift
(Stafstrom and Carmant 2015).

The relevance of graph theory application to EEG
relies on the assumption that seizures are caused by a
progressive hyper-synchronization of the firing of a
critical mass of neurons, implying that a single neuron
cannot cause a seizure, and the involvement of a
population of cells involved in networks of neuronal
assemblies is necessary (Engel et al. 2013; Mei
et al. 2018).

In the human brain, optimal networks among struc-
tures with effective connectivity are believed essential
for proper information processing (Vecchio et al.
2017). It seems that an association exists between
pathological changes in connectivity, network struc-
tures and functional abnormalities of the brain.

The degree to which childhood epilepsies exert a
significant effect on brain network organisation and
cognition remains unclear. The hypothesis suggests
that the formation of abnormal networks associated
with epileptogenesis early in life causes a disruption in
normal brain network development and cognition
(Berman et al. 2010; Cainelli et al. 2020). Nevertheless,
the pattern, mechanisms, and timing by which the
organisation of structural networks in the developing
brain may be altered are still unknown. Studying the

new onset of childhood epilepsies and the associated
brain network organisation over time may reveal more
information.

Given that EEG is a representation of the synchron-
ous activity of neurons arranged perpendicular to the
surface of the cerebral cortex, this methodology does
not allow a direct measure of subcortical and white
matter interconnections. This might impact the diag-
nosis of seizures arising from subcortical areas, such as
autonomic seizures occurring in the prelimbic cortex
and the surrounding areas (Cainelli et al. 2020).

Nevertheless, several EEG algorithms offer an interest-
ing insight into how cortical areas work together within
the networks; and given their high temporal resolution,
the link with the resulting cognitive processes will
become clearer over time (Cainelli et al. 2020).

Among newly developed analysis techniques, graph
theory has shown promising results given its possibil-
ity to provide information about global and local lev-
els of the brain organisation. All these graph metrics
provide evidence of both integration (e.g., strength)
and segregation (e.g., clustering) properties of the net-
work. An emergent property of many complex net-
works in nature is the “small-world” topology, which is
random (i.e., each node is randomly connected to all
the other nodes) and interconnected between regular
(i.e., each node is linked only to its neighbors) graph
topologies. Small-world characterises graphs with
dense local clustering and relatively few long-range
connections, which is an interesting property
because it can globally account for both distributed
(integrated) and specialised (segregated) informa-
tion processing.

It has been suggested that the prevalence of small-
world networks in biological systems may reflect the
evolutionary advantage of greater sustainability of sys-
tem performance under any kind of perturbations38.
The advantage of EEG theoretical analysis with respect
to brain images is that, although brain imaging may
reveal both structure and function, EEG provides com-
plementary information on the pathological brain area
with much faster time scales (milli- seconds) combined
with a relatively easier assessment compared to neuro-
imaging (Salvador et al. 2005).

Nevertheless, the EEG may be technically challeng-
ing in paediatric patients lacking cooperation, or in
the intensive care setting with an abundance of envir-
onmental artefacts37. Furthermore, in children, a
smaller head surface for electrode placement (both
due to the presence of medical equipment and to the
smaller head circumference) reduces the possibility of
measuring many scalp sites. Besides all these
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limitations, the EEG still represents a very useful tool
to study the developmental trajectories in childhood.
EEG offers a unique window into the brain function
during the early phases, which parallel basic science
studies of neurochemical and histological processes
associated with neuroimaging studies (Suppiej
et al. 2012).

Discussion

In our study, we found that the papers we included
mainly focussed on two potential advantages of graph
theory in childhood epilepsy. In regards, it seems that
graph theory has not only shown the ability to diag-
nose epileptic foci distant to the main one known to
be responsible for that kind of epilepsy but also the
diagnostic method is able to predict the onset of epi-
lepsy when the main foci have not started its hyper-
synchronous activity, by studying network connections
with other relevant areas that are linked with the
main brain area responsible for that kind of epilepsy.

Diagnostic value of graph theory in
childhood epilepsy

To increase the knowledge of seizure generation,
much research has been done on seizure dynamics
and changes in synchronisation between cortical areas
(Ponten et al. 2009). Synchronisation of neural activity
within the brain is essential for information processing,
but may also be an important factor in seizure
dynamics (Uhlhaas and Singer 2006). Changes in syn-
chronisation during and before seizures have been
investigated in model and functional network studies.
Seizures are often described as ‘hypersynchronous
states’, but literature data showed that this description
is an oversimplification of the synchronisation process
during seizures caused by various aetiologies
(Wendling et al. 2005; Guye et al. 2006; Schindler et al.
2007) (Figure 2a,b).

Several studies have been performed on paediatric
patients with epilepsy to evaluate functional neural
connections, and all of them used graph theory analy-
ses to explain this hypothesis. In 2009, Ponten et al.
studied whether neural networks in weighted and
unweighted networks can be detectable in generalised
absence seizures recorded with surface EEG. The
authors retrospectively selected EEG recordings of 11
children with absence seizures. The functional neural
networks were studied by calculating both central
coherence and SL between 21 EEG signals. From both
weighted and unweighted networks, the C and L

coefficients were computed and compared to 500 ran-
dom networks. The authors then made a comparison
between the ictal and the pre-ictal network structures.
They found that during absence seizures there was an
increase of synchronisation in all frequency bands,
most clearly evidenced in the SL- based networks.
Contextually, the functional network topology
changed towards a more ordered pattern, with an
increase of C/C-s and L/L-s. The authors, therefore,
concluded supporting the hypothesis of functional
neural network changes during absence seizures. The
network became more regularised in weighted and
unweighted analyses, when compared to the more
randomised pre-ictal network configuration (Ponten
et al. 2009).

Later, in 2015, Adebimpe et al investigated the
functional connectivity and brain network properties
of patients affected by benign childhood epilepsy with
centrotemporal spikes using graph theory. Benign
childhood epilepsy with centrotemporal spikes is con-
sidered the most common form of idiopathic epilepsy
in young children under the age of 16 years. The
authors collected high-density EEG data from patients
and controls in resting state with eyes closed. Data
were pre-processed and spike and spike-free segments
were selected for their analysis. Therefore, phase-
locking value was calculated for all paired combina-
tions of channels and for five frequency bands (d, h, a,
b1 and b2). The authors computed the degree and
small-world parameters—C and L coefficients—and
compared the conditions of the epileptic patients to
controls. They found a higher degree at epileptic
zones during interictal epileptic spikes (IES) in all fre-
quency bands. In both patient conditions, connection
at the occipital and right frontal regions close to the
epileptic zone in the a band was reduced. The SW fea-
tures (high C and short L) were deviated in epileptic
patients compared to controls. A change from an
ordered network in the d band to a more randomly
organised network in the a band was observed in epi-
leptic patients compared to healthy controls. The
authors then concluded that the benign epileptic
brain network is disrupted not only at the epileptic
zone but also in other brain areas especially frontal
regions (Adebimpe et al. 2015).

A similar study was performed in 2016 by Chany
et al. in patients affected by juvenile myoclonic
epilepsy (JME). The authors compared the network
properties of periods of spike-waves discharges and
baseline activity using graph theory. They collected
the EEG data of 11 patients with JME. Functional cor-
tical networks during SWD and baseline periods were
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estimated by calculating the coherence between all
possible electrode pairs in the d, h, a, b1 and b2, and
! bands. Graph theoretical measures (including char-
acteristic L, nodal degree, C coefficient, and SW index)
were then used to study the characteristics of epileptic
networks in JME. The authors also assessed short- and
long-range connections between spike-waves dis-
charges and baseline networks. They found that com-
pared to baseline, increased coherence was observed
during spike-waves discharges in all frequency bands.
The nodal degree of the spike-waves discharges net-
work, particularly in the frontal region, was signifi-
cantly higher compared to the baseline. The C
coefficient and SW index were significantly lower in
the theta and beta bands of the spike-waves dis-
charges versus the baseline network, but the charac-
teristic path length did not differ among epileptic and
controls networks. Long-range connections were
increased during spike-waves discharges, particularly
between posterior and frontal brain regions. The
authors then concluded that spike-waves discharges in
JME are associated with increased local (particularly in
the frontal region) connectivity. Furthermore, the
spike-waves discharges network was associated with
reduced small-worldness and increased long-range
connections, which may impair information processing
during spike-waves discharges (Lee et al 2016).

Finally, in 2016, Van Diessen et al. performed a pro-
spective study on 89 drug-naive children with newly
diagnosed focal or generalised epilepsies and 179
controls. Their patients underwent interictal EEG
recordings at the first consultation and then studied
for analysis of brain networks. Conventional network
metrics and minimum spanning trees were computed
to evaluate topological network differences, including
segregation, integration, and a hub measure (including
centrality). The authors found that network alterations
between groups were only identified by minimum
spanning tree metrics and most pronounced in the d
band. In this band, they observed a loss of network
integration and a significantly lower betweenness cen-
trality in children with focal epilepsy compared to con-
trols without epilepsy (p< 0.01). The authors
moreover found a reversed group difference in the
upper a band. In generalised epilepsy, the network
topology was relatively spared. The authors, therefore,
concluded that interictal network alterations were only
detectable in the minimum spanning tree metrics, and
are already present at the early stages of focal epi-
lepsy. They suggested that these alterations seem to
be subtle at early stages, to consequently aggravating

later as a result of persisting seizures (van Diessen
et al. 2016).

Taken together, these studies confirm the diagnos-
tic importance of graph theory, above all to detect
epileptic foci distant to the original one and to
improve the knowledge of network functions and con-
nectivity in the epileptic brain. Nevertheless, different
parameters have been considered between studies,
and further literature data are mandatory to establish
which protocols and parameters have to be consid-
ered for better diagnostic specificity and sensibility.

Graph theory for seizure prediction in
childhood epilepsy

Feature-based neurophysiological techniques tend to
oversimplify in the diagnostic process the fact that the
human brain involves a complex web of neuronal
interconnectivity and discrete anatomical regions that
function together to generate brain activity (Lowe
et al. 1998). This underlying theory on brain infrastruc-
ture considers that solutions to the diagnosis of epi-
lepsy need to consider the whole-brain functional
connectivity network (FCN). Thus, this connectivity
network seeks to define a pattern of cross-correlation
between discrete functionally characterised brain
regions to give further statistical importance to ana-
tomical connectivity and then determine inter-regional
neurophysiological inferences (Lowe et al. 1998, Seth
2010). This allows constructing a model of connectivity
not only focussed on the diagnosis of epileptic events
but also able to predict these events when an epilep-
tic area has not still identified.

In regards, Sargolzaei et al, in 2014, performed a
study on paediatric patients to establish a new data-
driven approach to brain functional connectivity net-
works using scalp EEG recordings for classifying paedi-
atric subjects with epilepsy from paediatric controls.
The authors studied 16 children, 9 affected by paediat-
ric epilepsy (PE) and 7 controls (PC). In this study,
scalp EEG was obtained with varying sampling fre-
quencies of 200Hz, 500Hz and 512Hz from control
subjects (4 males and 3 females) and subjects with
epilepsy (5 males and 4 females). The EEG traces were
recorded using the 10–20 electrode placement system
with a referential montage. In the same patients, the
authors performed a study of the "Functional
Connectivity Network Construction" (FCNs) by graph
theory analyses. The study of functional connectivity
was based on the association among the EEG record-
ings across the brain cortical regions. The system used
topological features extracted from a graph
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corresponding to the FCN as predictive variables, and
it categorised the subjects into control and epileptic
groups by defining the best model to predict the
diagnosis. The authors found significant changes in
the brain FCNs in epileptic patients. They demon-
strated that through connectivity maps, the physio-
logical manifestations of abnormal cortical excitability
that underlie epilepsy could infer the occurrence of
high-risk level (epileptic children) and low-risk level
(control children) leading to follow-up procedures. The
authors, therefore, proposed to use key parameters
through connectivity maps in order to classify EEG
files into epileptic and non-epileptic files (Sargolzaei
et al. 2015).

The same research group, in 2015, published a pro-
spective study on 18 subjects (11 with paediatric epi-
lepsy (PE), and 7 controls (PC)) to introduce a new
time-varying approach for constructing FCNs, imple-
mented by moving a window with overlap to split the
EEG signals into a total of 445 multi-channel EEG
segments (91 for PC and 345 for PE). The aim was to
study the hypothetical functional connectivity
strengths among EEG channels. FCNs were then
mapped into undirected graphs and extracted by
graph theory-based features. The authors moreover
used an unsupervised labelling technique based on
the Gaussian mixtures model (GMM) to delineate the
PE group from the PC group.

The authors found a statistically significant differ-
ence (p< 0.0001) between the mean FCNs of PC and
PE groups. The system was able to diagnose PE
patients with an accuracy of 88.8% and 81.8% of
sensitivity, and 100% of specificity purely based on
the exploration of networks between cortical areas
and without a priori knowledge of the diagnosis.
The authors, therefore, concluded that the system
could allow a diagnosis and prediction of epilepsy
without needing long EEG recording sessions and
time-consuming visual inspection as conventionally
employed (Sargolzaei et al. 2015).

In 2017, Lee et al. retrospectively compared the
graph-theoretical characteristics of spike-and-wave dis-
charge (SWD) network topology in JME patients, aim-
ing to further elucidate the mechanisms underlying
SWD. The authors first evaluated nodal degree
reported as a key feature in generalised epilepsy.
Second, they studied the graph-theoretical measures
in different frequency bands, including C, L, and SW.
These metrics, above all C and L, are related to the
local and global efficiency of the network respectively.
Finally, the regional connectivity of the 2 different
states was studied and compared (Lee et al. 2017).

These data were obtained from 11 patients with
Juvenile Myoclonic Epilepsy (JME), described as an
idiopathic generalised epileptic syndrome, character-
ised by SWD EEG waveforms. The authors studied
functional cortical networks during SWD and baseline
periods by calculating the coherence between all
electrode pairs in different frequency bands (delta,
theta, alpha, beta, and gamma). Graph theoretical
results, including nodal degree, C, L, and SW index,
were then used to study the epileptic networks. (Lee
et al. 2017).

The authors also assessed short- and long-range
connections between baseline networks and SWD.
They observed that compared to baseline, increased
coherence was present during SWD in all EEG bands.
The nodal degree of SWD was higher in the frontal
region when compared to the baseline network. SW
index and C were significantly lower in the beta and
theta bands during SWD compared to the baseline
network, but L did not differ among networks (Lee
et al. 2017). Long-range connections were increased
during SWD, prevalently between the posterior cortical
areas and the frontal region (Lee et al. 2017). The
authors, therefore, concluded that the SWD network in
JME was associated with increased local (mainly in the
frontal region) connectivity. Furthermore, the SWD
network was associated with increased long-range
connectivity and SW that may impair information
processing during the discharges (Lee et al. 2017).

Later, in 2019, Luckett et al. proposed a study on
graph theoretical analysis of seizure onset observed
from minimally invasive scalp EEG. The approach con-
sidered the brain as a complex nonlinear dynamical
system whose state could be derived through time-
delay embedding of the EEG data and characterised to
determine the change in brain dynamics according to
the preictal state.

In this study, the authors included 41 temporal
lobe epilepsy patients and 20 controls. Ages ranged
from 4 to 57 years old. Among the included patients,
10 with epilepsy were under 18 years of age, and 3
paediatric patients were controls. The authors found a
significant trend of normalised dissimilarity over time
that indicates a departure from the norm, and thus a
change in state. These methods showed high sensitiv-
ity (90-100%) and specificity (90%) on 241 h of scalp
EEG training data, and sensitivity and specificity of
70%-90% on test data. The authors concluded that
this method was able to target phase-space graph
spectra as biomarkers for seizure prediction, correlate
historical degrees of change in spectra, and make
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accurate predictions of seizure onset (Luckett
et al. 2019).

In the same year, Davis et al. published a study to
identify whether abnormal EEG connectivity was pre-
sent before the onset of epileptic spasms (ES) in
infants with tuberous sclerosis complex (TSC). The
authors prospectively collected Scalp EEG recordings
in infants with TSC in the first year of life. They then
compared the earliest recorded EEG from infants prior
to ES onset (n¼ 16) and from infants who did not
develop ES (n¼ 28). All patients underwent a record
of five minutes of stage II or quiet sleep into canonical
EEG frequency bands. Mutual information values
between each pair of EEG channels were compared
directly and used as a weighted graph to calculate
graph measures of modularity, global efficiency, char-
acteristic L, and average C coefficient. The authors
found that infants who later developed ES showed
increased EEG connectivity in sleep. This group pre-
sented higher mutual information values between
most EEG channels in all frequency bands adjusted for
age. Infants who later developed ES had higher aver-
age clustering coefficients and global efficiency,
shorter characteristic path lengths, and lower modular-
ity across most frequency bands adjusted for age. The
authors, therefore, suggested that infants who went
on to develop ES had increased local and long-range
EEG connectivity with less segregation of graph
regions into distinct modules. This overconnectivity
may reflect progressive pathologic network synchron-
isation culminating in generalised ES (Davis
et al. 2019).

Finally, in 2020, Bomela et al. published a study on
23 paediatric patients with epilepsy. They performed
detection and prediction of epileptic seizures with EEG
by a novel dynamic learning method that first infers a
time-varying network constituted by multivariate EEG
signals, representing the overall dynamics of the brain
network, and subsequently quantifies its topological
property using graph theory. The computational
results for a realistic scalp EEG database showed a
detection rate of 93.6% and a false positive rate of
0.16 per hour (FP/h); furthermore, this method could
observe potential pre-seizure phenomena in some
cases (Bomela et al. 2020).

Taken together, all these studies show an important
characteristic of graph theory, involved not only in a
deep diagnosis of paediatric epilepsy but also in its
prediction, allowing to avoid long EEG recording ses-
sions and time-consuming visual inspection when the
diagnosis is difficult. This would allow detecting
seizures in a preictal stage, with a better study of all

those cortical areas involved (Falsaperla et al. 2021).
Nevertheless, further studies are mandatory to state
the timing for prediction and its eventual employment
for therapeutic purposes.

Conclusions

Literature data have confirmed the utility and
efficiency of graph theory application to study epi-
lepsy at all ages. Epileptic foci can be distant from the
area involved in the clinical manifestation of seizures,
and therefore the integration of EEG with graph
theory may be an important step in the identification
of the epileptogenic areas not evident in a simple
EEG analysis.

Interestingly, there are substantial differences
between adult and childhood epilepsy when studied
by graph theory. A more profound brain network
reorganisation is evident in the developing brain.
Children with new-onset epilepsy also show a reduced
optimal topological structural organisation with a bias
towards curtailed global integration and enhanced
network segregation. Importantly, these properties are
evident at very early stages in the course of epilepsy
and are clearly not a consequence of epilepsy chron-
icity. Nevertheless, we have to consider that in chil-
dren epileptic "syndromes" are different from adults.
Therefore, studies on "similar" forms (e.g., supposed
symptomatic focal epilepsies in children or adults)
should be performed to confirm this hypothesis.

In the context of normal brain development, this
pattern suggests either a fixed deviation from the nor-
mal developmental template or a delay in brain matur-
ation. It was interesting to note that there is a
structural reorganisation with redistributed nodes from
the posterior head regions to more anterior frontal,
and temporal regions, considering that the posterior
cerebral areas develop before other areas when matur-
ing from neonatal age to childhood, and to adulthood
(Falsaperla et al. 2021). These altered brain topologies
seemed to have adverse consequences, as these net-
work configurations may be more predisposed to
poorer cognitive performances and targeted attacks.
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