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Abstract: Impedance plethysmography provides a way to measure respiratory activity  

by sensing the change of thoracic impedance caused by inspiration and expiration. This 

measurement imposes little pressure on the body and uses the human body as the sensor, 

thereby reducing the need for adjustments as body position changes and making it suitable 

for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can 

decompose a signal into several intrinsic mode functions (IMFs) that disclose 

nonstationary components as well as stationary components and, similarly, capture respiratory 

episodes from thoracic impedance. However, upper-body movements usually produce 

motion artifacts that are not easily removed by digital filtering. Moreover, large motion 

artifacts disable the EMD to decompose respiratory components. In this paper, motion 

artifacts are detected and replaced by the data mirrored from the prior and the posterior 

before EMD processing. A novel intrinsic respiratory reconstruction index that considers 

both global and local properties of IMFs is proposed to define respiration-related IMFs for 

respiration reconstruction and instantaneous respiratory estimation. Based on the 

experiments performing a series of static and dynamic physical activates, our results 
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showed the proposed method had higher cross correlations between respiratory frequencies 

estimated from thoracic impedance and those from oronasal airflow based on small 

window size compared to the Fourier transform-based method. 

Keywords: impedance plethysmography; respiratory disorder; empirical mode decomposition; 

intrinsic mode function 

 

1. Introduction 

Monitoring of respiratory activity is useful for detecting respiratory disorders, such as the sleep 

apnea, cessation of breathing in infants, shortness of breath in patients with heart failure, and so on. 

Respiratory sensor belts or clothes based on inductive plethysmography, strain gauges, or piezoelectric 

sensors can measure the changes of thoracic and abdominal volumes that are caused by inspiration and 

expiration. This kind of measurement is more convenient and comfortable than gas flow measurement 

through a mouthpiece or a mask. However, the respiratory sensor belt should have a close attachment  

so that the expansion and distraction of thoracic and abdominal walls can be detected by the sensor.  

The sensor belt usually needs adjustment to maintain close attachment when posture or lying position 

is changed, whereas it is cumbersome for ambulatory recording or long-term monitoring. 

Impedance plethysmography provides an alternative for measuring respiratory activity by injecting 

a small alternative current into the body, detecting the pass-through voltage across electrodes, then 

computing the body impedance. As the thoracic wall expands during inspiration, the thoracic 

impedance increases, and decreases during exhalation. The impedance-based measurement has an 

advantage in that the sensor is just the human body itself. It is not necessary to adjust the electrodes as 

body position changes as long as the electrodes adhere to the body. Since there is no belt surrounding, 

impedance plethysmography causes less pressure on the body than a respiratory sensor belt. Therefore, 

impedance-based measurement is suitable for ambulatory monitoring of respiratory activity. 

During ambulatory recording, sudden or large upper-body movement usually disturbs the sensing of 

thoracic expansion and distraction. As shown in Figure 1, the measured thoracic impedance is 

overwhelmed by large artifacts. The movement-induced artifact cannot be easily removed by digital 

filtering; moreover, the filtering creates a pseudo-respiration problem. 

Normal respiration is characterized by a regular, wavy pattern that reflects the tidal change of 

pulmonary volume. However, the respiration signal is not always stationary. The amplitude or 

frequency of breathing may change over time. In particular, respiratory disorders usually have specific 

respiratory episodes such as obstructive sleep apnea, Cheyne–Stokes respiration, and so on. The number 

of obstructive sleep apnea episodes per hour provides an index for case identification and severity 

assessment [1]. The percentage of nocturnal Cheyne–Stokes respiration is demonstrated as a predictor 

of mortality or prognosis in patients with chronic heart failure [2,3]. 

Empirical mode decomposition (EMD) is a new method for analyzing a non-stationary signal. 

Numbers of intrinsic mode functions (IMFs) are extracted directly from the signal [4]. The local 

properties of non-stationary signal can be captured by the IMFs. Recently, several studies have 

demonstrated the advantage of EMD in capturing time-related features of biomedical signals. The  
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time-dependent median frequency derived from the IMFs of electromyography of quadriceps muscles 

gives a more reliable assessment of muscle fatigue during cyclic dynamic contraction than the  

Fourier- and wavelet-based methods [5]. The time-amplitude index derived from the fluctuated time 

series of pain-relief demands from patient-controlled analgesia through EMD is significantly related to 

the visual analog scale, a measure of pain intensity by interviewers in postoperative patients [6]. EMD 

is also used to characterize temporal features of slow- and fast-wave oscillations in an 

electroencephalogram for estimating the depth of sleep and discriminating rapid eye movement sleep [7]. 

Moreover, EMD is demonstrated to be efficient in noise or artifact reduction. Electromyogram noises, 

power line interferences, and baseline wanders can be removed from the electrocardiograms with 

minimum signal distortion [8,9] for feature enhancement [10] and QRS detection [11]. Cerebral 

activities in the ocular-related components derived from electroencephalograms can be removed by the 

EMD in order to cancel ocular artifacts in the electroencephalograms [12]. Furthermore, ventricular 

fibrillation can be extracted from the corrupted electrocardiogram due to cardiopulmonary 

resuscitation-related fluctuation by the EMD [13]. Tissue artifacts are more efficiently removed by the 

EMD than by lowpass filtering based on the simulated noisy respirations and real signals measured 

from piezoelectric sensor belts during walking and running [14]. 

 

Figure 1. Three thoracic impedance segments contain motion artifacts caused by various 

postural changes: (a) sit to supine; (c) supine to left-lateral lying (LLL); and (e) LLL to 

right-lateral lying (RLL). These movement-induced artifacts cannot be easily removed by 

digital filtering (a fourth-order anti-causal Butterworth highpass filter with a cutoff 

frequency of 0.1 Hz and a sixth-order anti-causal Butterworth lowpass filter with a cutoff 

frequency of 1 Hz). The respirations are still overwhelmed by motion artifacts, which may 

be regarded as respirations (b,d,f). 
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The decomposed IMFs have well-behaved Hilbert transforms so that instantaneous frequencies and 

amplitudes can be derived from the IMFs. The instantaneous estimation is beneficial for capturing 

respiratory episodes from normal respirations. However, only some of the IMFs are related to 

respiration, so identifying respiration-related IMFs is needed for estimating instantaneous properties. 

Liu et al. applied mutual information ratio and power of IMFs to select the best IMFs to reconstruct 

respiration signals [14]. However, even if respiratory components are similar, they may be 

decomposed at different local points in adjacent IMFs. As shown in Figure 2, a major respiratory 

component is present at both IMF5 and IMF6. Therefore, the local properties as well as global 

properties of IMFs should be considered for identifying respiration-related IMFs. 

 

Figure 2. A thoracic impedance signal (a) is decomposed into numbers of intrinsic mode 

components (IMFs) by empirical mode decomposition (c–f) for respiration reconstruction (b). 

Major respiratory components are present at local points of IMF5 (d) and IMF6 (e). 

In this paper, a strategy to detect induced motion artifacts in the thoracic impedance is proposed to 

avoid incorrectly regarding motion artifacts as respiratory components. EMD analysis is used to 

decompose the thoracic impedance into several IMFs. Respiration-related IMFs are identified using  

a novel rule based on both global and local properties of IMFs. Instantaneous respiratory properties are 

therefore estimated from the respiration-related IMFs. The capability of EMD analysis in estimating 

respiratory frequency was validated against the experiments during static postures and dynamic 

physical activities with parallel recording of oronasal airflow. 
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2. Methods 

2.1. Respiration Measurements and Data Preprocessing 

Ten healthy male subjects (24.5 ± 1.4 y/o, 167.3 ± 5.2 cm, 65.8 ± 14.4 kg) performed a series of 

physical activities including supine, left-lateral lying, right-lateral lying, sitting, standing, slow walking 

(90 cycles per minute, cpm), fast walking (120 cpm), slow running (140 cpm), fast running (160 cpm), 

and then recovering from standing to supine. Each physical activity lasted for 3 min. Three-lead 

electrocardiogram (leads I, II and precordial) and thoracic impedance (ADS1294R, Texas Instruments, 

TX, USA) were recorded with a sampling rate of 250 Hz in a portable device (Kangyi Electronics, 

Taiwan). Meanwhile, oronasal airflow was parallel digitized into the portable device through a mask 

connected to a pneumotach airflow transducer and a transducer amplifier (TSD107B and DAC100C, 

Biopac Systems, Goleta, CA, USA). The protocol of this study was approved by the local Research 

Ethics Committee. The participants gave their informed consent. 

The thoracic impedance was filtered by a fourth-order anti-causal Butterworth highpass filter with  

a cutoff frequency of 0.1 Hz to suppress low-frequency baseline wandering. The oronasal airflow was 

also filtered by a sixth-order anti-causal Butterworth lowpass filter with a cutoff frequency of 1 Hz to 

suppress high-frequency noises. 

2.2. EMD-Based Respiration Analysis 

Figure 3 depicts the block diagram of EMD-based respiration analysis. First, an artifact detection 

and replacing algorithm is applied to detect the artifacts induced by postural changes or other motion 

disturbances. The affected portion is replaced by the mirror data from the prior and posterior. Then, 

EMD is applied to decompose this signal into numbers of IMFs. Respiration-related IMFs are 

identified according to an intrinsic respiratory reconstruction index. The identified IMFs are used to 

reconstruct respiration and estimate the instantaneous respiratory frequency and amplitude. 

 

Figure 3. A block diagram of the proposed respiration analysis. Motion artifacts are first 

detected and replaced by mirrored data from the prior and the posterior. Numbers of 

intrinsic mode functions (IMFs) are subsequently computed through empirical mode 

decomposition. Respiration-related IMFs are identified and used to reconstruct respiration 

and compute instantaneous frequency and amplitude. 

2.2.1. Artifact Detection and Replacing 

Respiration-irrelevant thoracic movement will disturb the measured body impedance based on the 

change of thoracic volume. The scale and type of motion determine the disturbance’s intensity.  
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Figure 4a shows an example of motion artifact caused by postural change. Figure 4b shows another 

example of motion disturbance induced by thoracic movement. Because EMD is a data-driven and 

self-adaptive method, large artifacts will interfere with EMD processing so that the respiration-related 

component cannot be distinctly captured by the IMFs. To overcome this difficulty, an artifact detection 

and replacing algorithm is proposed. 

 

Figure 4. Two thoracic impedance segments are corrupted by motion artifacts caused by 

postural change (a) and thoracic movement (b), respectively. Through the artifact detection 

and replacing, the region of the artifact is identified (highlighted by dashed lines), and the 

affected portion is replaced by the mirror data from the prior and posterior (c,d); The 

respirations are therefore reconstructed by the empirical mode decomposition-based 

method (e,f). 

A bin-sorting method [15] is used to determine a threshold for detecting motion artifacts. The 

thoracic impedance is first divided into consecutive 8 s bins with 50% overlapping. The signal 

intensities, defined as the standard deviation of data, of all bins are sorted in ascending order. The 

intensities below 50% are averaged and 10 multiples of the average are set to the detection threshold. 

The respiration signal is re-divided into consecutive 4 s bins. The bins whose intensities are greater 

than the threshold are marked as possible artifact bins. The nearby marked bins with a time interval <4 s 

are regarded as from the same artifact. Thereby the region of artifact is defined. The data within the 

region are removed. The former half are replaced by the replicas mirrored from the data prior to the 

range; the latter half were mirrored from the posterior. 
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2.2.2. Empirical Mode Decomposition 

EMD is a data-driven analysis method in that the analyzed signal does not need to be stationary and 

linear. Compared to the basis-based methods such as the Fourier transform, Wavelet transform, etc., 

several intrinsic mode functions (IMFs) are extracted directly from the analyzed signal x(t) through 

EMD [4]. Each IMF decomposition starts from h0(t), equal to x(t) for the first decomposition. Two 

envelopes are constructed by the local minima and local maxima of h0(t) separately. A differential 

signal h1(t) is obtained by subtracting h0(t) from the mean of these two envelopes. The differential 

signal is an IMF if two conditions are met: the number of zero crossings and the number of extrema are 

either equal or differ by one; and the mean value of the two envelopes is zero at any point. This 

process is named as the sifting process. The differential signal is ideally an IMF. If it is not, the sifting 

process repeats until the following criterion is satisfied [16]: 

2
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( ) ( )
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k k
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h t h t

h t
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=

 −
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  (1)

The IMF is therefore set to hk(t). 

The derived IMF represents an oscillation mode embedded in the signal x(t). It can be either a  

narrow band signal or non-stationary component. The above process continues based on the residual 

data defined as 

11 IMF)( −= txr  (2)

which may contain another component with a longer period. The second IMF and the second residual 

signal are therefore derived. The decomposition repeats until the IMF conditions are no longer satisfied: 
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The input signal is therefore expressed by 


=
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n

j
nj rtx

1

IMF)(  (4)

where n is the number of IMFs. 

2.2.3. Identifying Respiration-Related IMFs 

Through EMD, the thoracic impedance is decomposed into several IMFs of different oscillatory 

modes. Zero-crossing is one of the intrinsic properties for each IMF. An IMF with more zero-crossing 

points contains oscillatory components with higher frequencies and vice versa. As illustrated in  

Figure 5, IMFs with too many zero-crossing points contain noises rather than respiratory patterns 

(IMF1…IMF5). An intrinsic respiratory reconstruction index (IRRI) is defined to exclude IMFs with 

too many zero-crossing points (IMFj, j < IRRI) and select the rest of the IMFs for respiration 

reconstruction (j ≥ IRRI). IMFs that contain fewer zero-crossing points (IMF8…IMF10 in Figure 5) and 
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a residual signal are included because they are low-frequency structures of a respiration. The 

respiration is therefore reconstructed by 


=

+=
n

IRRIj
nj rtx IMF)(  (5)

 

Figure 5. A thoracic impedance signal (a) is decomposed into 10 intrinsic mode functions 

(IMFs) and a residual signal by empirical mode decomposition. IMF1…IMF5 have too 

many zero-crossing points, containing noises rather than respiratory patterns (b–f). IMF6 

and IMF7 contain major respiratory component (i,j). IMF8…IMF10 (k–m) and residual 

signal (n) are low-frequency structures of the respiration. 

In order to determine IRRI, two indexes are derived from each IMF. The first one is the global 

upper interval index (GII): 

}s 67.0GI|min{GII >= jj  (6)

where GIj is the mean of the 25% largest zero-crossing intervals in IMFj. As shown in Figure 6, IMF5 

has a smaller GI because its major content is noise. IMF6 and IMF7 have a higher GI for containing 

respiratory components. Only including upper intervals for computing GI is meant to avoid the effect 

of shorter zero-crossing intervals that are attributed to noises (indicated by arrow A in Figure 6d). GII 

is the index that all GIs after this index (j ≥ GII) are greater than 0.67 s (Figure 6f). Selecting IMFs 

with GI > 0.67 s corresponds to considering oscillatory components with frequencies below 0.75 Hz  

(<45 breaths/min equivalently) that cover the normal respiratory rate and most of the abnormal 

respiratory rate [17,18]. 

The second index is the largest interval index (LII): 
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}s 1LI|min{LII >= jj  (7)

where LIj is the largest zero-crossing interval in IMFj. The largest interval reflects a kind of local 

property. As shown in Figure 7c, there is a short respiratory component (indicated by arrow B) in IMF5, 

and this short oscillatory property can be captured by LI. LII is the index that all LIs after this index  

(j ≥ LII) are greater than 1 s (equivalent frequencies less than 0.5 Hz) (Figure 7f). If the short 

component is distinct from the rest of the components in the IMF h(t), this IMF has a high kurtosis: 
4

4

{( ( ) ) }
kurt{ }

E h t
h(t)

− μ=
σ

 (8)

where μ is the mean of h(t), σ is the standard deviation of h(t), and E is the expected value operation. 

 

Figure 6. The global upper interval (GI), the mean of the 25% largest zero-crossing 

intervals, is computed for each intrinsic mode function (IMF). IMF5 has a smaller GI 

because its major content is noise (c). IMF6 and IMF7 contain a respiratory component, 

yielding a higher GI (d,e). Only considering upper intervals for computing GI is meant to 

avoid the effect of shorter zero-crossing intervals that are mainly attributed to noise 

(indicated by arrow A in IMF6). The IMFs with GI > 0.67 s (f) and a residual signal can be 

used to reconstruct a respiration signal (b). 

IMFs with GI > 0.67 s are available in most respiration reconstructions; that is, IRRI is set to GII in 

most cases. In some cases, there are short, distinct respiratory components (as shown in the IMF5 of 

Figure 7), yielding a high kurtosis. Therefore, the IRRI is set to LII in this situation: 
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Figure 7. The largest interval (LI), the largest zero-crossing interval in intrinsic mode 

function (IMF), can catch the local oscillatory component whose frequency is lowest in 

each IMF (indicated by arrow B in IMF5). Since this local component is distinct compared 

to the rest of the components, IMF5 also has a high kurtosis (c). The IMFs with LI > 1 s (f) 

and a residual signal can be used to reconstruct a respiration signal (b). 

2.2.4. Instantaneous Frequency and Amplitude 

The Hilbert transform is a linear operator that takes a signal h(t), and produces another signal g(t): 
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where P is the Cauchy principle value. The Hilbert transform is most often used to derive the analytic 

representation of the signal: 
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The analytic signal is also expressed by instantaneous amplitude and phase: 
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A local restriction used to define a meaningful instantaneous frequency physically is that the signal 

should be symmetric with respect to the local zero mean. The IMF is defined to satisfy this local 
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restrictive condition. Therefore, each IMF can have instantaneous frequency uniquely and meaningfully 

from an instantaneous phase: 

( )
( )

d t
t

dt

θω =  (13)

2.3. Evaluation 

For assessing the capability of the proposed method in estimating instantaneous respiratory 

frequency, 80 s thoracic impedance and 80 s oronasal airflow were extracted from the eleven 3 min 

physical activities from each dataset including supine, left-lateral lying, right-lateral lying, sitting, 

standing, slow walking, fast walking, slow running, fast running, standing in recovery, and supine in 

recovery. Most segments were selected from central portions and shifted forward or backward if 

covering motion disturbances. Both thoracic impedance and oronasal airflow were decomposed into 

several IMFs by EMD. For thoracic impedance, respiration-related IMFs were identified based on the 

IRRI rule. Since the oronasal airflow had a well-documented sinusoidal form, all decomposed IMFs 

were selected. 

The respiratory amplitude was computed from all respiration-related IMFs as follows: 
2/1

2
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=

n

IRRIj
jr AA  (14)

and the respiratory frequency was derived by aggregating the frequencies of all respiration-related IMFs: 

2 2
n n

r j j j
j IRRI j IRRI

A A
= =

ω = ω   (15)

where Aj and ωj are the amplitudes and frequencies of IMFj. In order to reduce the variance of 

respiratory estimation, the derived instantaneous respiratory properties (Equations (14) and (15)) were 

divided into consecutive 1 s windows with 50% overlapping. In each window, the representative 

frequency was defined as the median value of all instantaneous frequencies and the representative 

amplitude was defined as the median value of all instantaneous amplitudes. The representative 

respiratory frequencies based on thoracic impedance were compared with those based on oronasal 

airflow using correlation analysis. 

3. Results and Discussion 

Tables 1 and 2 list correlation coefficients between the respiratory frequencies estimated from 

thoracic impedance and those from oronasal airflow on the basis of different window sizes by the 

EMD-based method and the Fourier-based method, respectively. In the Fourier-based method, the 

thoracic impedance or oronasal airflow within the specified window was taken for the Fourier 

transform with zero padding to 20 s. The respiratory frequency was given by the frequency of the 

maximum spectral peak. Similarly, the correlation analysis was performed. The higher the correlation 

coefficient is, the more similarity between the respiratory frequencies derived from thoracic impedance 

and oronasal airflow. Although the mechanics of thoracic expansion and distraction may be different in 

various postures or dynamic physical activities, the EMD-based method provides higher cross 
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correlations than the Fourier-based method when the specified window size is smaller than 4 s no 

matter whether it is a motion state (walking, running) or a static state (upright posture, supine,  

lateral lying). 

Table 1. Correlation coefficients between the respiratory frequencies estimated from 

thoracic impedance and those from oronasal airflow using empirical mode decomposition. 

Window Size, s 
Motion State Static State 

Walking Running Both Upright Supine LL All 

5 0.8071 0.8121 0.8205 0.7743 0.8048 0.7133 0.7648
4 0.7918 0.7958 0.8023 0.7546 0.7961 0.6820 0.7509
3 0.7672 0.7717 0.7761 0.7288 0.7803 0.6500 0.7296
2 0.7228 0.7280 0.7306 0.6891 0.7511 0.6047 0.6981
1 0.6511 0.6700 0.6602 0.6329 0.6963 0.5426 0.6485

The motion state includes walking (slow and fast) and running (slow and fast). The static state includes 

upright posture (sitting, standing, and standing in recovery), supine (at rest and in recovery), and lateral lying 

(LL: Left-lateral lying and right-lateral lying). 

Table 2. Correlation coefficients between the respiratory frequencies estimated from 

thoracic impedance and those from oronasal airflow using Fourier transform. 

Window Size, s 
Motion State Static State 

Walking Running Both Upright Supine LL All 

5 0.9255 0.9604 0.9367 0.8707 0.8366 0.7456 0.8636 
4 0.8199 0.8763 0.8275 0.8023 0.7360 0.6483 0.8013 
3 0.6395 0.7431 0.6708 0.6103 0.5427 0.4313 0.5782 
2 0.3043 0.4609 0.4354 0.1822 0.0827 0.0465 0.1377 
1 −0.0957 −0.1118 −0.1230 −0.0715 0.0213 −0.0188 −0.0384 

The motion state includes walking (slow and fast) and running (slow and fast). The static state includes 

upright posture (sitting, standing, and standing in recovery), supine (at rest and in recovery), and lateral lying 

(LL: left-lateral lying and right-lateral lying). 

Instantaneous respiratory estimation based on a longer window (e.g., 5 s) is beneficial to delineate 

steady-state breathing patterns. In contrast, analysis using a shorter window (e.g., 1 s) can catch the 

changes of respiratory features and help detecting the onset and the offset of respiratory episode. 

The correlation coefficient based on the EMD-based method is about 0.64–0.82 depending on  

the window size. The possible reason is that the thoracic impedance-based respiration and the oronasal 

airflow-based respiration have different rationales in measurement, and both measurements are 

contaminated by different type of disturbances. The thoracic impedance is usually disturbed by 

thoracic motions and the oronasal airflow is affected by mouth-thorax activities. These disturbances 

will affect the estimation of respiratory frequencies, in particular the estimation based on a short 

window size. 

Each respiratory disorder has its own respiratory pattern. Obstructive sleep apnea is caused by 

airway narrowing and collapse in the throat. Repetitive stopping or slowing of breathing is the major 

symptom. Although the airflow is blocked during airway obstruction, small respiratory effort is still 

observed in the thorax. Central sleep apnea, including Cheyne–Stokes respiration, is frequently 
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observed in patients with chronic heart failure. It presents another respiratory pattern: progressively 

deeper breathing (hyperpnoea), followed by a gradual decrease (hypopnea) and a temporary stop 

(apnea) of breathing. The respiratory amplitude as well as frequency are different from normal 

breathing and change during the episode. The EMD will be beneficial to catch the time-related changes 

of respiratory characteristics. 

Figure 8 illustrates an example of shortness of breath, also named Cheyne–Stokes respiration, in  

a patient with congestive heart failure. Figure 8a shows the reconstructed respiration from the thoracic 

impedance by the proposed EMD-based method. Its instantaneous amplitude (red line) was computed 

based on Equation (14). The Hilbert spectrum derived from respiration-related IMFs individually 

displays detailed respiratory properties (Figure 8b), whereas the aggregated spectrum from all 

respiration-related IMFs shows a clear time-related respiratory pattern (Figure 8c). 

 

Figure 8. (a) Cheyne–Stokes respiration and its instantaneous amplitude (red line) 

reconstructed from the thoracic impedance by the proposed EMD-based method in a 

patient with congestive heart failure; (b) detailed respiratory properties displayed in the 

Hilbert spectrum estimated from respiration-related intrinsic mode functions (IMFs) 

individually; (c) a clear time-related respiratory pattern displayed in the aggregated 

spectrum from all respiration-related IMFs. 

Long-term ambulatory Holter electrocardiogram recordings and analysis are widely used to  

detect cardiac arrhythmia or probe autonomic nervous function through heart rate variability analysis. 

Polysomnography recording helps detect respiratory disorders during sleep. The purposes of these two 

examinations are different and are usually performed individually. However, many patients with 
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cardiovascular dysfunction also have respiratory disorders. The occurrence of central sleep apnea has 

been demonstrated to be relative to clinical outcomes, atrial arrhythmia, or ventricular arrhythmia in 

patients with heart failure [2,3,19]. Moreover, the autonomic nervous system and respiratory control 

system have a reciprocal interaction. Reduced cardio-respiratory coupling was observed in severe 

obstructive sleep apnea compared to patients with no or mild obstructive sleep apnea [20]. 

Incompletely developed cardio-respiratory coupling was noted in very pre-term neonates [21]. 

Impedance plethysmography needs little adjustment to maintain close attachment between a sensor 

and the human body since its sensor is just the human body itself. Compared to polysomnography 

monitoring, impedance plethysmography with other physiological signals such as electrocardiography, etc. 

is more convenient and comfortable, and is quite suitable for the assessments of respiratory and  

cardio-respiratory disorders in patients with sleep apnea or cardiovascular impairment, preterm infants, 

and so on. Similar to respiratory sensor belts, thoracic impedance is also disturbed by upper-body 

movements. Because the interference of motion disturbance upon the measured signal is not linear, the 

induced motion artifacts cannot be easily removed by linear filtering. The proposed motion artifact 

detection can isolate the affected portion to avoid incorrectly interpreting it as a respiratory component, 

whereas this is important for analyzing long-term respiration. 

4. Conclusions 

The impedance plethysmography provides a convenient, comfortable measurement for ambulatory 

respiratory monitoring. The proposed artifact detection and replacing algorithm avoids misinterpreting 

motion artifacts as respiratory components and interfering with EMD processing. A novel rule based 

on both the global and local properties of IMFs can efficiently identify respiration-related IMFs where 

the derived respiratory property based on small window size is well delineated, whereas it fails by the 

Fourier transform-based method. 
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