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Abstract: Kenaf (Hibiscus cannabinus L.) is an indispensable fiber crop that faces increasing salin-
ity stress. In previous studies regarding the molecular mechanisms of how kenaf may respond to
salt stress, no metabolic evidences have been reported. Meanwhile, studies regarding kenaf stems
under adverse growth conditions have not been conducted. In the present study, multiple-layer
evidences including physiological, transcriptomic, and metabolic data regarding how kenaf stems
were affected by the salt stress are provided, wherein the stem growth, especially the lignification
process, is retarded. Meanwhile, the transcriptomic data indicated genes involved in the photosyn-
thesis are significantly repressed while the multiple flavonoid metabolism genes are enriched. As
to the metabolic data, the content variation for the growth-promotion phytohormones such as IAA
and the stress-responding ones including ABA are within or without expectations, implying these
phytohormones played complicated roles when the kenaf stems encounter salt stress. However, the
metabolite variations did not always agree with the expression levels of corresponding key pathway
genes, possibly because the metabolite could be biosynthesized or catabolized in multiple pathways.
Collectively, our data may enlighten, more specifically, downstream studies on kenaf responses
against salinity and other adverse conditions.
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1. Introduction

Plants as sessile organisms are encountering continuous adverse environmental con-
ditions, of which salt stress is one of the most serious threats to plant growth and devel-
opment [1]. What is even worse, this situation has been aggravated by poor irrigation
practices, a rising population, and industrial pollution [2]. The exposure of plants to ex-
tensive salt concentrations can cause hazardous consequences that lead to severe losses in
crop productivity and may ruin nearly half of the production of many crops [3,4]. To cope
with such detrimental effects, plants have evoked certain biochemical and molecular mech-
anisms in response, such as the activation of cascades of molecular networks involved in
stress sensing and signal transduction. During this process, specific stress-related genes and
metabolites are either enhanced or suppressed [5]. For instance, the contents of some stress
response hormones, such as abscisic acid (ABA), ethylene, salicylic acid (SA), and jasmonic
acid (JA), changed dramatically, whilst the levels of so-called growth-promotion hormones,
such as auxin, gibberellin (GA), cytokinins (CKs), brassinosteroids (BRs), and strigolactones
(SLs), are also affected [6]. More importantly, these phytohormones play sophisticated and
efficient roles together, rather than acting a single biological role alone [7–9]. Aside from
these phytohormones that play vital roles in signaling and regulating the plant’s response
to salt stress, a vast range of metabolites and metabolic pathways are altered when the
plants confront adverse growth conditions [10,11].
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Kenaf (Hibiscus cannabinus L.) is a fast-growing, nonwoody multipurpose annual plant
species in the family Malvaceae. The kenaf plant is the third-largest fiber crop after cotton
and jute. Its fiber is applicable in numerous fields, including potting and building materials,
pulp and paper industry, biomass energy, composite media, potting material, building
material, filtration material, board making, and animal feed [12]. However, the fiber yield
and quality of kenaf suffer from severe losses under the salinity conditions, whilst the
studies regarding the molecular mechanisms of kenaf encountering this particular adverse
environmental condition are less conducted. At the omics scope, the proteomics studies
were performed using kenaf leaves [13,14], wherein Niu et al. [13] detected 42 altered
protein spots that were separated by two-dimensional gel electrophoresis and subsequently
identified by matrix-assisted laser desorption ionization time of mass spectrometry. Com-
paratively, Kashif et al. [14] performed a combination of cytological, physiological, and
proteomic analyses and accordingly identified over one hundred differentially abundant
proteins. Likewise, transcriptomic approaches were also applied to develop the differ-
entially expressed genes (DEGs) from leaves [15] and shoot tips [16] of kenaf. These
big-data outputs have enhanced our understanding towards how kenaf may act, at the
transcriptional and translational levels, when encountering excess salt concentrations.
Moreover, the combination of multiple omics approaches may enhance our understand-
ing towards the molecular mechanisms of how plants may respond to adverse growth
conditions. For instance, a simultaneous investigation of the proteomic and mRNA-seq
data of cotton under salt stress revealed the inconsistency between the transcript and
proteomic levels [17], indicating an insufficient survey of the partial realm may lead to a
biased conclusion. In a recent investigation into Brassica napus encountered salt stress [18],
a combination of transcriptomics, metabolomics, and proteomics analysis was performed,
which resulted in the identification of key hormones (ABA and JA) and a pivotal timepoint
(24 h) that were responsible for the salt response. Meanwhile, some critical metabolites
(N-acetyl-5-hydroxytryptamine, L-Cysteine, and L-(+)-Arginine) and proteins (catalase-3,
cysteine desulfurase, HSP90, and P450_97 A3) were also identified. However, only single
omics approaches have been conducted in each of the above-mentioned kenaf cases, and
to the best of our knowledge, no metabolomics tools have been utilized to analyze the
kenaf response against salt stress. By integrating the physiological, transcriptomic, and
metabolomic approaches, our data suggested the kenaf stem experienced intricated reac-
tions when encountering the salinity stress, and the involving molecular resources in the
current investigation would enlighten future in-depth probing of such an issue.

2. Results
2.1. Illumina Sequencing and Assembly

The kenaf young seedlings under normal conditions (denoted as CO—control) and
salinity stresses (denoted as NA—NaCl) were separately collected in duplicate, and four cDNA
libraries were correspondingly constructed from these samples. Correlation analysis indicated
that transcriptomic output exhibited high consistency between the control (samples CO1 and
CO2) or the stress (samples NA1 and NA2) duplications (Figure S1). The overall sequencing
results were shown in Table S1, within which a total of 184,883,596 clean reads (27.74 Gb) were
obtained, and 175,216 unigenes were generated from these transcriptomic data. All the raw
data were submitted to the NCBI database (SRR9613936 to SRR9613939).

2.2. Gene Annotation and Function Classification

To gain the most possible functional information, the assembled unigenes were sub-
jected to annotation against seven databases (Table S2). The annotation rates varied amongst
the seven databases, with the highest annotation rate of 87.30% against the NCBI non-
redundant (NR) database and the lowest rate of 29.94% from the euKaryotic Ortholog
Groups (KOG) database. Overall, 92.52% of unigenes (162,122 of 175,216 unigenes) were
annotated in at least one of the seven databases (Figure 1a). The E-values distribution
against the best annotated (more unigenes mapped, Table S2 and Figure 1a) database,
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NR, indicated 85.4% of the blasted unigenes had E-values lower than 10−30 (Figure 1b),
and a proportion of 93.3% of the blasted unigenes had 60% or higher sequence similar-
ities to the blast hits (Figure 1c), which implied a high-quality annotation for our data.
Meanwhile, the species classification displayed by the kenaf transcriptome genes exhibited
high sequence similarity to cotton species (Gossypium hirsutum, 0.7%; Gossypium raimondii,
54.1%; Gossypium arboreum, 16.6%, Figure 1d). Since kenaf is a fiber crop, this attribution
suggested the somehow evolutionary similarity in fiber development between kenaf and
ancient cotton, especially Gossypium raimondii. Next, the gene functional classification was
subjected to the GO, KOG, and KEGG databases. Briefly, a total of 112,897 unigenes were
respectively classified into three categories (i.e., biological process, molecular function, and
cellular component) against the GO database (Figure S2a), whilst fewer unigenes were
annotated in the KOG (52,476 unigenes were annotated, Figure S2b) and the KEGG (67,794,
Figure S2c) databases.
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Figure 1. Schematic illustration of transcriptomic data annotation. The transcriptomic sequencing
data were annotated against seven databases (a). GO, the Gene Ontology database; KEGG, the Kyoto
Encyclopedia of Genes and Genomes database; KOG, the euKaryotic Ortholog Groups database;
NR, the NCBI None-Redundant protein sequences database; NT, the NCBI NucleoTide sequences
database; PFAM, the Protein FAMily database; SP, the Swiss-Prot database. Meanwhile, the blast
results against the NR database were also presented, including distributions of e-values (b), sequence
similarities (c), and best annotated species (d), respectively.

2.3. Differential Expression Analyses

To primarily unveil the molecular mechanisms underlying the kenaf stems encoun-
tering salinity stress, the expressed unigenes between the control (denoted as CO) versus
stress (NA) samples were subjected to downstream analyses. A total of 112,564 and
114,149 unigenes were respectively expressed, with FPKM (expected number of frag-
ments per kilobase of transcript sequence per million base pairs sequenced) values of
over 0.3 in the CO and NA samples, and they shared 86,765 in common (Figure 2a). Overall,
10,452 unigenes were considered to be differentially expressed genes (DEGs) between the
two conditions (Figure 2b). The top GO categories enriched from the NA versus CO DEGs
were “metabolic processes” in the “biological process” (BP) subfamily and “catalytic activ-
ity” in the “molecular function” (MF) subfamily (Figure 2c), indicating there may include
numerous DEGs, the encoding products of which would catalyze metabolic reactions that
are involved in how the kenaf seedlings respond to salt stress. These metabolic processes
were likely involved in the anthocyanin biosynthesis (repressed, Figure 3a) and the flavone
and flavonol biosynthesis (enhanced, Figure 3b) pathways. Meanwhile, genes included in
the photosynthesis processes were significantly suppressed when the kenaf encountered
salt stress (Figure 3a), and the lowest p-value for the enrichment of phenylpropanoid
biosynthesis (Figure 3b) suggested this pathway was significantly enhanced.
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2.4. Metabolic Profiling of Kenaf Stems

Since the transcriptomic output has indicated the universal transcript changes of kenaf
when encountering salt stress (Figures 2 and 3), we then went on to probe the alterations at
the metabolic level. By applying the widely-targeted metabolomics [19] profiling protocol
and utilizing a previously established metabolite library [20], a total of 355 known metabo-
lites, containing 42 amino acids and their derivatives (AAs), 37 flavonoids (Flas), 36 lipids
(Lips), 29 nucleic acids and their derivatives (NTs), 10 organic acids (Orgs), 69 Others
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(unclassified metabolites, Oths), 22 phenolamides (PAs), 53 phytohormones and their
derivatives (PHs), 32 polyphenols (PPs), 10 sugars (Sugs), and 15 vitamins (Vits, Figure 4a,
and Table S3) were detected in the kenaf stem samples that were respectively collected
from the top (T), middle (M) and bottom (B) positions. The principal component anal-
ysis (PCA) of the metabolic diversity indicated major differences amongst the six kenaf
stem samples (Figure 4b), in which the first principal component (PC1) explained 35.5%
of the total variance, while the second (PC2) reached 33.0%. A more detailed display
of the relative contents of metabolites indicated the six samples could be separated into
two major groups, separating the stress conditions rather than the different stem parts
(Figure 4c). This implies there may exist several key metabolites (i.e., biomarkers) that
could differentiate the two growth conditions or the three stem parts. Indeed, the five most
significantly enriched (ranked by p-values of t-test, Figure 4d) metabolites were mr1462
(maltose, p = 1.12 × 10−10), IAA (indole acetic acid, p = 1.59 × 10−10), mr953 (matairesinol,
p = 2.09 × 10−10), mr1193 (N2, N2-dimethylguanosine, p = 5.52 × 10−9), and R11–0476
(8-prenylnaringenin, p = 1.54 × 10−8), which were respectively classified as Sugs (mr1462),
PHs (IAA), PPs (mr953), NTs (mr1193), and Flas (R11–0476). The numerous classes of
metabolites represented by the mostly enriched chemicals between the normal and stress
conditions are indicative that, similar to the transcriptome output, widespread metabolic
alterations could be observed under the salinity condition, wherein we may expect the salt
stress would adjust the osmosis (sugars represented by mr1462 were elevated), repress the
growth (the growth hormone IAA was decreased) and modify the lignin (the lignan mr953
and the flavonoid R11–0476 were altered, Figure 4d). Next, the differentially enriched
metabolites in each of the kenaf stem samples were evaluated, which resulted in 16, 55,
and 79 metabolites from the top (T), middle (M), and bottom (B) kenaf stems, respectively,
at a false discovery rate (FDR) of less than 0.01 (Figure 4e and Table S4). A more careful
scrutiny of these metabolites indicated the commonly enriched metabolites within two
samples may derivatize different chemo-decorates that are specifically enriched in the
respective samples. For instance, the metabolite mr1267 (adenine) was simultaneously
enriched in T and B samples, and the zeatin metabolites (trans zeatin-riboside, mr2117,
and dihydrozeatin O-riboside, mr4026) were found specifically enriched in the B samples,
whereas the isopentenyladenine decorates (N6-isopentenyladenine 7-glucoside, IP7 G and
N6-isopentenyladenosine 5′-monophosphate, IPMP) were in the T samples (Figure 4e).
This may indicate the two groups of adenine-derivatized cytokinin metabolites (i.e., zeatin
metabolites and isopentenyladenine decorates) acted differently in the respective kenaf
stem parts when encountering salt stress. Similarly, indole-3-acetic acid (IAA) was com-
monly enriched in the M and B samples, while different precursors or decorates were,
respectively, enriched in these two samples (Figure 4e). Considering the IAA was signifi-
cantly repressed by salt stress (Figure 4d), this output implies the decreased IAA contents
may be achieved respectively by amending the IAA precursors or transforming the IAA
decorates into different kenaf stem parts.

2.5. Lignin and Phytohormone Contents, and Underlying Gene Expressions

The above transcriptomic and metabolic evidences have unveiled the vast alterations
of kenaf when encountering the salinity stress, wherein the phenylpropanoid-flavonoid
pathway genes (Figure 3) and the flavonoid-lignan metabolites (Figure 4d) are indicative of
lignin change [21,22], and the phytohormone metabolites (Figure 4e) may play sophisticated
roles during this process. Indeed, the salinity stress would almost definitely lower the kenaf
growth rate, which was also true for stem development and fiber formation (Figure 5).
Specifically, the kenaf seedlings had decreased stem diameters (Figure 5d–f) as well as a
reduced lignification process (Figure 5f) under salt stress compared with normal conditions
(Figure 5a–c). Three layers of bast fiber were formed in the bottom part of CO stems
(pointed by the red arrows in Figure 5g), whilst only two were observed (indicated by the
red arrows in Figure 5h) under the adverse conditions. This result intuitively presented
that the salinity stress had retarded the stem lignification and fiber formation.
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1 
 

 

Figure 4. Metabolic profiling of kenaf stems. A total of 355 metabolites from various categories
(a) have been detected. Principle component analysis of the contents variation could divide the six
samples apart (b), which were the top (T), middle (M), and bottom (B) kenaf stems under normal
(CO) or stress (NA) conditions. For instance, COT indicates the top part of stem (T) under the normal
condition (CO). A more detailed contents distribution of these metabolites as a heatmap was also
displayed (c), in which the kenaf samples could be firstly divided as control (CO) versus NaCl
(NA) treatments and then as respective stem parts. The information (relative contents, p−value,
classification, and chemical structure) of five mostly enriched metabolites in distinguishing the
CO−to−NA conditions were displayed (d), wherein Student’s t-test was utilized for statistical
analysis. Differentially enriched metabolites among the three stem parts were analyzed (e) and
exemplified by the chemical structures under respectively colored backgrounds.
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Figure 5. Representative slices of kenaf stems. The slices obtained from the top (a,d), middle (b,e),
and bottom (c,f–h) parts were respectively displayed, in which the (a–c) and g are kenaf stem parts at
normal conditions, and the rest are under salinity stress. (g,h) represent the enlarged area of the red
rectangles in (c,f), respectively. The red-stained cells are lignified, and the red arrows indicated the
kenaf fiber cells. Bars in (a) to (f) are 200 µm, while in (g,h) are 50 µm.

To further quantify how the kenaf stems were affected by salt stress, the overall con-
tents of three monolignols in the kenaf stems were measured, which showed the lignin in
kenaf stems was mainly formed by G-subunits and S-subunits, and all three monolignols
were universally decreased by salt stress (Figure 6a). To primarily depict how did the
plant hormones react during the stress, the relative contents of phytohormones from the
previously conducted metabolic profiling (Figure 4) were more specifically presented here.
Correspondingly, the contents of the “stress hormone” ABA were significantly elevated
(Figure 6b), whilst the “growth hormone” IAA was lowered by the salt stress (Figure 6c).
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The lignified part, as shown by the slicing results (red-stained area in Figure 5), was mainly
formed and differentially affected at the bottom part of the kenaf stem, leading to the
assumption that the underlying phytohormones acted differently amongst different parts
(i.e., top, middle, and bottom parts) of the kenaf stems. The in-depth exploration of the
relative contents of stress hormones (ABA, JA, and SA, Figure 7a–c) and growth hormones
(IAA and GA4, Figure 7d,e) from the three parts of kenaf stems supported this scenario
in different manners. The contents of these phytohormones were differentially elevated
(ABA, Figure 7a; GA4, Figure 7e) or repressed (JA, SA, and IAA, Figure 7b–d, respectively)
amongst the three stem parts, under salt stress compared with normal conditions. Col-
lectively (Figure 7f), the overall contents variation of the three stress hormones (ABA, JA,
and SA, Figure 7a–c, respectively) in kenaf stems was mainly contributed by that from the
top and/or middle parts, whilst the contribution for GA4 was obtained from the middle
and bottom parts (Figure 7e,f). Unlike the above-stated four phytohormones, the data
suggested a minor NA-to-CO ratio for contents variation of IAA decrease (Figure 7d,f).
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To substantiate the connections between the above-stated transcriptome and the
metabolome data, the relative expression levels for corresponding key genes involved in
the lignin and designated phytohormone biosynthesis were quantified, which showed that
the phenylpropanoid pathway genes were elevated under salinity stress, especially for the
bottom parts of kenaf stems (Figure 8a–d). This is consistent with the transcriptomic output
(Figure 3b) but contradictory against our intuition since the lignification was suppressed
under salt stress (Figure 5). Meanwhile, the relative expression levels of the key genes
responsible for auxin (Figure 8e) and ABA (Figure 8f) were universally consistent with the
relative levels of respective metabolites (Figure 7a,d).
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3. Discussion

Kenaf is an indispensable multi-purpose fiber crop [12], with only a few researches
probing the molecular mechanisms when this species encounters adverse environmental
conditions [13,16,23,24]. Especially, the molecular mechanisms of kenaf seedlings under salt
stress have been respectively surveyed at the transcriptomic [16] or proteomic levels [13].
However, to the best of our knowledge, no assessment of how the kenaf stems respond to
the salt stress has been performed, and neither was the metabolomics as a newly emerged
methodology introduced to profile the metabolic changes of any kenaf organisms against
the adverse conditions. In the current study, experimental data regarding the physiological
traits (Figure 5), transcriptomic changes (Figures 2 and 3), qRT-PCR validations (Figure 8),
and the overall metabolic alterations (Figure 4) have indicated the different kenaf stem
parts reacted dissimilarly to the salt stress.

Our data suggested several inconsistencies among the above results or with previous
reports, which came primarily from the varied developmental status of corresponding
kenaf stem parts. Indeed, as displayed by the stem slices (Figure 5), no lignification was
observed except for the vessels in the top stem part. The xylems were similarly formed
and seldom retarded by the stress in the middle, and the lignified proportions, as well
as the fiber formations, have been significantly suppressed at the bottom. Overall, the
stem diameter was shrunk (Figure 5), with numerous gene expressions altered (Figure 2),
lignin contents lowered, and phytohormones changed (Figure 6). While the phytohor-
mones play intricated and sophisticated roles during the salt stress [25], our results have
added to the notion that this participation is complicated. For instance, the overall ABA
contents increased rapidly to regulate the salt stress response [26]. Our results indicated
the augments varied amongst the stem parts (Figures 6b and 7a). IAA as the main auxin
form was decreased and resulted in retarded plant growth under adverse conditions [27],
as was observed in our data (Figures 6c and 7d). The bioactive form of GAs as growth
hormones were supposed to be similarly depressed similar to that of auxin [28], while the
current output implied a controversial trend for GA4 in kenaf stems (Figure 7e). For these
disparities between our measurements of phytohormones and general reports, possible
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explanations could be the species-specific responses as previously deduced [25]. Mean-
while, the kenaf stems as phenotyping samples may add perplexity to this issue since
numerous phytohormones are mainly biosynthesized in the young leaves [29] and then
transported to long-distance organisms, such as roots, through the stem [30]. Therefore, the
phytohormone concentrations are not only a representation of the status of the stem itself,
but they may also reflect the regulation of the whole seedling.

Secondly, manifold metabolites may belong to the same phytohormone and exist
with similar or inverse functions. For instance, the IAA is the main auxin, and the tens of
derivatives may be its inactive, storage, antagonist, or precursor forms [31]. A glimpse at
these chemo-decorates indicated that although the IAA has decreased to similar concen-
trations among the three kenaf stem parts (Figure 7d), they may differ in how to achieve
such a status (Figure 4e). Likewise, the isopentenyladenine and zeatin derivatives are
two major groups of active cytokinin [32]. They may separately derivatize from the same
precursor adenine and correspondingly respond to the salt stress in the top and middle
parts of the kenaf stem (Figure 4e). Hence, a more comprehensive detection of the full
spectrum of the phytohormones would provide a more inclusive view regarding how
specific phytohormone species mediate the stress responses of kenaf stems.

One possible way to evaluate the phytohormone homeostasis is by monitoring the
relative expression levels of functional genes involved in the metabolism of these metabo-
lites [25,33,34], which was similarly indicated in our data (Figure 8e,f). Meanwhile, the
universally up-regulated phenylpropanoid pathway genes (Figure 8a–d) were coincident
with the transcriptomic indication (Figure 3b) but were inconsistent with the retarded ligni-
fication of kenaf stems (Figure 5). One possible explanation could be that the significantly
elevated flavonoid pathway (Figure 3a) that is located downstream of the phenylpropanoid
pathway has distracted the metabolite stream away from forming lignin. Moreover, some
specific flavonoid metabolites have been shown to inhibit the polar translocation of auxin,
thus affecting the plant architecture [35]. Hence, downstream studies could possibly probe
the existence of previously reported endogenous inhibition of polar auxin transport by a
given flavonoid metabolite [35], which may connect the overall enriched flavonoid pathway
genes in kenaf stems (Figure 2) with distinctively enriched IAA decorates from different
stem parts (Figure 4e).

4. Materials and Methods
4.1. Plant Materials

Kenaf cultivar H368 was obtained from Professor Defang Li (Institute of Bast Fiber
Crops, Chinese Academy of Agricultural Sciences). The growth conditions were set as
day/night cycle of 16 h/8 h, at 28 ◦C/25 ◦C, respectively, with a relative humidity close to
60% and a light intensity of 700 µmol m−2 s−1. A pot culture experiment was performed,
and each pot (15 cm height, 18 cm diameter) was filled with a soil mixture of the same
weight (red soil: humus: vermiculite, 2:1:1, v/v/v). Each pot was watered by 250 mL 1/4
Hoagland nutrient solution every other day. When the height of the plant reached 55 cm,
the kenaf seedlings will enter the fast-growing stage. During this period of time, the plant
height will increase from 2.1 cm to 5.0 cm per day, and the kenaf seedlings are highly
sensitive to salt stress. Based on preliminary measurements on the POD and SOD (data
not shown), 1 mol/L NaCl was presented in the 1/4 Hoagland solution for the salinity
treatment. The kenaf seedlings for each replicate were collected at 72 h after the first NaCl
watering, then frozen in liquid nitrogen and stored at−80 ◦C for the following experiments.

4.2. RNA Extraction, Library Preparation, and Sequencing

The stems from three kenaf seedlings for each replicate were collected at 72 h after
adding the NaCl into the 1/4 Hoagland nutrient solution, frozen in liquid nitrogen, and
stored at −80 ◦C for the following experiments. RNA extraction was conducted using the
TRIzol reagent (Invitrogen, Waltham, CA, USA) following the manufacturer’s protocol.
RNA quality was checked by the gel electrophoresis and Agilent 2100 Bioanalyzer (Agilent,
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Santa Clara, CA, USA) before further processing. The cDNA libraries for each biological
replicate of control (denoted as CO1 and CO2) and NaCl treatment (NA1 and NA2) were
respectively constructed and subjected to sequencing on the Illumina Hiseq2000 platform.
Briefly, poly-A mRNA was isolated from total RNA with magnetic oligo (dT) beads and
fragmented into small pieces. The double-stranded cDNA was synthesized using the
SuperScript Double-Stranded cDNA Synthesis kit (Invitrogen, Waltham, CA, USA) with
a random hexamer (N6) primer (Illumina, San Diego, CA, USA). After end-repair and
phosphorylation using T4 DNA polymerase, Klenow DNA polymerase, and T4 polynu-
cleotide kinase, these cDNA fragments were ligated with Illumina paired-end adapters
to the ends of these fragments using T4 DNA ligase. The cDNA library was constructed
with a fragment length of 200 bp ± 25 bp and then sequenced on a PE flow cell using an
Illumina Hiseq2000 sequencing platform.

4.3. Data Assembly and Annotation

Raw data (raw reads) were first processed by removing the reads containing adapter
sequences, poly-N, and low-quality reads from the raw data to generate clean data (clean
reads). All downstream analyses were based on clean data of high quality. Transcripts were
de novo assembled using Trinity [36] under default parameters and then further clustered
into unigenes using the Corset [37] software. Gene function for unigenes was, respectively,
annotated using information listed in Table S5.

4.4. Quantification of Gene Expression Levels and Differential Expression Analysis

The gene expression levels of each sample were estimated by mapping the clean reads
onto the assembled transcriptome, using the RSEM (RNA-Seq by Expectation Maximiza-
tion) software v1.2.15 (University of Wisconsin-Madison, Madison, WI, USA) [38] under
default parameters. The mapped read counts were then transformed to FPKM (expected
number of fragments per kilobase of transcript sequence per millions base pairs sequenced)
values to evaluate the relative expression levels amongst different unigenes [39]. Differen-
tial expression analysis between the control and the salt stress conditions was performed
using the DESeq R package version 1.12.0 [40], with threshold of padj < 0.05. GO enrich-
ment analysis of the differentially expressed genes (DEGs) was implemented using GOseq
R packages based on Wallenius non-central hypergeometric distribution [41], whilst the
KEGG enrichment was conducted using the KOBAS software version 2.0.12 [42].

4.5. Quantitative Reverse Transcription PCR (qRT-PCR)

Total RNA was extracted from the whole seedlings subjected to normal (CO) or stress
(NA) conditions using the RNAqueous Total RNA Isolation Kit (Ambion, Austin, TX, USA).
Afterward, cDNA was reverse transcribed using the HiScrip II Q RT SuperMix for qPCR
(Vazyme, Nanjing, China). The resulting cDNA was used as a template for RT-qPCR
after being diluted 10-fold with sterile water. The GAPDH gene generated from current
transcriptome sequencing (Cluster-20656.100749) was used as internal control gene. The
qRT-PCR was performed in a LightCycler 480 II Real-Time PCR Detection System (Roche
Ltd., Santa Clara, CA, USA). The 20 µL reaction mixture contained 10 µL ChamQ SYBR
qPCR Master Mix (Vazyme, Nanjing, China), 2 µL cDNA template (approximately 100 ng of
total RNA), and 0.5 µM of each forward and reverse primers (Table S6). The amplification
parameters were as follows: 95 ◦C for 30 s followed by 40 cycles of 95 ◦C for 10 s and 60 ◦C
for 30 s. Three independent experiments were carried out to ensure the reproductivity
of qRT-PCR results. The relative expression levels were calculated using the 2−∆∆CT

method [43].

4.6. Measurements of Lignin Monomers

The measuring method was previously established [44]. Briefly, 0.05 g of dried and
finely ground samples were weighed and dissolved in the mixture 6 mL of 2 mol/L
NaOH and 0.8 mL of nitrobenzene, heated to 100 ◦C overnight, and then cooled to room
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temperature. Samples were transferred to a 15 mL tube and extracted with ethyl acetate
three times. The aqueous phase was adjusted to pH value at two, followed by an additional
extraction with ethyl acetate three times. The organic phases were combined and dried
with nitrogen gas and dissolved into methanol to a final volume of 0.5 mL. The liquid
was filtered by 0.22 µm membrane and then subjected to measurement by HPLC at the
wavelength of 290 nm.

4.7. Generation of Stem Slices

After subjected to the salinity stress, the 5 cm lengths of stems from the top, middle,
and bottom were respectively cut and applied for stem slicing (seven seedlings for NA
samples and three seedlings for CO samples), metabolic profiling (four seedlings each, same
below) and quantitative real-time amplification (qRT-PCR). At least five slices were obtained
from each part of stems and were respectively fixed in FAA solution (10% formaldehyde,
50% ethanol, and 5% acetic acid in deionized water) overnight at 4 ◦C, vacuumed, sectioned,
and stained by the safranine-fast green method [45]. Briefly, the slices were rinsed in xylene,
cleared in ethanol, and then hydrated in graded ethanol series before running tap water.
Then the fast-green and the safranin staining solutions were respectively applied, with a
fast wash of the slices in 1% acetic acid and then running water after each stain. Finally, the
slices were dehydrated in ethanol and cleared in xylene.

4.8. Metabolic Profiling of Kenaf Stems

The above-mentioned kenaf stem parts were collected, snap-frozen in liquid nitrogen,
freeze dried, and then pulverized into fine powder. In total, 50 mg of powders were
weighed for each sample, and 500 µL of 70% methanol (HPLC grade) were added for
metabolite extraction, respectively. The extraction processes were previously described [20],
and the filtered liquids were subjected to the measurements. A widely targeted metabolic
profiling method [19] was utilized, using the previously established metabolite library and
machine parameters [20].

4.9. Statistical Analyses

Statistical analyses were performed with SPSS software version 22.0 (SPSS, Chicago, IL,
USA). Error bars represent standard deviation (S.D.). Student’s t-test was applied to analyze
whether the significance existed between the stress (NA) and normal (CO) conditions, and
one to three asterisks denote significant differences between corresponding controls and
treatments at thresholds of 0.05, 0.01, and 0.001, respectively. Metabolic data presentations
were achieved using the online tool [46].

5. Conclusions

We have presented a systematic evaluation of how kenaf reacted to the salt stress at the
physiological, transcriptomic, and metabolic levels, which suggested this adverse condition
could retard kenaf growth, shrink fiber formation, and lignification. During this process,
the growth phytohormones such as IAA were repressed, whereas the stress hormones,
including ABA, were elevated. However, the transcriptome data and the qRT-PCR output
did not always perfectly agree with the metabolite alterations, suggesting the complexity of
secondary metabolic pathways. One possible explanation is the counterbalance among sev-
eral deviations of metabolic routes for a certain metabolite, and it is hard to simultaneously
evaluate the enormous nodes for these metabolic pathways. Therefore, although plentiful
data have been carried out in the current study, more evidences are still needed to further
probe how the metabolites reacted to the salt stress and how the metabolic adjustment
finally resulted in the physiological traits.
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