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Background and Purpose: Because of gastrointestinal irritation and kidney toxicity associated with non-steroidal anti-inflammatory
drugs and the cardiovascular problems of Coxibs use, developing novel anti-inflammatory agents with reduced toxicity and improved
selectivity remains a major challenge. Depending on our previous work, a novel series of pyridopyrimidinones IIIa-i has been
synthesized via reaction of 6-amino-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one (I) and phenyldiazenyl aromatic aldehydes (IIa-i). All
the new constructed compounds were fully characterized by elemental and spectral analysis.
Methods: The target compounds IIIa–i were investigated for their potential towards COX inhibition, anti-inflammatory properties
using carrageenan induced edema model in rat paw, and the ulcer indices of the most active members.
Results: The ethyl pyridopyrmidinone-benzoates IIIf, IIIg and IIIh showed superior inhibitory activity of carrageenan induced
edema to celecoxib. Furthermore, the pyridopyrimidinones IIId, IIIf, IIIg, and IIIi exerted improved COX-2 inhibitory activity (IC50
= 0.67–1.02 µM) comparing to celecoxib (IC50 = 1.11 µM). Moreover, the gastric ulcerogenic potential assay of compounds IIIf–
h revealed their lower ulcerogenic liability than indomethacin with comparable effect to celecoxib.
Conclusion: Virtual docking investigation of the most active candidates IIId, IIIf, IIIg and IIIi in the active site of COX-2 enzyme
showed that these compounds implied interaction and binding motif similar to the cocrystallized ligand bromocelecoxib.
Keywords: cyclooxygenase inhibitors, anti-inflammatory activity, ulcerogenic effects, tricyclic pyridopyrimidines

Introduction
Inflammation is a cellular reaction to any harmful stimuli and conditions like tissue damage and infection.1–3 This
physiological response includes the delivery of blood components to the local infection site or injury triggering
vasodilation and increased vascular permeability.4–7 NSAIDs (Non-steroidal anti-inflammatory drugs) are clinically
indicated for relieving fever, pain, and inflammation by suppressing cyclooxygenase (COX) enzymes.8,9

Cyclooxygenases (COXs) are key enzymes responsible for transforming arachidonic acid, which is released on affected
tissues by the effect of phospholipase A2 to various prostaglandins.10,11 The major two isoforms of cyclooxygenase are
COX-1 and 2.12 The constitutive COX-1 mediates the formation of diverse cytoprotective prostaglandins, which are
responsible for lining the gastric mucosa, inducing platelet aggregation and preserving homeostasis.13,14 However, the
inducible COX-2 is accountable for synthesizing of pain and inflammatory mediating prostaglandins.15,16

Conventional NSAIDs non-selectively inhibit COX-1 and 2 isozymes, therefore their administration is associated
with gastrointestinal side effects.17–19 Therefore, selective COX-2 inhibitors were developed to achieve enhanced safety
profile on gastric mucosa. Nonetheless, certain members such as rofecoxib and valdecoxib have been associated with
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increased probability of myocardial infarction incidences as well as hypertensive actions.20 In this regard, discovery of
selective COX-2 blockers for management of pain and inflammation with diminished side actions emerged as an urgent
medical need.

The pyridine nucleus has been incorporated in many core structures of several anti-inflammatory agents.21–23 For
example, the trifluoromethanesulfonamide pyridine (1) (Figure 1) was reported as COX-2 inhibitor with higher COX-2
selectivity index (SI = 15.35) than celecoxib (SI =7.46).24 Moreover, Chung et al reported a set of different tricyclic
chromeno-pyridines as promising anti-inflammatory agents.25 As a representative example, compound 2 exerted potent
anti-inflammatory effect through reducing the formation of PGE2 at 10–20 mg/kg dose. Furthermore, the pyridoacyl-
sulfonamide derivative 3 was described as COX-2 inhibitor with IC50 equal to 5.6 µM,26 and it strongly inhibited PGE2
(IC50 = 0.15 µM) in a comparable potency to celecoxib (IC50 = 0.10 µM).

On the contrary, a number of pyrimidine-based small molecules have been reported as potent anti-inflammatory
candidates.27 As an example, the hexahydroimidazo[1,2-c]pyrimidine 4 was documented to possess 34.3% anti-
inflammatory activity at 50 mg/kg dose.28 Furthermore, Keche et al reported a series of pyrimidine-diarylurea conjugates
such as compound 5, which demonstrated higher inhibitory properties against interleukin IL-6 (96%) and proactive
kinase TNF-ὰ (78%) than that exhibited by dexamethasone against interleukin IL-6 (86%) and TNF-ὰ (72%).29 Several

Figure 1 Representative examples of previously identified anti-inflammatory pyridines (1–3), pyrimidines (4, 5), azo containing derivatives (6,7), tricyclic pyridopyrimidine
(8), and target compounds IIIa–i.
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4-(phenyldiazenyl)phenol containing compounds 6 and 7 exhibited anti-inflammatory activity in case of inflammatory
bowel disease and ulcerative colitis.30–33 A variety of tricyclic pyridodipyrimidinones 8 was identified and elicited
promising anti-inflammatory activities with low incidence of gastric ulcer.34,35

According to reported mentioned studies and in continuation to our former studies for identification of selective
COX-2 blockers,12,19,36–44 further derivatives of pyridodipyrimidinone scaffold IIIa–i have been prepared and biologi-
cally investigated for their potential anti-inflammatory properties. The target molecules have been designed via conjuga-
tion of the privileged tricyclic pyridodipyrimidinone with 4-(phenyldiazenyl) phenol structural feature in a single
chemical entity in an attempt to achieve selective COX-2 blocking activity along with favorable anti-inflammatory
activity and minimized gastric side effects (Figure 1).

Results and Discussion
Chemistry
The key building block, pyrimidine-4-one (I) and phenyldiazenyl aromatic aldehydes IIa–i, were chemically synthesized
as shown in Scheme 1. Condensation of the ethyl cyanoacetate ester with thiourea in presence of sodium ethoxide as
a strong base afforded compound I in quantitative yield.45 On the other hand, phenyldiazenyl aldehydes IIa–i were
achieved through diazotization of various anilines followed by treatment with aromatic aldehydes under basic
conditions.46–48 The synthesis of the target pyridopyrimidinones IIIa–i was accomplished in 66–93% yield by treatment
of compound I with various phenyldiazenyl aromatic aldehydes in CH3OH containing a catalytic amount of HCl
adopting the reported method.34 In this reaction, the acidic polar solvent favors the reaction progress by the creation
of a 6-imino that directs to higher nucleophilic character of carbon five, causing reaction to occur on the aromatic
aldehydic carbonyl (Scheme 2). The chemical structures of newly prepared compounds IIIa–i have been elucidated via
different spectroscopic and elemental analysis. 1HNMR data for the novel compounds IIIa-i is shown in Table 1.

Pharmacological Activity
Assay of COX Inhibition
The newly prepared azo molecules IIIa–i were investigated for their COX blocking action – in terms of IC50 – by
enzyme immunoassay (EIA) utilizing ovine COX-1/2 assay kit. Furthermore, SI (selectivity index) was assessed as IC50

against COX-1/IC50 against COX-2 applying positive standard celecoxib. As shown in Table 2, the obtained data pointed
out that the pyridopyrimidinones IIIa–i exhibited modest to moderate blocking activity to COX-1 (IC50 = 3.25–11.23
µM), and favorable suppressing activity for COX-2 (IC50 = 0.67–4.78 µM). While the pyridopyrimidinone IIId,

Figure 2 The 2D (right panel) and 3D (left panel) putative binding mode of SC-558.
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possessing 3,4-dimethoxyphenyl, was the highest COX-2 blocker (IC50 = 0.67 µM), IIIf emerged as the best selective
member to COX-2 (SI = 11.82) being superior to celecoxib.

The nature of substitution pattern on both proximal and distal phenyl rings of pyridopyrimidinone had a substantial
role in modulating compound’s selectivity and activity against COX-2. The hydroxybenzaldehyde derived pyridopyr-
imidinones IIId (COX-2, IC50 = 0.67 µM), IIIi (COX-2, IC50 = 0.69 µM), IIIf (COX-2, IC50 = 0.95 µM), and IIIg
(COX-2, IC50 = 1.02 µM), elicited distinct inhibition for COX-2 in comparable pattern to celecoxib (IC50 = 1.11 µM).
Upon comparing the activity of 4-ethyl carboxylate derivatives IIIf and IIIh, it was evident that appendage of hydroxyl
group (IIIf; COX-2, IC50 = 0.95 µM, SI = 11.82) on the proximal phenyl is advantageous than 2,4-dimethoxy
substitution (IIIh; COX-2, IC50 = 2.43 µM, SI = 3.23) for achieving better COX-2 suppressive activity and selectivity.
Moreover, it was found that replacing the 3-chloro-4-fluorophenyl of IIIc (COX-2, IC50 = 3.87 µM) with 3,4-dimethox-
yphenyl led to 5.8-fold improvement in activity (IIId; COX-2, IC50 = 0.67 µM). Of special significance, pyridopyr-
imidinones IIIf (SI = 11.82) and IIIg (SI = 9.02) displayed remarkable selectivity for COX-2 outperforming that
observed for celecoxib (SI = 6.61).

In vivo Anti-Inflammatory Action
Animal and ethics: we used in this study adult male Wister albino rats weighing 150–180g. Before any experimental
study, rats are given 14 days to acclimate. The rats were kept in a controlled environment with access to water and food.
All assays and practical animal studies had been done in Nahda university and adapting rules for care of animals in lab in

Scheme 1 The synthetic pathway of molecules IIIa–i. Reagents and conditions: a) NaOC2H5, C2H5OH, reflux, 6h, 99%; b) NaNO2, HCl, 0 oC, 2 h; c) Aromatic aldehyde,
NaOH, stirring, 0 oC, 12 h; d) conc. HCl, methanol, rt, 7h, 66–93%.

Scheme 2 The reasonable mechanism for compound III formation.
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accordance with NIH Guidelines for the Care and Use of Laboratory Animals. The design of the current work was
authorized from Nahda University ethical committee, Beni-Suef, Egypt (NUB-059-019).

Carrageenan induced edema model in rat paw was used to evaluate the anti-inflammatory activity of the target
candidates IIIa–i and celecoxib was chosen as the positive control.

The pyridopyrimidinones were orally administrated in a dose of 50 mg/kg nearly earlier persuading inflammation
through SC (subcutaneous injection) of carrageenan. Inhibition of carrageenan induced inflammation was estimated by
measuring the changes of paw dimensions after 1, 3 and 5 h (Table 3). The obtained findings showed that the
pyridopyrimidinones IIIf and IIIh had superior anti-inflammatory properties than celecoxib at the three examined

Table 1 NMR Data of the Novel Compounds IIIa-I

Compound
No.

1HNMR 13CNMR

IIIa δ 2.41 (s, 3H, CH3), 4.71 (s, 1H, pyridine), 6.63–6.70 (m, 3H,

2NH, H-3\), 7.00–7.20 (m, 2H, H-4\, 5\), 7.30–7.63 (m, 2H, H-2\,

6\), 7.67–7.75 (m, 2H, H-4\, 2\), 11.56–11.75 (s, 3H, 3NH), 12.40
(s, 1H, OH).

δ 21.4, 29.7, 78.6, 115.6, 120.2, 120.9, 122.0, 124.2, 125.2,
129.6, 131.4, 139.2, 145.4, 152.7, 153.3, 160.7, 163.1, 175.0.

IIIb δ 3.77 (s, 3H, OCH3), 5.29 (s, 1H, pyridine), 6.82–6.91 (m, 5H,
H-3\, 3\, 5\, 2NH), 7.54–7.57 (m, 2H, H-6\, 4\), 7.80 (d, J = 8.4 Hz,

2H, H-2\, 6\), 11.58–11.62 (m, 3H, 3NH), 12.14 (s, 1H, OH).

δ 29.4, 56.5, 90.5, 113.9, 115.8, 121.9, 123.9, 125.9, 125.8,
144.7, 145.5, 153.9, 161.8, 164.3, 166.9, 174.5.

IIIc δ 5.31 (s, 1H, pyridine), 6.68–6.89 (m, 4H, H-3\, 5\, 2NH), 7.11–
7.21 (m, 2H, H-4\, 6\), 7.59 (s, 1H, H-6\), 7.83 (s,1H, H-2\), 11.49–
11.90 (s, 3H, 3NH), 12.01 (s, 1H, OH).

δ 29.7, 91.0, 115.8, 117.9, 121.2, 121.2, 122.3, 123.4, 125.4,
126.9, 145.1, 149.3, 153.36, 160.0, 162.8, 168.0, 173.0.

IIId δ 3.84 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 5.29 (s, 1H, pyridine),
6.82–6.85 (m, 4H, H-3\, 5\, 2NH), 7.11–7.16 (m, 2H, H-2\, 6\),

7.54–7.57 (m, 2H, H-6\, H-4\), 11.92–11.97 (m, 3H, 3NH), 12.03

(s, 1H, OH).

δ 31.2, 55.9, 56.2, 90.5, 111.6, 115.6, 115.8, 115.9, 121.5,
123.9, 125.7, 145.2, 145.7, 146.7, 151.3, 154.0, 162.8, 166.5,

173.7.

IIIe δ 5.31 (s, 1H, pyridine CH), 6.61–6.67 (m, 3H, H-3\, 2NH), 6.87
(d, J = 8.4 Hz, 1H, H-5\), 7.65–7.71 (m, 2H, H-4\, H-6), 7.77 (s, 1H,
H-6\), 7.96 (s,1H, H-2\), 11.52–11.88 (s, 3H, 3NH), 12.02 (s, 1H,

OH).

δ 29.7, 89.0, 115.8, 121.1, 121.8, 122.4, 125.5, 129.3, 135.3,
145.1, 153.3, 154.3, 160.6, 163.1, 173.0

IIIf δ 1.35 (t, J = 6.8 Hz, 3H, CH3), 3.36 (q, J = 6.8 Hz, 2H, CH2), 5.31

(s, 1H, pyridine), 6.63–6.89 (m, 3H, H-3\, 2NH), 7.65–7.68 (m, 2H,

H-4\, 6\), 7.88 (d, J = 8.4 Hz, 2H, H-3\, 5\), 8.11 (d, J = 8.4 Hz, 2H,
H-2\, 6\), 11.90–11.91 (s, 3H, 3NH), 12.06 (s, 1H, OH).

δ, 14.6, 29.7, 61.4, 90.7, 115.8, 121.6, 122.6, 123.2, 125.7,
130.8, 131.0, 145.5, 153.3, 155.3, 160.5, 163.1, 165.7, 172.9.

IIIg δ, 5.30 (s, 1H, pyridine), 6.63–6.68 (m, 4H, H-3\, 4\, 2NH), 7.62–
7.65 (m, 3H, H-6\, 3\, 5\), 7.73 (d, 1H, J = 8 Hz, H-2\, H-6), 11.92–
12.01 (m, 3H, 3NH), 12.06 (s, 1H, OH).

δ 29.7, 78.6, 115.7, 121.2, 123.8, 124.4, 125.6, 126.8, 132.8,
145.2, 151.5, 153.3, 159.8, 163.1, 175.0.

IIIh δ 1.33 (t, J = 7.2 Hz, 3H, CH3), 3.73 (s, 3H, OCH3), 3.74 (s, 3H,

OCH3), 4.33 (q, J = 7.2 Hz, 2H, CH2), 4.75 (s, 1H, pyridine CH),

6.42–6.56 (m, 3H, H-3\, 2NH), 7.53 (s, 1H, H-6\), 8.12 (d, J = 8.4
Hz, 2H, H-3\, 5\), 8.13 (d, J = 8.4 Hz, 2H, H-2\, 6\), 10.37 (s, 1H,

NH), 11.68 (s, 2H, 2NH).

δ, 14.6, 19.0, 56.4, 56.5, 61.3, 85.7, 101.2, 115.6, 122.4, 125.2,
130.6, 130.9, 153.2, 156.6, 165.1, 167.3, 168.7, 174.9.

IIIi δ 5.35 (s, 1H, pyridine CH), 6.89–7.48 (m, 6H, H-3\,4\,3\, 4\, 2NH),
7.53–7.77 (m, 3H, H-6\, 3\,5\), 7.69 (d, 1H, J = 8 Hz, H-2\, 6\), 8.13–
8.23 (m, 2H, H-2,6\), 11.92–12.01 (m, 3H, 3NH), 12.06 (s, 1H,
OH).

δ 29.7, 90.8, 115.8, 121.3, 122.8, 123.4, 123.8, 125.8, 126.21,
127.2, 134.3, 135.1, 145.5, 153.3, 154.0, 154.0, 160.1, 166.6,

166.8, 173.0.
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time intervals. In addition, the target compound IIIg exhibited higher anti-inflammatory potential than displayed by
celecoxib after 3 and 5 hours.

Close inspection of the results listed in Table 3 underscored that the pyridopyrimidinone derivatives substituted with
ethyl ester IIIf (Anti-inflammatory (AI) % = 52–66) and IIIh (AI % = 57–67) displayed higher activity for inhibition of
edema than those congeners containing either electron donating (IIId; AI % = 28–55) or electron withdrawing (IIIc; AI
% = 24–54) groups, particularly after 1 and 3 hours. In harmony with the COX-2 inhibitory assessment, the 4-benzothia-
zol-2-yl containing pyridopyrimidinone IIIi exerted superior in vivo anti-inflammatory activity than its corresponding
methoxy derivative IIIb. Moreover, introducing bromine on compound IIIg augmented the anti-inflammatory activity (3
h; AI % = 54, 5 h; AI % = 57).

The ethyl acetoxy group in compounds IIIf and IIIh has important role in vivo activity anti-inflammatory activity also
bromine at for position 4 in compound IIIg. Also, the ethyl acetoxy group in IIIf and IIIh increases absorption so fast
onset of action consequently high anti-inflammatory activities 52% and 67% respectively but bromine in IIIg delay onset
of action firstly in compared with IIIf and IIIh.

Table 2 In vitro COXs Inhibitory Action of Molecules IIIa–i

Compound No. IC50 (µM)a SIb

COX-1 COX-2

IIIa 7.88 ± 0.14 4.78 ± 0.08 1.65

IIIb 6.86 ± 0.12 2.51 ± 0.09 2.73
IIIc 10.52 ± 0.24 3.87 ± 0.07 2.72

IIId 4.00 ± 0.09 0.67 ± 0.02 5.97

IIIe 7.52 ± 0.11 2.11 ± 0.07 3.56
IIIf 11.23 ± 0.27 0.95 ± 0.01 11.82

IIIg 9.20 ± 0.22 1.02 ± 0.03 9.02

IIIh 7.84 ± 0.16 2.43 ± 0.07 3.23
IIIi 3.25 ± 0.07 0.69 ± 0.02 4.71

Celecoxib 7.34 ± 0.18 1.11 ± 0.04 6.61

Notes: aIC50: compound concentration required to produce 50% inhibition of COX-1 or COX-2 for means of
three determinations, bold figures refer to submicromolar; bSI = IC50 (COX-1)/ IC50 (COX-2).

Table 3 In vivo Anti-Inflammatory Activities of Compounds IIIa–i

Compound No. Anti-Inflammatory Activity % (AI)a

1 h 3 h 5 h

IIIa 0.95 ± 0.10* (34%) 0.83 ± 0.12* (41%) 0.85 ± 0.06*(39%)

IIIb 1.00 ± 0.11* (31%) 0.95 ± 0.12 (32%) 0.90 ± 0.14 (36%)

IIIc 1.10 ± 0.08 (24%) 1.00 ± 0.10 (29%) 0.65 ± 0.05*** (54%)
IIId 1.05 ± 0.10 (28%) 0.95 ± 0.12 (32%) 1.05 ± 0.13 (55%)

IIIe 1.05 ± 0.12 (28%) 0.95 ± 0.09 (32%) 0.78 ± 0.08** (45%)

IIIf 0.60 ± 0.12***(52%) 0.58 ± 0.11***(59%) 0.48 ± 0.14*** (66%)
IIIg 1.08 ± 0.09 (26%) 0.65 ± 0.13***(54%) 0.60 ± 0.15*** (57%)

IIIh 0.49 ± 0.05***(67%) 0.58 ± 0.11***(63%) 0.58 ± 0.17***(57%)

IIIi 1.10 ± 0.14 (24%) 0.80 ± 0.15**(43%) 0.68 ± 0.13** (52%)
Control 1.45 ± 0.15 (0%) 1.58 ± 0.15 (0%) 1.33 ± 0.10 (0%)

Celecoxib 0.83 ± 0.09**(43%) 0.80 ± 0.11** (43%) 0.65 ± 0.10*** (54%)

Notes: aThe presented values are the average of triplicate experiments ± SEM, Significance levels *p ˂ 0.05, **p ˂ 0.01 and ***p ˂ 0.001 as
compared to the control group.
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Ulcerogenic Liability
The top three active pyridopyrimidinones IIIf–h were further evaluated for their gastric ulcerogenic liability in
rats (Table 4). The ulcerogenicity liability of the investigated pyridopyrimidinones was compared with both COX-1
inhibitor (indomethacin) and COX-2 inhibitor (celecoxib). Interestingly, compound IIIf had the lowest ulcerogenic
effect, which might be attributed to its potential selectivity for COX-2 (SI = 11.82). Additionally, all of the tested
candidates showed lower ulcerogenic action than the standard indomethacin.

Molecular Docking Studies
To acquire insights about the underlying mechanism of action of the newly investigated pyridopyrimidinones, virtual
docking of the highly selective COX-2 inhibitors IIId, IIIf, IIIg and IIIi within the active binding site of COX-2 enzyme
was studied. The co-crystal structure of COX-2 complex with SC-558, a selective COX-2 blocker, was acquired from
PDB (protein data bank: 1CX2),49 and the virtual docking was conducted using MOE (Molecular Operating
Environment; 2010). Validation of docking protocol had been performed by redocking the ligand bromocelecoxib
(SC-558) into COX-2 active site with root mean standard deviation (RMSD) of 1.1524, and showed an energy score
(S) of −11.93 kcal/mol. The ligand sulphonyl group was engaged in two hydrogen bonds with the receptor amino acids
His90 and Arg513 (Figure 2, Table 5).

Interestingly, compound IIIf showed profitable fitting with COX-2 with superior docking score (S = −13.89 kcal/mol)
to bromocelecoxib (S = −11.93 kcal/mol). Furthermore, IIIf displayed two HB interactions through its carbonyl oxygen
with Arg120 (2.65 A°) as well as azo moiety with His90 (3.25 A°) (Figure 3; Table 5). Also, the pyridopyrimidinone IIIg
exhibited score energy (S) of −11.20 kcal/mol, and was able to form three HB interactions with Arg120, His90 and
Tyr355 (Figure 3).

Conclusion
Novel derivatives of pyridopyrimidinones IIIa–i were prepared and assessed in vitro and in vivo for their COXs and
carrageenan induced edema anti-inflammatory activities, respectively. Preliminary screening of the target compounds
disclosed that the pyridopyrimidinone IIIf possessing ethyl acetate had the best activity with potent edema inhibition
in percent = 52% after one hour, 59% after three hours and 66% after five hours. Moreover, certain members among this
focused library were identified to be selective COX-2 inhibitors. Particularly, IIId, IIIf, IIIg and IIIi, exerted superior
inhibition for COX-2 (IC50 = 0.67–1.02 µM) than celecoxib (IC50 = 1.11 µM). Ulcerogenic accountability of compounds
IIIf–h exhibited their comparable activity to celecoxib along with less ulcerogenic effect than indomethacin. It was noted
that the lipophilic group (ethyl ester or benzothiazol-2-yl) containing compounds IIIf, IIIh and IIIi elicited superior anti-
inflammatory effect and better selectivity for COX-2 than other derivatives. Overall, combining the privileged pyrido-
dipyrimidinone scaffold with diphenylazo structural feature in single molecule with appropriate hydrophobic substitution
pattern may represent a promising core structure for further design of potent anti-inflammatory agents with minimized
gastric side effects.

Table 4 Gastric Ulcerogenic Effect of Compounds IIIf–h

Comp. No. Ulcer Number Ulcer Index Relative Ulcerogenicity to Celecoxib

IIIf 3.75 ± 0.15 3.75 ± 0.11 1.25
IIIg 6.75 ± 0.07 4.75 ± 0.14 1.58

IIIh 6.50 ± 0.11 5.25 ± 0.13 1.75

Celecoxib 3.25 ± 0.17 3.00 ± 0.09 1
Indomethacin 14.25 ± 0.31 22.5 ± 0.21 7.5
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Experimental
Chemistry
Melting points were determined with Thomas-Hoover capillary apparatus and uncorrected. Infrared (IR) spectra of the
new compounds were detected utilizing FT-IR spectrometer (Nicolet 550 Series II Magna) as films on NaCl plates, and
expressed in wave number (cm−1). 1H NMR and 13C NMR spectra were recorded with Bruker Avance III 400 MHz in
deuterated dimethyl sulfoxide (DMSO-d6). Chemical shifts were measured in ppm (δ scale), and the coupling constant
(J) values were expressed in Hertz (Hz). Mass spectra were recorded using Hewlett Packard 5988 spectrometer.
Elemental microanalyses for N, C, and H were measured utilizing Perkin-Elmer 2400 analyzer (Perkin-Elmer,
Norwalk, CT, USA), at Cairo University (Micro analytical unit), Egypt, and all analyzed compounds were within ±
0.4% of the assessed values. Thin layer chromatography (TLC) was carried out utilizing silica gel plates (Germany,
MERCK 60F 254, 0.25 mm), a mixture of chloroform /methanol (9.5:0.5 mL) as eluent and visualized with UV lamp. All
chemicals and reagents were commercially purchased and used directly without purification. 6-Aminopyrimidinone
derivative I and the aldehyde derivatives IIa–i were prepared adopting the reported methods.45,50,51

IIIf

IIIg

Figure 3 The 2D (right panel) and 3D (left panel) putative binding mode of compounds IIIf and IIIg.
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Synthesis of Pyridopyrimidinones IIIa–i
6-Amino-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one (I) (2.86 g, 20 mmol), appropriate aromatic aldehyde (IIa–i) (10
mmol), and conc. hydrochloric acid (5 mL) in methanol (30 mL) were stirred at room temperature (rt) for 7 h. The
precipitated product was collected, washed with cold ethyl alcohol, dried and crystallized from DMF to afford the target
molecules IIIa–i in pure forms.

5-(2-Hydroxy- 5-(m-Tolyldiazenyl) Phenyl)−2,8- Dithioxo-2, 3, 5, 8, 9, 10-Hexahydropyrido[2,3-D:6,5d′]Dipyrimidine-
4,6–(1H,7H)-Dione (IIIa)
Yield (85%), yellowish white crystals, m.p. > 300 °C; IR (cm−1): 1649 (C=O), 3223(NH), 3415(OH); 1H NMR δ 2.41 (s,
3H, CH3), 4.71 (s, 1H, pyridine), 6.63–6.70 (m, 3H, 2NH, H-3\), 7.00–7.20 (m, 2H, H-4\, 5\), 7.30–7.63 (m, 2H, H-2\, 6\),
7.67–7.75 (m, 2H, H-4\, 2\), 11.56–11.75 (s, 3H, 3NH), 12.40 (s, 1H, OH); 13C NMR δ 21.4, 29.7, 78.6, 115.6, 120.2,
120.9, 122.0, 124.2, 125.2, 129.6, 131.4, 139.2, 145.4, 152.7, 153.3, 160.7, 163.1, 175.0; EIMS (m/z) 491 (M+, 19.44%).
Elemental analysis of C22H17N7O3S2: C, 53.76; H, 3.49; N, 19.95. Found: C, 53.40; H, 3.56; N, 20.03.

5-(2-Hydroxy-5-(4-Methoxyphenyl)Diazenyl) Phenyl)−2,8-Dithioxo-2, 3, 5, 8, 9, 10-Hexahydropyrido[2,3-D:6,5d′]dipyr-
imidine-4,6–(1H,7H)-Dione (IIIb)
Yield (80%), greyish white crystals;; m.p. > 300°C; IR (cm−1): 1669 (C=O), 3257(NH), 3419 (OH); 1H NMR δ 3.77 (s,
3H, OCH3), 5.29 (s, 1H, pyridine), 6.82–6.91 (m, 5H, H-3\, 3\, 5\, 2NH), 7.54–7.57 (m, 2H, H-6\, 4\), 7.80 (d, J = 8.4 Hz,
2H, H-2\, 6\), 11.58–11.62 (m, 3H, 3NH), 12.14 (s, 1H, OH); 13C NMR δ 29.4, 56.5, 90.5, 113.9, 115.8, 121.9, 123.9,
125.9, 125.8, 144.7, 145.5, 153.9, 161.8, 164.3, 166.9, 174.5; EIMS (m/z) 507 (M+, 24.52%). Elemental analysis of
C22H17N7O4S2: C, 52.06; H, 3.38; N, 19.32. Found: C, 52.00; H, 3.50; N, 19.53.

5(5-((3-Chloro-4-Fluorophenyl) Diazenyl)-2-Hydroxyphenyl)−2, 8- Dithioxo-2, 3, 5, 8, 9, 10-Hexahydropyrido
[2,3-D:6,5d′]Dipyrimidine-4,6–(1H,7H)-Dione (IIIc)
Yield (66%), whitish grey crystals, m.p. > 300°C; IR (cm−1): 1641 (C=O), 3040(ArH), 3150(NH), 3422(OH); 1H NMR δ
5.31 (s, 1H, pyridine), 6.68–6.89 (m, 4H, H-3\, 5\, 2NH), 7.11–7.21 (m, 2H, H-4\, 6\), 7.59 (s, 1H, H-6\), 7.83 (s,1H,
H-2\), 11.49–11.90 (s, 3H, 3NH), 12.01 (s, 1H, OH); 13C NMR δ 29.7, 91.0, 115.8, 117.9, 121.2, 121.2, 122.3, 123.4,

Table 5 The Virtual Docking Data of Compounds IIId, IIIf, IIIg, IIIi and SC-558

Compound No. Affinity Kcal/
mol

No. of HBs Distance (Ao) from Main Residue Functional Group

IIId −13.95 5 2.97 Tyr355 C=O
3.20 His90 OH
2.99 Ser353 OH

3.28 Ser530 OCH3

2.97 Tyr385 OCH3

IIIf −13.89 2 2.65 Arg120 C=O
3.25 His90 N=N

IIIg −11.20 3 2.68 Arg120 C=O
2.15 His90 N=N

2.98 Tyr355 C=O

IIIi −14.52 3 3.11 Arg120 C=O
2.87 His90 N=N
3.09 Tyr355 C=O

SC-558 −11.93 2 2.41 Arg513 -SO2

2.30 His90 -SO2
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125.4, 126.9, 145.1, 149.3, 153.36, 160.0, 162.8, 168.0, 173.0; EIMS (m/z) 529 (M+, 29.39%), 67 (100%). Elemental
analysis of C21H13ClFN7O3S2: C, 47.59; H, 2.47; N, 18.50. Found: C, 47.50; H, 2.45; N, 18.54.

5-(5-((3,4-Dimethoxyphenyl-2-Diazenyl)-2-Hydroxyphenyl)−2, 8- Dithioxo-2, 3, 5, 8, 9, 10-Hexahydropyrido[2,3-D:6,5d
′]Dipyrimidine-4,6-(1H,7H)-Dione (IIId)
Yield (80%), yellow crystals, m.p. > 300°C; IR (cm−1): 3419 (OH), 3215 (NH), 1667 (C=O); 1H NMR δ 3.84 (s, 3H,
OCH3), 3.86 (s, 3H, OCH3), 5.29 (s, 1H, pyridine), 6.82–6.85 (m, 4H, H-3\, 5\, 2NH), 7.11–7.16 (m, 2H, H-2\, 6\), 7.54–
7.57 (m, 2H, H-6\, H-4\), 11.92–11.97 (m, 3H, 3NH), 12.03 (s, 1H, OH); 13C NMR δ 31.2, 55.9, 56.2, 90.5, 111.6, 115.6,
115.8, 115.9, 121.5, 123.9, 125.7, 145.2, 145.7, 146.7, 151.3, 154.0, 162.8, 166.5, 173.7; EIMS (m/z) 537 (M+, 32.07%).
Elemental analysis of C23H19N7O5S2: C, 51.39; H, 3.56; N, 18.24. Found: C, 51.55; H, 3.45; N, 18.03.

5-(5-((3,4-Dichlorophenyl-2-Diazenyl)-2-Hydroxyphenyl)−2, 8- Dithioxo-2, 3, 5, 8, 9, 10-Hexahydropyrido[2,3-D:6,5d′]
Dipyrimidine-4,6-(1H,7H)-Dione (IIIe)
Whitish yellow crystals (yield 75%), m.p. > 300°C; IR (cm−1); 3416 (OH), 3180 (NH), 1652 (C=O); 1H NMR δ 5.31 (s,
1H, pyridine CH), 6.61–6.67 (m, 3H, H-3\, 2NH), 6.87 (d, J = 8.4 Hz, 1H, H-5\), 7.65–7.71 (m, 2H, H-4\, H-6\), 7.77 (s,
1H, H-6\), 7.96 (s,1H, H-2\), 11.52–11.88 (s, 3H, 3NH), 12.02 (s, 1H, OH); 13C NMR δ 29.7, 89.0, 115.8, 121.1, 121.8,
122.4, 125.5, 129.3, 135.3, 145.1, 153.3, 154.3, 160.6, 163.1, 173.0; EIMS (m/z) 545 (M+, 20.55%). Elemental analysis
of C21H13Cl2N7O3S2: C, 46.16; H, 2.40; N, 17.94. Found: C, 46.00; H, 2.56; N, 18.23.

Ethyl (E)-4-((3-(4,6-Dioxo-2,8-Dithioxo-1,2,3,4,5,6,7,8,9,10-Decahydropyrido[2,3-D:6,5-D’]Dipyrimidin-5-Yl)-
4-Hydroxyphenyl)Diazenyl)Benzoate (IIIf)
Yield (82%), yellowish white crystals, m.p. > 300°C; IR (cm−1): 1686 (C=O), 3229(NH), 3451(OH); 1H NMR δ, 1.35 (t,
J = 6.8 Hz, 3H, CH3), 3.36 (q, J = 6.8 Hz, 2H, CH2), 5.31 (s, 1H, pyridine), 6.63–6.89 (m, 3H, H-3\, 2NH), 7.65–7.68 (m,
2H, H-4\, 6\), 7.88 (d, J = 8.4 Hz, 2H, H-3\, 5\), 8.11 (d, J = 8.4 Hz, 2H, H-2\, 6\), 11.90–11.91 (s, 3H, 3NH), 12.06 (s, 1H,
OH); 13C NMR δ, 14.6, 29.7, 61.4, 90.7, 115.8, 121.6, 122.6, 123.2, 125.7, 130.8, 131.0, 145.5, 153.3, 155.3, 160.5,
163.1, 165.7, 172.9; EIMS (m/z) 549 (M+, 18.52%). Elemental analysis of C24H19N7O5S2: C, 52.45; H, 3.48; N, 17.84.
Found: C, 52.55; H, 3.52; N, 18.01.

(E)-5-(5-((4-Bromophenyl) Diazenyl)-2-Hydroxyphenyl)-2.8-Dithioxo-2, 3, 5,8,9,10-Hexahydropyrido [2,3-D:6,5-D’]
Dipyrimidine-4,6(1H,7H)-Dione (IIIg)
Yield (75%), yellowish white crystals, m.p. > 300°C; IR (cm−1): 1657 (C=O), 3185(NH), 3413(OH); 1H NMR δ, 5.30 (s,
1H, pyridine), 6.63–6.68 (m, 4H, H-3\, 4\, 2NH), 7.62–7.65 (m, 3H, H-6\, 3\, 5\), 7.73 (d, 1H, J = 8 Hz, H-2\, H-6), 11.92–
12.01 (m, 3H, 3NH), 12.06 (s, 1H, OH); 13C NMR δ 29.7, 78.6, 115.7, 121.2, 123.8, 124.4, 125.6, 126.8, 132.8, 145.2,
151.5, 153.3, 159.8, 163.1, 175.0; EIMS (m/z) 556 (M+, 15.28%). Elemental analysis of C21H14BrN7O3S2: C, 45.53; H,
2.54; N, 17.62. Found: C, 45.33; H, 2.50; N, 17.60.

Ethyl (E)-4-((5-(4,6-Dioxo-2,8-Dithioxo-1,2,3,4,5,6,7,8,9,10-Decahydropyrido[2,3-D:6,5-D’]Dipyrimidin-5-Yl)-
2,4-Dimethoxyphenyl)Diazenyl)Benzoate (IIIh)
Yield (70%), yellowish white crystals, m.p. > 300°C; IR (cm−1): 1645 (C=O), 3425(NH),; 1H NMR δ 1.33 (t, J = 7.2 Hz,
3H, CH3), 3.73 (s, 3H, OCH3), 3.74 (s, 3H, OCH3), 4.33 (q, J = 7.2 Hz, 2H, CH2), 4.75 (s, 1H, pyridine CH), 6.42–6.56
(m, 3H, H-3\, 2NH), 7.53 (s, 1H, H-6\), 8.12 (d, J = 8.4 Hz, 2H, H-3\, 5\), 8.13 (d, J = 8.4 Hz, 2H, H-2\, 6\), 10.37 (s, 1H,
NH), 11.68 (s, 2H, 2NH); 13C NMR δ, 14.6, 19.0, 56.4, 56.5, 61.3, 85.7, 101.2, 115.6, 122.4, 125.2, 130.6, 130.9, 153.2,
156.6, 165.1, 167.3, 168.7, 174.9; EIMS (m/z) 593 (M+, 8.69%). Elemental analysis of C26H23N7O6S2: C, 52.61; H, 3.91;
N, 16.52. Found: C, 52.51; H, 4.03; N, 16.43.

(E)-5-(5-((4-(Benzo[D]thiazol-2-Yl)Phenyl)Diazenyl)-2-Hydroxyphenyl)-2,8-Dithioxo-2,3,5,8,9,10-Hexahydropyrido
[2,3-D:6,5-D’]Dipyrimidine-4,6(1H,7H)-Dione (IIIi)
Yield (93%), whitish yellow crystals, m.p. > 300°C; IR (cm−1): 1172(C=S), 1651 (C=O), 3181(NH), 3419 (OH);
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1H NMR, δ 5.35 (s, 1H, pyridine CH), 6.89–7.48 (m, 6H, H-3\,4\,3\, 4\, 2NH), 7.53–7.77 (m, 3H, H-6\, 3\,5\), 7.69 (d, 1H,
J = 8 Hz, H-2\, 6\), 8.13–8.23 (m, 2H, H-2,6\), 11.92–12.01 (m, 3H, 3NH), 12.06 (s, 1H, OH); 13C NMR δ 29.7, 90.8,
115.8, 121.3, 122.8, 123.4, 123.8, 125.8, 126.21, 127.2, 134.3, 135.1, 145.5, 153.3, 154.0, 154.0, 160.1, 166.6, 166.8,
173.0; EIMS (m/z) 610 (M+, 6.46%). Elemental analysis of C28H18N8O3S3: C, 55.07; H, 2.97; N, 18.35. Found: C, 55.38;
H, 3.12; N, 18.74.

Pharmacological Activity Studies
All utilized procedures in the pharmacological evaluation were carried out as described earlier. Colorimetric assay of
COXs,20 anti-inflammatory activity (in-vivo),40 ulcerogenic liability52 were cited in the Supplementary Materials.

Molecular Docking
The virtual docking study was performed by utilizing the x-ray crystal structure of COX-2 enzyme (pdb code: 1CX2).28

Ligand and protein preparation (3D protonation for the amino acid side chain of enzyme, addition of hydrogen atoms,
and deletion of all water of crystallization away from the active site) was performed using MOE software (version 2010,
Chemical Computing Group Inc., QC, Canada). The pyridopyrimidinones compounds were sketched in their three-
dimensional (3D) structures by Chemo-Draw, protonated, and subjected to energy minimization. Molecular docking of
these compounds has been applied, amino acid interactions were examined, and the hydrogen bond lengths were
recorded.

Statistical Analysis
The significant difference for groups was measured utilizing one-way ANOVA followed by Dunnett’s test. Significant
differences are at *P >0.05, **P > 0.01 and ***P >0.001, and GraphPad Prism software (version 5) was used for
statistical tests (version 5).
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