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Bacterial identification at subspecies level is critical in clinical care and epidemiological 
investigations due to the different epidemic potentialities of a species. For this purpose, 
matrix-assisted laser desorption ionization – time-of-flight mass spectrometry (MALDI-TOF 
MS) has been proposed in place of molecular genotyping, but with some result 
discrepancies. The aim of this work is to methodically mine the expression diversities of 
MALDI-TOF bacterial species spectra and their possible latent organization in order to 
evaluate their subspecies specific expression. Peak expression diversities of MALDI-TOF 
spectra coming from routine identifications have been analyzed using Hill numbers, 
rarefaction curves, and peak clustering. Some size effect critical thresholds were estimated 
using change point analyses. We included 167,528 spectra corresponding to 405 species. 
Species spectra diversities have a broad size-dependent variability, which may be influenced 
by the kind of sampling. Peak organization is characterized by the presence of a main 
cluster made of the most frequently co-occurring peaks and around 20 secondary clusters 
grouping less frequently co-occurring peaks. The 35 most represented species in our 
sample are distributed in two groups depending on the focusing of their protein synthesis 
activity on the main cluster or not. Our results may advocate some analogy with genomics 
studies of bacteria, with a main species-related cluster of co-occurring peaks and several 
secondary clusters, which may host peaks able to discriminate bacterial subgroups. This 
systematic study of the expression diversities of MALDI-TOF spectra shows that latent 
organization of co-occurring peaks supports subspecies discrimination and may explain 
why studies on MALDI-TOF-based typing exhibit some result divergences.
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INTRODUCTION

Bacterial identification at species level nowadays becomes less 
and less adequate for clinical care and epidemiological investigation 
(Herd and Kocks, 2001; Faruque et  al., 2004; Freitas et  al., 
2016). Actually, a same species is a heterogeneous population 
gathering a diversity of strains that have different epidemic and 
pathogenic capabilities (Fournier et  al., 2007; Sintchenko et  al., 
2007; Sabat et  al., 2013; Sintchenko and Holmes, 2015). Strain 
characterization allows to find the origin of a bacterial clone, 
to follow its temporal and spatial spread and also to recognize 
highly virulent or/and resistant strains leading to change our 
diagnostic, therapeutic approach and outbreak management.

Knowledge about the strain composition of a bacterial species 
is granted by the study of genomes, sequencing partially or totally 
the DNA. Many methods have been used to tackle the diversity 
of a bacterial species: ribotyping (Bouchet et  al., 2008), pulsed-
field gel electrophoresis (PFGE; Heinzen et  al., 1990), multilocus 
sequence typing (MLST; Maiden et  al., 1998), polymerase chain 
reaction (PCR) with primers (Frazier et  al., 1990), or whole 
genome sequencing (WGS; Kwong et  al., 2015). But all these 
methods have a significant human and financial cost, restricting 
their systematic use. It is the reason why many studies tried to 
replace genotyping by the use of matrix-assisted laser desorption/
ionization – time-of-flight mass spectrometry (MALDI-TOF MS) 
during epidemiological studies (Griffin et al., 2012; Berrazeg et al., 
2013; Christner et al., 2014; Khennouchi et al., 2015) for deepening 
the bacterial identification at the strain level (Karas et  al., 1985; 
Seng et  al., 2009). The composition of MALDI-TOF spectra has 
been studied in the past and it has been demonstrated that peaks 
constituting spectra match with ribosomal proteins, DNA-binding 
proteins, cold shock proteins, and metabolites (Holland et  al., 
1999; Fenselau and Demirev, 2001; Ryzhov and Fenselau, 2001). 
But, as previous studies showed some discrepancies in MALDI-TOF 
MS capacity for discriminating subgroups within bacteria species, 
the ability of this technique for sub-species typing has been 
questioned (Sauget et al., 2017) and reviewed (Spinali et al., 2015).

For understanding the possible reasons of these discrepancies, 
and in the search for spectra compositions supporting species 
subgrouping, we  have methodically analyzed, in a data-mining 
study, 4  years of routine standardized bacterial identifications 
extracted from our MALDI-TOF MS datawarehouse, and 
characterized by same growing conditions and sample 
preparations. The aim of this work is to analyze the expression 
diversities of spectra coming from 405 bacterial species. 
We  successively present an overall analysis of spectra richness 
and the conditions affecting its variability, then a diversity 
study of peak-co-occurring in search of latent organization 
rules between species-related and sub-species-related peaks.

MATERIALS AND METHODS

Raw Material
The Institut Hospitalo-Universitaire Mediterranée Infection 
(IHUMI) owns an asset of more than 4 millions of MALDI-TOF 
MS spectra produced since 2011, including 900,000 spectra of 

routine bacterial identifications for the four university hospitals 
of the Assistance Publique – Hôpitaux de Marseille and for the 
Hôpital d’instruction des armées Laveran in Marseille. The patient 
recruitment of these hospitals is mainly regional, from the South-
East of France. All other spectra, which come from research 
activities and are related to microbiome studies, parasites, insects, 
environment, and diverse secretions, were excluded from this study.

All routine bacterial identifications are coming only from 
cultures growing on blood agar and chocolate agar, depending 
on the species. The culture is systematically stopped during the 
middle of the log phase, after a time lapse varying from 4  h 
to 10  days depending on the species growing speed. In this way, 
as bacteria are in rich and standardized medium, their biosynthesis 
is mainly used for the production of ribosomes and ribosome 
affiliated proteins, with a minimum of exogenous proteins and 
metabolic enzymes (Kim et  al., 2020), and avoid condition-
dependent protein abundance (Schmidt et  al., 2016). As the 
spectra are expected to allow species identification by comparison 
against a reference database, cultures must be  as standardized 
and as close as possible to the conditions used for the reference 
spectra. All spectra were done using three Bruker Microflex mass 
spectrometers following the standardized protocol provided by 
Bruker Daltonics. Single colony or sediment is directly applied 
on two distinct spots on ground steel targets, air dried, overlaid 
with 1  μl of a saturated α-cyano-4-hydroxycinnamic acid matrix 
solution in 50% of acetonitrile and 2.5% of trifluoroacetic acid, 
and air dried for 5 min. Spectra acquisitions are controlled using 
FlexControl software. Spectra were acquired using the spectrometer 
default settings (positive linear mode within the m/z range of 
2–20  kDa, laser frequency 60  Hz; ion source 1 voltage, 20  kV; 
ion source 2 voltage, 16.7  kV; and lens voltage, 7.0  kV), and 
using 240 laser shots at 60  Hz in 40-shot steps from different 
locations. The Bruker Bacterial Test Standard (BTS; an extract 
of Escherichia coli DH5 alpha with two additional proteins, from 
Bruker Daltonics, Germany) for calibration was systematically 
used according to Bruker’s instructions. For each plate, BTS was 
used as a positive control and a non-inoculated-matrix solution 
as a negative control. Bacterial species identification is given 
using Biotyper software with an identification at species level 
when log (score) is ≥2.0. All MALDI-TOF MS spectra produced 
by the automatons were loaded in a data warehouse, along with 
the corresponding biological sample data (anonymized patient 
demographics and stay characteristics, sample characterization, 
requesting unit, species identification, and antibiogram).

Inclusion Criteria
This study has been allowed by the French Data Protection 
Authority (CNIL decision DR-2018-177), and declared on 
ClinicalTrials.gov Protocol Registration and Result System 
(id: NCT03626987). We  included in our study all spectra 
coming from routine clinical bacterial identification given at 
species level after bacterial culture, retaining samples with only 
one species found, and produced between February, 1st 2014 
(beginning of the availability of associated biological data) and 
November, 30th 2018 (endpoint date). We excluded identifications 
producing more than two spectra for a same isolate, which 
could suggest some identification issues. A sample will then 
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be  represented by at most two spectra in this study. We  also 
excluded bad quality spectra possibly due to anomalies of the 
amount of pellet with the method suggested by Palarea-Albaladejo 
et  al. (2018). For computer processing capability reasons, the 
number of spectra for a species was limited to a maximum 
of 15,000, the representativeness being controlled by a random 
sampling over the study period.

Spectra Processing
All selected spectra were processed for building a spectra peak 
database, using a homemade program written in R software 
(R core team, 2018) with MALDIquant package (Gibb and 
Strimmer, 2012). During the whole process, we  used signal to 
noise ratio (SNR) = 2 as peak detection threshold and 300 ppm 
as peak deviation tolerance (corresponding to the built-in 
Microflex tolerance). We  choose SNR  =  2 for building an 
exhaustive peak inventory, giving the possibility of later increasing 
the selectivity with a more stringent SNR for some analyses.

During the first process step, the spectra are normalized 
as recommended by Gibb and Strimmer (2012): after intensity 
transformation (square root method), signal smoothing (moving 
average method, half-window size  =  12), baseline removal 
(Statistics-sensitive Non-linear Iterative Peak-clipping algorithm, 
100 iterations), spectra were normalized using total ion current 
method. All parameters of this step were chosen in accordance 
with the sensitivity study published by Christner et  al. (2014).

During the second step, species spectra were successively 
aligned using cubic warping functions for correcting the machine 
drift and then for inter-spectra alignment. The drift-correcting 
warping function was determined for each target plate by using 
the eight reference peaks (3637.8, 5096.8, 5381.4, 6255.4, 7274.5, 
10300.1, 13683.2, and 16952.3  Da) of the BTS required for 
each target plate. Spectra without plate control or with reference 
peaks out of the built-in Microflex tolerance window were 
dropped. The inter-spectra alignment warping function was 
determined for each species on all its spectra using peaks 
having a minimum occurrence frequency of 50%.

During the third step, we  built two peak matrices: an 
intensity matrix and a SNR matrix. Along with these matrices, 
a table of descriptive statistics (including the numbering, mean, 
variance, and percentiles with a resolution of 5%) built for 
each peak present in the species spectra was stored in a 
dedicated database.

Data Mining and Diversity Studies
Diversity analysis and data mining were done using R with 
Vegan (Oksanen et  al., 2019), iNEXT (Hsieh et  al., 2016), and 
dynamicTreeCut (Langfelder et al., 2008) packages. As mentioned 
above, we have raised the SNR threshold to three during these 
analyses for increasing the discriminating power of the analyses.

Diversity studies were based on Hill numbers (richness, 
exponential of Shannon entropy, and inverse of Simpson 
concentration), Chao’s richness estimator, and rarefaction curves 
(Jost, 2006; Chao et  al., 2014).

Peak co-occurring study was done using cluster analysis 
(principal component analysis, K-means, and linear discriminant 
analysis). For each species, we  computed the distance between 
two peaks as 1 minus the relative frequency of the peak 
co-occurring. We  used the resulting distance matrix for an 
ascending hierarchical cluster analysis (weighted pair group 
method with arithmetic mean, WPGMA, for avoiding the 
absorption of little groups by the predominant ones) in search 
of species related groups of frequent co-occurring peaks. For 
detecting clusters, we  used the dynamic hybrid cut method, 
which analyses the shape of the dendrogram branches in place 
of a static tree cut at a specific height (Langfelder et  al., 2008). 
The description of this algorithm can be  found at the following 
link: https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/
BranchCutting/. We  used it with the following parameters: 
minimal cluster size of three peaks, cut height at 0.99, core 
scatter at 0.99, minimal gap of 0.007.

Change point of data series were found using Bai and Perron’s 
method for linear regression models (Bai and Perron, 1998).

The overall process flow is described in Figure  1.

FIGURE 1 | The overall spectra process flow.
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FIGURE 2 | The flow diagram of the study.

RESULTS

Inclusions
During our study period, 2,49,075 bacterial identifications were 
performed at the IHUMI (2,13,436 clinical samples, 83,555 
patients, and 1,15,614 stays), corresponding to 6,78,295 
MALDI-TOF MS spectra. Only 1,67,528 spectra and 405 species 
met the inclusion criteria. The inclusion flow chart of this 
study is presented in Figure  2.

The double alignment process quality was verified using 
the Es. coli spectra set and the 6 species peaks known to 
be  systematically present (proteins RL29 [M  +  2H]2+, RS32 
[M  +  H]+, RS34 [M  +  H]+, RS33 meth [M  +  H]+, RL29 

[M  +  H]+, and RS19 [M  +  H]+), and the deviations ranged 
from 16 to 220  ppm, within the 300  ppm tolerance limits.

Species Richness
In average, 101.02 peaks/spectrum (SD  =  24.21, median  =  98, 
min  =  35, max  =  358) were found. The minimum (N  =  35) was 
for a spectrum of Enterococcus faecalis and the maximum (N = 358) 
for a spectrum of Klebsiella oxytoca (Figure  3). Indeed, 96.8% 
(N = 1,62,203) of spectra had between 50 and 150 detected peaks.

In the following, we  will call “panspectrome” the set of all 
MALDI-TOF MS peaks retrieved for a bacterial species.

Staphylococcus epidermidis presented the largest panspectrome 
(2,724 peaks retrieved for this species with SNR  ≥  2 and 1,788 
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peaks with SNR  ≥  3). Inversely, Bordetella petrii had the smallest 
panspectrome (69 peaks with SNR ≥ 2 and 55 peaks with SNR ≥ 3; 
Supplementary Table S1). The distribution of the number of 
species for each panspectrome size is reported in Figure  4.

The panspectrome richness was conditioned by the number 
of spectra by species (Figure  5), which is itself function of the 
number of clinical cases (Supplementary Table S1). For example, 
Enterobacter cloacae gave a panspectrome richness of 2,267 peaks 
but for 10,533 spectra, while Acinetobacter baumannii gave a 
panspectrome of no more than 1,144 peaks for only 695 spectra. 
Despite the apparent important constraint of the sample size, 
the analysis of the accumulation curves using Chao’s extrapolation 
method (Chao et al., 2014) showed that a median of 365 spectra 
(first Qu. = 272 and third Qu. = 592) allows a sample coverage 
of 99%. This means that the acquisition cost of 99% of the 
panspectrome for 75% of the species is around 600 spectra.

Differential studies of Hill numbers and accumulation curves 
showed also that the richness of a same bacterial species varies 
with the kind of sampling. For example (Figure 6), En. faecalis 
showed a higher diversity for strains from blood cultures 
(Shannon index of 344.31 and Simpson diversity of 207.58) 
than from urine (Shannon index of 256.04 and Simpson diversity 
of 170.31; Supplementary Table S2).

Peak Co-occurring Study
Co-occurring peak dendrograms are characterized by the presence 
of a main cluster of the most frequently co-occurring peaks, 
with several small secondary clusters, which gather less frequently 

associated peaks, and a large number of isolated peaks (Figure 7). 
We  used the dynamic hybrid cut method for identifying the 
clusters, then their cores, which are the tip and most tightly 
connected peaks of each cluster (Langfelder et  al., 2008).

From the 229 species having at least 10 spectra, we  found 
an average of 25.48 clusters for each species (SD  =  7.98, 
median  =  25, first Qu.  =  19, and third Qu.  =  31). The average 
size of main clusters is 49.98 peaks (SD  =  15.96, median  =  49, 
first Qu.  =  39, and third Qu.  =  59), while their cores are 
made of an average of 7.52 peaks.

There is a link between the sizes of the panspectrome, the 
main cluster and its core (Figure  8). A structural change study 
of the relation between the panspectrome and the species sample 
sizes using Bai and Perron’s method showed a change point 
of the curve at 651 spectra, suggesting that approximatively 
this number of spectra is required for a minimal species spectrome 
covering (Figure 5). Hence, clusters of only 35 bacterial species, 
corresponding to sample sizes over 600 spectra, were studied.

A database describing the cluster compositions of the 229 
species (5,836 clusters) is available at the address https://www.
mediterranee-infection.com/acces-ressources/base-de-donnees/.

The following of this study will focus only on these 35 
best represented bacterial species.

Main Clusters
For all species, main clusters represent an average of only 5.80% 
of their panspectrome (SD  =  1.71%, median  =  5.68%, first 
Qu.  =  4.55%, and third Qu.  =  6.77%). The distribution of the 

FIGURE 3 | Distribution of the number of detected MALDI-TOF MS peaks by spectrum for SNR ≥ 2. Extreme values: aEnterococcus faecalis with 35 peaks. 
bPseudomonas aeruginosa with 40 peaks. cStaphylococcus pasteuri with 345 peaks. dStaphylococcus epidermidis with 357 peaks. eKlebsiella oxytoca with 358 peaks.
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FIGURE 5 | Spectrome size related to the sample size for the 405 bacterial species.

FIGURE 4 | Distribution of the number of species for each panspectrome size for the 405 studied bacterial species.
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FIGURE 6 | Predictive accumulation curves for En. faecalis according to the kind of samples: urine, blood, cardiac, or other.

FIGURE 7 | Example of dendrogram built from the MS peaks co-occurrence for Streptococcus constellatus. Its core spectrome of nine peaks captures 24% of 
main cluster ion current.
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FIGURE 8 | Correlogram of cluster characteristics (mainClusRelSize: relative size of the main cluster; NbClusters: number of clusters; clustersSize: number of 
peaks included in clusters; clusSum: ion current sum of peaks included in clusters; mainCoreFreqRan: frequency range between the most and least frequent core 
peak; mainClusFreqRan: frequency range between the most and least frequent main cluster peak; mainClusSum: ion current sum of main cluster peaks; 
mainCoreSum: ion current sum of core peaks; mainClusSize: number of main cluster peaks; mainCoreSize: number of core peaks; panspectromeSize: number of 
distinct species peaks; SampleSize: number of included spectra). Orientation of the ellipse depends on the correlation sign, shape and color depend on the 
correlation value (flat shape and intense color with increasing value).

number of peaks in main clusters is asymmetric, with a mean of 
75.06 peaks (median  =  73, first Qu.  =  67, and third Qu.  =  82; 
Figure  9). Staphylococcus aureus had the largest main cluster (110 
peaks) and inversely Corynebacterium striatum the smallest (51 peaks).

Most of main cluster peaks have a frequency over 50% 
(Supplementary Figure S3). They represent an average of 
51.6%  ±  10.0% of clusters’ total ion current (median  =  52.2%, 
first Qu. = 44.2%, and third Qu. = 57.9%). For example, Streptococcus 
constellatus has a main cluster of 70 peaks with a frequency 
varying between 13.6 and 97.9%, i.e., a frequency variation of 
84.2% between the most and least frequent peak (Figure  7). Its 
main cluster captures 42% of clusters’ total ion current.

The main cluster cores of these 35 species were made of 
peaks with an occurrence frequency over 95%, and an average 
size of 9.91 peaks (SD = 0.95, median = 10 peaks, first Qu. = 9, 
and third Qu.  =  11; Figure  10).

Using a principal component analysis, we analyzed the relations 
between the relative sizes of the main cluster and its core, the 
proportion of ions captured and the peak relative frequency 
ranges for the 35 most represented species. The representation 
of this analysis on the two first dimensions is presented in 
Figure  11. K-means was used for finding the composition of 
species groups and a linear discriminant analysis (LDA) for 
confirming the grouping accuracy. The main axis (33.6% of 

the initial total variance) contrasts the proportion of ions captured 
by main clusters and their relative sizes, and the second axis 
(22.7% of the initial total variance) mainly the opposition between 
core and main cluster characteristics. The first group of bacterial 
species has its main clusters made of few proteins that concentrate 
a high total of ion current, while the second group has its 
main clusters made of a larger number of proteins associated 
with a broad distribution of the ion current over the protein 
peaks, showing a wider protein expression. These groups, identified 
by the k-means analysis, were confirmed by the LDA, with an 
accuracy of 0.97. Actually, a large main cluster do not imply 
a large core spectrome (Figure  11).

We have checked the presence of the six species peaks 
known to be  systematically present in Es. coli, which were all 
retrieved in the main cluster of this species (RS32 [M  +  H]+, 
RS34 [M  +  H]+, and RS33 meth [M  +  H]+).

Secondary Clusters
The number of secondary clusters varied slightly between our 
35 best represented bacterial species. There is in average 21.14 
secondary clusters (SD  =  4.78, median  =  21, first Qu.  =  18, 
and third Qu. = 25). Most of these peaks presented a relatively 
low occurrence frequency with a median of 20% (first Qu. = 11% 
and third Qu. = 34%: Supplementary Figure S4). These clusters 
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FIGURE 9 | Distribution of the number of peaks included in the main cluster (main cluster size) for 35 species with a sample size over 600 spectra.

FIGURE 10 | Distribution of the number of peaks belonging to the main cluster core (core size) for the top 35 species.
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captured an average of 48.4% of clusters’ total ion current 
(SD  =  10%, first Qu.  =  42.1%, and third Qu.  =  55.8%). A 
Bai and Perron’s structural analysis of the distribution of number 
of clusters according to the sample sizes showed that 1,500 
species spectra allow an overall convergence to an average of 
20 secondary clusters for a bacterial species. This means that 
the acquisition cost of the secondary clusters of a panspectrome 
is around 1,500 spectra.

DISCUSSION

MALDI-TOF MS protein peaks are routinely used to identify 
bacteria at species level. The first way to do that was based 
on the retrieval of MS peaks corresponding to previously 
identified species characteristic proteins (Demirev et al., 1999). 
However, due to the difficulty to build a peak reference 
database and the lack of a constant specific peak expression, 
it has been dropped for an alternative method based on 
pattern matching (Freiwald and Sauer, 2009). This last method 
relies on the fact that spectra coming from a same species 

are similar, even if we  do not know their protein peak 
composition. Then, like a fingerprinting, the MS spectrum 
of candidate bacteria is compared against a database gathering 
reference species spectra. The best similarity score (with a 
minimal threshold) gives the species identity. Our results 
show that even our 35 best represented species have no peak 
present in every spectrum, even if each of these species have 
a little set of peak presents in near 100% of them. This lack 
of species-specific peak constant expression may explain why 
the identification based on protein biomarkers is difficult in 
practice and why the similarity-based method is a more 
reliable and reproducible method, the absence of some peaks 
having few consequences on the identification. As main cluster 
peaks are the most frequently co-occurring species peaks, 
we  may think that they cover the species peaks used in 
pattern matching.

Beside these species-specific peaks, the analysis of spectra 
showed the existence of secondary clusters made of frequently 
co-occuring peaks. This observation is in accordance with the 
possibility to do typing at an infra-species level, in the search 
for some subspecies specific peaks. Some examples exist for 

FIGURE 11 | Principal Component Analysis (PCA) of the top 35 bacterial species with the composition of the two species groups identified by k-means 
(mainCoreRelInt: proportion of ions captured by the core; mainClusFreqRan: frequency range between the most and least frequent main cluster peak; 
mainClusRelInt: proportion of ions captured by the main cluster; mainClusRelSize: relative size of the main cluster; clustersRelSize: relative size of clusters; 
mainCoreFreqRan: frequency range between the most and least frequent core peak; mainCoreRelSize: relative size of the core).
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Es. coli (Matsumura et  al., 2014; Novais et  al., 2014), 
Enterococcus faecium (Griffin et al., 2012), Haemophilus influenzae 
(Månsson et  al., 2015), or S. aureus (Josten et  al., 2013; Ueda 
et  al., 2015; Sauget et  al., 2016). However, some other study 
results led to different conclusions on the ability of MALDI-TOF 
MS to discriminate bacterial subgroups. Sousa et  al. (2015) 
did not result in the discrimination between various ST of 
A. baumannii, even in using chemometric methods. Our results 
suggest that sub-species typing must rely on the finding of 
clusters of co-occurring peaks and not of isolated peaks. We also 
showed that the sample size has an impact on the capability 
to identify secondary clusters, and that a minimum of about 
600 spectra may be  needed.

The spectra richness we  have found, with an average of 
101.02 peaks/spectrum is congruent with the known level of 
100 peaks (Spinali et  al., 2015). However, we  have found more 
possible species-specific peaks (mean of 75.06 peaks) than the 
average of 54 peaks previously found (Spinali et  al., 2015). 
This last discrepancy may be  explained by the importance of 
our sample sizes (known as influencing peak diversity).

Using the peak statistic calculation tool included in the 
ClinProTools software directly on 51 strains, Nakamura et  al. 
(2015) identified two protein peaks (7,650 and 7,707 Da) having 
the capability to distinguish Es. coli B2-ST131 from other ST 
clonal groups. We  found these same co-occuring peaks in our 
spectra but with a variation of about 5  Da (respectively 7655.0 
and 7702.5 Da) in 4,348 spectra (30.1%). This 600 ppm variability 
between the two studies can be  explained by the 300  ppm 
tolerance during spectra acquisition, the spectra analysis method 
and the number of spectra included. In our study, we  have 
tried to control a part of the well-known MALDI-TOF 
reproducibility problems by following workflow of Gibb and 
Strimmer (2012), and supplementing it with an additional target 
plate alignment step.

The principal component analysis of our 35 best represented 
species suggests that these species are distributed in two 
groups. These groups cannot be  explained by the growing 
conditions because species growing on the two media are 
present in each group. The first group is characterized by 
a protein synthesis activity during the log phase that is 
concentrated on a small list of structural proteins, and the 
second group has a broader synthesis activity and a larger 
protein diversity. This last group gathers species like Streptococci 
that are the most difficult to identify by their spectra (Marín 
et al., 2017). We hypothesize that the more important expression 
of secondary clusters characterizing this group generates 
regular but not systematic patterns hindering MALDI-TOF 
species identification. In this case, a better identification 
would be possible with a focusing of the identification process 
on main cluster peaks only. A further work is required for 
exploring this unexpected observation.

This study describes some characteristics of species 
panspectromes, which is only a part of their panproteomes, 
as the acquisition of the MALDI-TOF spectra is done within 
a range from 2 to 20  kDa. MALDI-TOF MS spectra do not 
expose the protein expression of a strain in an exhaustive 
and global way. Their primary objective is only to display a 

standardized composition including at least peaks allowing 
the identification of the species. Medium and cell age are 
known to influence subspecies differentiation capabilities of 
MALDI-TOF MS (Ruelle et  al., 2004), but perhaps differently 
according to species, as this influence has been reported 
(Freiwald and Sauer, 2009) or not (Seibold et  al., 2010) by 
different works. However, the spectra we have used are coming 
from routine identification, with highly standardized protocol, 
and produced in such a way that a species is always coming 
from the same medium (optimal growing medium among 
two possibilities) and analyzed during the beginning of its 
log phase. We have also tried to control the automata-dependant 
drift with a target plate correction of spectra. Proteins carrying 
information with clinical or epidemiological impact may 
be  located outside MALDI-TOF range and out of the scope 
of this study. MALDI-TOF MS Microflex®, as used in routine 
identification, is optimal between 3 and 15  kDa, raising the 
problem of the relevance of protein peaks detected outside 
this range. Precedent works show that most of discriminations 
at sub-species level are done with protein peaks not exceeding 
10  kDa (Nakamura et  al., 2015; Li et  al., 2018), and more 
precisely between 4 and 10  kDa for Sousa et  al. (2015) or 
between 2 and 9  kDa for Ueda et  al. (2015). In addition, a 
peak is not always equivalent to a protein: a same protein 
peak may be  due to the ionization of several proteins with 
the same mass to charge ratio and conversely, one protein 
may correspond to several peaks on a spectrum depending 
on its electrical charge.

Knowledge of the diversity of protein peaks shows a broad 
size dependent variability. The uncommon size of our 
MALDI-TOF spectra database allowed us to mine the 
composition of routine identification spectra from several species, 
and we  have published the cluster composition of 229 species 
(5,836 clusters) at the address https://www.mediterranee-infection.
com/acces-ressources/base-de-donnees/. Our results may 
advocate some analogy with genomics studies of bacteria, which 
showed that species characterization is brought by a core 
genome and strain characterization by the dispensable genes 
(Georgiades and Raoult, 2011; Caputo et  al., 2019). For all 
species we  have found that their panspectromes exhibit a 
structuring made of a main cluster of co-occurring peaks, 
which may be  species specific, associated with several (around 
20 by species) inconstant secondary clusters, which may host 
peaks able to discriminate bacterial subgroups. This diversity 
analysis was not intended to be  used routinely, but its aim 
was to acquire findings valuable for the improving of routine 
processes. Current routine identification is based on spectra 
matching against reference databases and not on species-specific 
peak constant expression, which we  have shown the 
non-existence. However, even this pattern matching has some 
difficulties with several species (Florio et  al., 2018), including 
Streptococci. As suggested by our results, focusing pattern 
matching on main cluster or main cluster core peaks, excluding 
peaks from secondary clusters, would improve the reliability 
of species identifications. General spectra organization on clusters 
of co-occurring peaks lets suppose that subgroup typing or 
investigation of associations with clinical or epidemiological 
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characteristics must rely on the finding of clusters of co-occurring 
peaks and not of isolated peaks. This would allow faster diagnosis, 
patient-oriented treatment and public health investigations.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be  found at: https://www.mediterranee-infection.
com/acces-ressources/donnees-pour-articles/maldi-tof-raw-data- 
spectrum-results/.

AUTHOR CONTRIBUTIONS

HC performed project design. AG-G, GT, and HC performed 
research, analysis, and paper drafting. DR performed critical 

revision for important intellectual content. All authors contributed 
to the article and approved the submitted version.

FUNDING

This study has been supported by a grant from French Ministry 
of Health for the Hospital Clinical Research Program 
“SpectraSurv: Identification of Protein Markers of Epidemiological 
and Clinical Interest by MALDI-TOF” (PHRC 2016_098) and 
from the OpenHealth Institute.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01931/
full#supplementary-material.

 

REFERENCES

Bai, J., and Perron, P. (1998). Estimating and testing linear models with multiple 
structural changes. Econometrica 66, 47–78. doi: 10.2307/2998540

Berrazeg, M., Diene, S. M., Drissi, M., Kempf, M., Richet, H., Landraud, L., 
et al. (2013). Biotyping of multidrug-resistant Klebsiella pneumoniae clinical 
isolates from France and Algeria using MALDI-TOF MS. PLoS One 8:e61428. 
doi: 10.1371/journal.pone.0061428

Bouchet, V., Huot, H., and Goldstein, R. (2008). Molecular genetic basis of 
ribotyping. Clin. Microbiol. Rev. 21, 262–273. doi: 10.1128/CMR.00026-07

Caputo, A., Fournier, P. E., and Raoult, D. (2019). Genome and pan-genome 
analysis to classify emerging bacteria. Biol. Direct 14:5. doi: 10.1186/
s13062-019-0234-0

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., 
et al. (2014). Rarefaction and extrapolation with hill numbers: a framework 
for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 
45–67. doi: 10.1890/13-0133.1

Christner, M., Trusch, M., Rohde, H., Kwiatkowski, M., Schlüter, H., Wolters, M., 
et al. (2014). Rapid MALDI-TOF mass spectrometry strain typing during 
a large outbreak of Shiga-toxigenic Escherichia coli. PLoS One 9:e101924. 
doi: 10.1371/journal.pone.0101924

Demirev, P. A., Ho, Y. P., Ryzhov, V., and Fenselau, C. (1999). Microorganism 
identification by mass spectrometry and protein database searches. Anal. 
Chem. 71, 2732–2738. doi: 10.1021/ac990165u

Faruque, S. M., Chowdhury, N., Kamruzzaman, M., Dziejman, M., Rahman, M. H., 
Sack, D. A., et al. (2004). Genetic diversity and virulence potential of 
environmental Vibrio cholerae population in a cholera-endemic area. Proc. 
Natl. Acad. Sci. U. S. A. 101, 2123–2128. doi: 10.1073/pnas.0308485100

Fenselau, C., and Demirev, P. A. (2001). Characterization of intact microorganisms 
by MALDI mass spectrometry. Mass Spectrom. Rev. 20, 157–171. doi: 10.1002/
mas.10004

Florio, W., Tavanti, A., Barnini, S., Ghelardi, E., and Lupetti, A. (2018). Recent 
advances and ongoing challenges in the diagnosis of microbial infections 
by MALDI-TOF mass spectrometry. Front. Microbiol. 9:1097. doi: 10.3389/
fmicb.2018.01097

Fournier, P. E., Drancourt, M., and Raoult, D. (2007). Bacterial genome sequencing 
and its use in infectious diseases. Lancet Infect. Dis. 7, 711–723. doi: 10.1016/
S1473-3099(07)70260-8

Frazier, M. E., Mallavia, L. P., Samuel, J. E., and Baca, O. G. (1990). DNA 
probes for the identification of Coxiella burnetii strains. Ann. N. Y. Acad. 
Sci. 590, 445–458. doi: 10.1111/j.1749-6632.1990.tb42253.x

Freitas, A. R., Tedim, A. P., Francia, M. V., Jensen, L. B., Novais, C., Peixe, L., 
et al. (2016). Multilevel population genetic analysis of VanA and VanB 

Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986–2012). 
J. Antimicrob. Chemother. 71, 3351–3366. doi: 10.1093/jac/dkw312

Freiwald, A., and Sauer, S. (2009). Phylogenetic classification and identification of 
bacteria by mass spectrometry. Nat. Protoc. 4, 732–742. doi: 10.1038/nprot.2009.37

Georgiades, K., and Raoult, D. (2011). Defining pathogenic bacterial species 
in the genomic era. Front. Microbiol. 1:151. doi: 10.3389/fmicb.2010.00151

Gibb, S., and Strimmer, K. (2012). MALDIquant: a versatile R package for the 
analysis of mass spectrometry data. Bioinformatics 28, 2270–2271. doi: 10.1093/
bioinformatics/bts447

Griffin, P. M., Price, G. R., Schooneveldt, J. M., Schlebusch, S., Tilse, M. H., 
Urbanski, T., et al. (2012). Use of matrix-assisted laser desorption ionization-
time of flight mass spectrometry to identify vancomycin-resistant enterococci 
and investigate the epidemiology of an outbreak. J. Clin. Microbiol. 50, 
2918–2931. doi: 10.1128/JCM.01000-12

Heinzen, R., Stiegler, G. L., Whiting, L. L., Schmitt, S. A., Mallavia, L. P., and 
Frazier, M. E. (1990). Use of pulsed field gel electrophoresis to differentiate 
Coxiella burnetii strains. Ann. N. Y. Acad. Sci. 590, 504–513. doi: 10.1111/
j.1749-6632.1990.tb42260.x

Herd, M., and Kocks, C. (2001). Gene fragments distinguishing an epidemic-
associated strain from a virulent prototype strain of Listeria monocytogenes 
belong to a distinct functional subset of genes and partially cross-hybridize 
with other Listeria species. Infect. Immun. 69, 3972–3979. doi: 10.1128/
IAI.69.6.3972-3979.2001

Holland, R. D., Duffy, C. R., Rafii, F., Sutherland, J. B., Heinze, T. M., and Holder, C. L. 
(1999). Identification of bacterial proteins observed in MALDI TOF mass spectra 
from whole cells. Anal. Chem. 71, 3226–3230. doi: 10.1021/ac990175v

Hsieh, T. C., Ma, K. H., and Chao, A. (2016). iNEXT: an R package for 
rarefaction and extrapolation of species diversity (Hill numbers). Methods 
Ecol. Evol. 7, 1451–1456. doi: 10.1111/2041-210X.12613

Jost, L. (2006). Entropy and diversity. Oikos 113, 363–375. doi: 10.1111/j. 
2006.0030-1299.14714.x

Josten, M., Reif, M., Szekat, C., Al-Sabti, N., Roemer, T., Sparbier, K., et al. 
(2013). Analysis of the matrix-assisted laser desorption ionization-time of 
flight mass spectrum of Staphylococcus aureus identifies mutations that allow 
differentiation of the main clonal lineages. J. Clin. Microbiol. 51, 1809–1817. 
doi: 10.1128/JCM.00518-13

Karas, M., Bachmann, D., and Hillenkamp, F. (1985). Influence of the wavelength 
in high-irradiance ultraviolet laser desorption mass spectrometry of organic 
molecules. Anal. Chem. 57, 2935–2939. doi: 10.1021/ac00291a042

Khennouchi, N. C., Loucif, L., Boutefnouchet, N., Allag, H., and Rolain, J. M. 
(2015). MALDI-TOF MS as a tool to detect a nosocomial outbreak of 
extended-spectrum-β-lactamase‐ and ArmA methyltransferase-producing 
Enterobacter cloacae clinical isolates in Algeria. Antimicrob. Agents Chemother. 
59, 6477–6483. doi: 10.1128/AAC.00615-15

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://www.mediterranee-infection.com/acces-ressources/donnees-pour-articles/maldi-tof-raw-data-spectrum-results/
https://www.mediterranee-infection.com/acces-ressources/donnees-pour-articles/maldi-tof-raw-data-spectrum-results/
https://www.mediterranee-infection.com/acces-ressources/donnees-pour-articles/maldi-tof-raw-data-spectrum-results/
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01931/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01931/full#supplementary-material
https://doi.org/10.2307/2998540
https://doi.org/10.1371/journal.pone.0061428
https://doi.org/10.1128/CMR.00026-07
https://doi.org/10.1186/s13062-019-0234-0
https://doi.org/10.1186/s13062-019-0234-0
https://doi.org/10.1890/13-0133.1
https://doi.org/10.1371/journal.pone.0101924
https://doi.org/10.1021/ac990165u
https://doi.org/10.1073/pnas.0308485100
https://doi.org/10.1002/mas.10004
https://doi.org/10.1002/mas.10004
https://doi.org/10.3389/fmicb.2018.01097
https://doi.org/10.3389/fmicb.2018.01097
https://doi.org/10.1016/S1473-3099(07)70260-8
https://doi.org/10.1016/S1473-3099(07)70260-8
https://doi.org/10.1111/j.1749-6632.1990.tb42253.x
https://doi.org/10.1093/jac/dkw312
https://doi.org/10.1038/nprot.2009.37
https://doi.org/10.3389/fmicb.2010.00151
https://doi.org/10.1093/bioinformatics/bts447
https://doi.org/10.1093/bioinformatics/bts447
https://doi.org/10.1128/JCM.01000-12
https://doi.org/10.1111/j.1749-6632.1990.tb42260.x
https://doi.org/10.1111/j.1749-6632.1990.tb42260.x
https://doi.org/10.1128/IAI.69.6.3972-3979.2001
https://doi.org/10.1128/IAI.69.6.3972-3979.2001
https://doi.org/10.1021/ac990175v
https://doi.org/10.1111/2041-210X.12613
https://doi.org/10.1111/j.2006.0030-1299.14714.x
https://doi.org/10.1111/j.2006.0030-1299.14714.x
https://doi.org/10.1128/JCM.00518-13
https://doi.org/10.1021/ac00291a042
https://doi.org/10.1128/AAC.00615-15


Giraud-Gatineau et al. MALDI-TOF MS and Expression Diversity

Frontiers in Microbiology | www.frontiersin.org 13 August 2020 | Volume 11 | Article 1931

Kim, J., Darlington, A., Salvador, M., Utrilla, J., and Jiménez, J. I. (2020). 
Trade-offs between gene expression, growth and phenotypic diversity in 
microbial populations. Curr. Opin. Biotechnol. 62, 29–37. doi: 10.1016/j.
copbio.2019.08.004

Kwong, J. C., McCallum, N., Sintchenko, V., and Howden, B. P. (2015). Whole 
genome sequencing in clinical and public health microbiology. Pathology 
47, 199–210. doi: 10.1097/PAT.0000000000000235

Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a 
hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 
(Oxford, England) 24, 719–720. doi: 10.1093/bioinformatics/btm563

Li, R., Xiao, D., Yang, J., Sun, S., Kaplan, S., Li, Z., et al. (2018). Identification 
and characterization of Clostridium difficile sequence type 37 genotype by 
matrix-assisted laser desorption ionization-time of flight mass spectrometry. 
J. Clin. Microbiol. 56, e01990–e01917. doi: 10.1128/JCM.01990-17

Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., 
et al. (1998). Multilocus sequence typing: a portable approach to the 
identification of clones within populations of pathogenic microorganisms. 
Proc. Natl. Acad. Sci. U. S. A. 95, 3140–3145. doi: 10.1073/pnas.95.6.3140

Månsson, V., Resman, F., Kostrzewa, M., Nilson, B., and Riesbeck, K. (2015). 
Identification of Haemophilus influenzae type b isolates by use of matrix-
assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. 
Microbiol. 53, 2215–2224. doi: 10.1128/JCM.00137-15

Marín, M., Cercenado, E., Sánchez-Carrillo, C., Ruiz, A., Gómez González, Á., 
Rodríguez-Sánchez, B., et al. (2017). Accurate differentiation of Streptococcus 
pneumoniae from other species within the Streptococcus mitis group by 
peak analysis using MALDI-TOF MS. Front. Microbiol. 8:698. doi: 10.3389/
fmicb.2017.00698

Matsumura, Y., Yamamoto, M., Nagao, M., Tanaka, M., Machida, K., Ito, Y., 
et al. (2014). Detection of extended-spectrum-β-lactamase-producing 
Escherichia coli ST131 and ST405 clonal groups by matrix-assisted laser 
desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 
52, 1034–1040. doi: 10.1128/JCM.03196-13

Nakamura, A., Komatsu, M., Kondo, A., Ohno, Y., Kohno, H., Nakamura, F., 
et al. (2015). Rapid detection of B2-ST131 clonal group of extended-spectrum 
β-lactamase-producing Escherichia coli by matrix-assisted laser desorption 
ionization-time-of-flight mass spectrometry: discovery of a peculiar amino 
acid substitution in B2-ST131 clonal group. Diagn. Microbiol. Infect. Dis. 
83, 237–244. doi: 10.1016/j.diagmicrobio.2015.06.024

Novais, Â., Sousa, C., de Dios Caballero, J., Fernandez-Olmos, A., Lopes, J., 
Ramos, H., et al. (2014). MALDI-TOF mass spectrometry as a tool for the 
discrimination of high-risk Escherichia coli clones from phylogenetic groups 
B2 (ST131) and D (ST69, ST405, ST393). Eur. J. Clin. Microbiol. Infect. Dis. 
33, 1391–1399. doi: 10.1007/s10096-014-2071-5

Oksanen, J., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., 
et al. (2019). Vegan: community ecology package (version 2.5-6). Available 
at: https://CRAN.R-project.org/package=vegan (Accessed July 31, 2020).

Palarea-Albaladejo, J., Mclean, K., Wright, F., and Smith, D. G. E. (2018). 
MALDIrppa: quality control and robust analysis for mass spectrometry data. 
Bioinformatics 34, 522–523. doi: 10.1093/bioinformatics/btx628

R Core Team (2018). R: A language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing. Available at: http://
www.R-project.org/

Ruelle, V., El Moualij, B., Zorzi, W., Ledent, P., and Pauw, E. D. (2004). Rapid 
identification of environmental bacterial strains by matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass 
Spectrom. 18, 2013–2019. doi: 10.1002/rcm.1584

Ryzhov, V., and Fenselau, C. (2001). Characterization of the protein subset 
desorbed by MALDI from whole bacterial cells. Anal. Chem. 73, 746–750. 
doi: 10.1021/ac0008791

Sabat, A. J., Budimir, A., Nashev, D., Sá-Leão, R., van Dijl, J. m., Laurent, F., 
et al. (2013). Overview of molecular typing methods for outbreak detection 
and epidemiological surveillance. Euro Surveill. 18:20380. doi: 10.2807/
ese.18.04.20380-en

Sauget, M., Valot, B., Bertrand, X., and Hocquet, D. (2017). Can MALDI-TOF 
mass spectrometry reasonably type bacteria? Trends Microbiol. 25, 447–455. 
doi: 10.1016/j.tim.2016.12.006

Sauget, M., van der Mee-Marquet, N., Bertrand, X., and Hocquet, D. (2016). 
Matrix-assisted laser desorption ionization-time of flight mass spectrometry 
can detect Staphylococcus aureus clonal complex 398. J. Microbiol. Methods 
127, 20–23. doi: 10.1016/j.mimet.2016.05.010

Schmidt, A., Kochanowski, K., Vedelaar, S., Ahrné, E., Volkmer, B., Callipo, L., 
et al. (2016). The quantitative and condition-dependent Escherichia coli 
proteome. Nat. Biotechnol. 34, 104–110. doi: 10.1038/nbt.3418

Seibold, E., Maier, T., Kostrzewa, M., Zeman, E., and Splettstoesser, W. (2010). 
Identification of Francisella tularensis by whole-cell matrix-assisted laser 
desorption ionization-time of flight mass spectrometry: fast, reliable, robust, 
and cost-effective differentiation on species and subspecies levels. J. Clin. 
Microbiol. 48, 1061–1069. doi: 10.1128/JCM.01953-09

Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P. E., Rolain, J. M., 
et al. (2009). Ongoing revolution in bacteriology: routine identification of 
bacteria by matrix-assisted laser desorption ionization time-of-flight mass 
spectrometry. Clin. Infect. Dis. 49, 543–551. doi: 10.1086/600885

Sintchenko, V., and Holmes, E. C. (2015). The role of pathogen genomics in 
assessing disease transmission. BMJ 350:h1314. doi: 10.1136/bmj.h1314

Sintchenko, V., Iredell, J. R., and Gilbert, G. L. (2007). Pathogen profiling for 
disease management and surveillance. Nat. Rev. Microbiol. 5, 464–470. doi: 
10.1038/nrmicro1656

Sousa, C., Botelho, J., Grosso, F., Silva, L., Lopes, J., and Peixe, L. (2015). 
Unsuitability of MALDI-TOF MS to discriminate Acinetobacter baumannii 
clones under routine experimental conditions. Front. Microbiol. 6:481. doi: 
10.3389/fmicb.2015.00481

Spinali, S., van Belkum, A., Goering, R. V., Girard, V., Welker, M., Van Nuenen, M., 
et al. (2015). Microbial typing by matrix-assisted laser desorption ionization-
time of flight mass spectrometry: do we need guidance for data interpretation? 
J. Clin. Microbiol. 53, 760–765. doi: 10.1128/JCM.01635-14

Ueda, O., Tanaka, S., Nagasawa, Z., Hanaki, H., Shobuike, T., and Miyamoto, H. 
(2015). Development of a novel matrix-assisted laser desorption/ionization 
time-of-flight mass spectrum (MALDI-TOF-MS)-based typing method to 
identify meticillin-resistant Staphylococcus aureus clones. J. Hosp. Infect. 90, 
147–155. doi: 10.1016/j.jhin.2014.11.025

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Copyright © 2020 Giraud-Gatineau, Texier, Garnotel, Raoult and Chaudet. This 
is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) and the copyright owner(s) are credited 
and that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does not 
comply with these terms.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://doi.org/10.1016/j.copbio.2019.08.004
https://doi.org/10.1016/j.copbio.2019.08.004
https://doi.org/10.1097/PAT.0000000000000235
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1128/JCM.01990-17
https://doi.org/10.1073/pnas.95.6.3140
https://doi.org/10.1128/JCM.00137-15
https://doi.org/10.3389/fmicb.2017.00698
https://doi.org/10.3389/fmicb.2017.00698
https://doi.org/10.1128/JCM.03196-13
https://doi.org/10.1016/j.diagmicrobio.2015.06.024
https://doi.org/10.1007/s10096-014-2071-5
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1093/bioinformatics/btx628
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1002/rcm.1584
https://doi.org/10.1021/ac0008791
https://doi.org/10.2807/ese.18.04.20380-en
https://doi.org/10.2807/ese.18.04.20380-en
https://doi.org/10.1016/j.tim.2016.12.006
https://doi.org/10.1016/j.mimet.2016.05.010
https://doi.org/10.1038/nbt.3418
https://doi.org/10.1128/JCM.01953-09
https://doi.org/10.1086/600885
https://doi.org/10.1136/bmj.h1314
https://doi.org/10.1038/nrmicro1656
https://doi.org/10.3389/fmicb.2015.00481
https://doi.org/10.1128/JCM.01635-14
https://doi.org/10.1016/j.jhin.2014.11.025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Insights Into Subspecies Discrimination Potentiality From Bacteria MALDI-TOF Mass Spectra by Using Data Mining and Diversity Studies
	Introduction
	Materials and Methods
	Raw Material
	Inclusion Criteria
	Spectra Processing
	Data Mining and Diversity Studies

	Results
	Inclusions
	Species Richness
	Peak Co-occurring Study
	Main Clusters
	Secondary Clusters

	Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material

	References

