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Colorectal cancer (CRC), a leading cause of cancer-related mortalities globally, results
from the accumulation of multiple genetic and epigenetic alterations in the normal colonic
and rectum epithelium, leading to the progression from colorectal adenomas to invasive
carcinomas. Almost half of CRC patients will develop metastases in the course of the
disease and most patients with metastatic CRC are incurable. Particularly, the 5-year
survival rate of patients with stage 4 CRC at diagnosis is less than 10%. Although genetic
understanding of these CRC tumors and paired metastases has led to major advances in
elucidating early driver genes responsible for carcinogenesis and metastasis, the
pathophysiological contribution of transcriptional and epigenetic aberrations in this
malignancy which influence many central signaling pathways have attracted attention
recently. Therefore, treatments that could affect several different molecular pathways may
have pivotal implications for their efficacy. In this review, we summarize our current
knowledge on the molecular network of CRC, including cellular signaling pathways, CRC
microenvironment modulation, epigenetic changes, and CRC biomarkers for diagnosis
and predictive/prognostic use. We also provide an overview of opportunities for the
treatment and prevention strategies in this field.
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INTRODUCTION

Colorectal cancer (CRC) is the third diagnosed malignant tumor worldwide, accounting for
approximately 9% of annual cancer death (1). More than 90% of CRCs are adenocarcinoma,
resulting from normal glandular colonic and rectum epithelium. Other rare types include carcinoid
tumors, gastrointestinal stromal tumors, colorectal lymphoma, squamous cell carcinomas,
leiomyosarcomas, and melanomas (2). Approximately 65% of CRC cases developed sporadically,
without a family history or inherited genetic mutations predisposition, through multiple acquired
somatic genomic and epigenetic alterations (3, 4). Other cases are associated with heritable
components such as family history (25%), hereditary cancer syndrome (5%), some known CRCs
low-penetrance genetic variations (<1%), and other unknown inherited genomic alterations (4, 5).
April 2022 | Volume 12 | Article 8529271

https://www.frontiersin.org/articles/10.3389/fonc.2022.852927/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.852927/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.852927/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:mingli_1999@163.com
https://doi.org/10.3389/fonc.2022.852927
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.852927
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.852927&domain=pdf&date_stamp=2022-04-06


Huang and Yang Molecular Network of Colorectal Cancer
At the molecular level, CRC, like other solid tumors, is a
heterogeneous disease. This can be attributed to at least three
major molecular pathways (Figure 1). The most common
pathway is the chromosomal instability (CIN), occurring in
85% of sporadic CRC (sCRC), characterized by chromosome
structure and number abnormalities, frequent loss of
heterozygosity (LOH) at tumor suppressor gene loci, gain or
loss of chromosomal segments and chromosomal
rearrangements, further resulting in gene copy number
variations (6). These alterations typically are associated with
mutations in specific oncogenes or tumor suppressors genes such
as adenomatous polyposis coli (APC), Kirsten rat sarcoma virus
(KRAS), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic
subunit-a (PIK3CA), b-raf proto-oncogene (BRAF), SMAD
family member 4 (SMAD4) or p53 (7), which regulate cell
proliferation and cell cycle and play pivotal roles in CRC
initiation and progression pathways. Another important
pathway to CRC is the microsatellite instability (MSI), caused
by dysfunction of DNA mismatch repair (MMR) genes during
DNA recombination, DNA replication and DNA damage, which
encodes MutL Homolog (MLH) proteins or MutS homolog
(MSH) proteins. Therefore, it is often associated with genetic
hypermutability (8). CpG island methylator phenotype (CIMP)
comprises the third major pathway to CRC. CIMP positive
tumors can be divided into CIMPhigh tumors, with BRAF
mutations, MLH1 methylation, and silencing of O-6-
methylguanine-DNA methyltransferase (MGMT) or cyclin-
dependent kinase inhibitor 2A (CDKN2A) and CIMPlow

tumors, with KRAS mutations. In fact, CRC pathogenesis is
normally associated with multiple pathways. Specifically,
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approximately one third CRC cases develop via a serrated
pathway that is associated with either KRAS or BRAF
mutations in addition to CIMP mutations (CIMPlow

or CIMPhigh).
Generally,CRC tumorigenesis initiateswith the transformation

of normal colorectal epithelial cells by a spontaneous mutation,
environmental mutagens, genetic or epigenetic alterations.
Then, these initiated cells rapidly expanded to form aberrant
crypt foci and early adenoma, driven by mutations that cause
hyperproliferation, such as APC mutations, or other signaling
pathways such as WNT-b-catenin, cytokines, chemokines, and
growth factors from the tumor microenvironment (TME) (9).
Thus, mutations such as SMAD4, cell division control protein 4
(CDC4) and transforming growth beta factor 2 (TGFBR2) as well
as chromosomal aberration such as LOH 18q further lead to the
outgrowth of these clones into late adenoma and malignant
tumors, known as tumor promotion. Further mutations (p53
and Bcl-2 Associated X-protein (BAX)), pro-angiogenic factors,
extracellular matrix-degrading factors and other factors which
promote CRC cells invasive motility facilitate these tumors
efficiently to metastasize to distant organs and tissues, known as
tumor progression.

Although genetic understanding of these CRC tumors and
paired metastases has led to major advances in elucidating early
driver genes responsible for carcinogenesis and metastasis, the
pathophysiological contribution of transcriptional and epigenetic
alterations in this malignancy influences many central signaling
pathways have attracted attention recently. Therefore, the present
review summarized the current knowledge on the molecular
network of CRC, including cellular signaling pathways, CRC
FIGURE 1 | The three major molecular pathways of colorectal cancer. The conventional chromosomal instability (CIN) pathway, initiated by APC mutation, then
followed by mutations in KRAS, PIK3CA and SMAD4, loss of heterozygosity of p53 mutation was observed in most CRC cases. CRC progress and development via
this pathway is often associated with no or low levels of the CpG island methylation pathway (CIMP- ), high levels of CIN (CIW+++), and microsatellite stability (MSS).
Approximately one third CRC cases is regulated through the serrated pathway, which can be subdivided into CIMPlow MSS tumors with KRAS mutations, BRAF
mutant CIMPhigh MSS tumors or BRAF mutant CIMPhigh microsatellite instability (MSI) tumors. Serrated pathway is commonly associated with silencing of 0-6-
methylguanine-DNA methyltransferase (MGMT), cyclin-dependent kinase inhibitor 2A (CDKN2A) or MLHl. MSI pathway is a third important pathway of CRC caused
by dysfunction of DNA mismatch repair genes, encoding Mutl homolog (MLH) or MutS homolog (MSH) proteins.
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microenvironment modulation, epigenetic changes, CRC and
inflammatory bowel disease (IBD), and CRC biomarkers for
early diagnosis and prognostic/predictive use and provide an
overview of opportunities for CRC treatment.
MOLECULAR NETWORK OF CRC

Cellular Signaling Pathways
As mentioned, CRC development is a complicated multistage
process with sequential mutations involved. Several cellular
signaling pathways that regulate cell proli feration,
differentiation, apoptosis, and survival are involved in CRC
onsets, such as epidermal growth factor receptor (EGFR)/
mitogen-activated protein kinase (MAPK), Wingless-related
integration site (Wnt)/b-catenin, phosphoinositide 3-kinase
(PI3K), transforming growth factor-b (TGF)-b, Neurogenic
locus notch homolog protein (Notch), and nuclear factor (NF)-
kB (10).

EGFR/MAPK Signaling Pathway
EGFR, a catalytic receptor tyrosine kinase (RTK), is a
transmembrane protein containing an extracellular ligand-
binding domain. After ligand binding, EGFR is activated and
dimerized, resulting in the autophosphorylation of several
tyrosine residues in the intercellular domain. Furthermore, the
EGFR adaptor protein complex comprising the growth factor
receptor-bound protein 2 (Grb2) and the son of sevenless (SOS)
activates rat sarcoma virus (RAS) by conversion of guanosine
diphosphate (GDP) to guanosine triphosphate (GTP) through its
binding to phosphorylated tyrosine residues. Once RAS is
activated, a kinase cascade includes mitogen-activated protein
kinase kinase kinase-Raf (MAPKKK), mitogen-activated protein
kinase kinase-MEK (MAPKK), MAPK and extracellular signal
−regulated kinase (ERK) are initiated through phosphorylation
(11). It has been reported that ERK signaling pathway regulates
cell proliferation, differentiation, and survival. Dysregulated
EGFR/MAPK signaling pathway has been reported in a variety
of human cancers mainly because it can lead to malignant
transformation and tumor progression through increased cell
proliferation, prolonged survival, angiogenesis, anti-apoptosis,
invasion, and metastasis (12). Previous studies have found that
EGFR/MAPK signaling pathway was directly related to the CRC
oncogenic processes and played crucial roles in CRC tumor
growth and disease progression (13). Therefore, this pathway
and its downstream signaling cascades have been reported as
targets for CRC therapeutic intervention (14, 15).

Wnt/b-Catenin Pathway
It is known that all 19 glycoproteins from the Wnt family play
regulatory roles in many developmental and carcinogenesis
processes such as cell proliferation, migration, and division. In
addition, Wnt/b-catenin signaling plays important role in tissue
maintenance and hair, skin, and intestine regeneration.
Mutations of this signaling pathway are frequently observed in
sCRC. When the Wnt ligand is secreted and accumulated, it
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binds to its Frizzled (Fz) receptors. Then, the multifunctional
glycogen synthase kinase (GSK)-3b is inactivated and b-catenin,
that acts as the E-cadherin cell-cell adhesion protein and as a
transcriptional activator, is stabilized, accumulated, and
translocated into the nucleus where it couples with the
lymphoid enhancer factor (LEF) or T-cell transcription factor
(TCF) and activates specific target genes involved in proliferation
and transmission. In the absence of the Wnt signal, b-catenin is
targeted by casein kinase 1 (CK1) and the APC-core proteins
Axin-GSK-3b complex for ubiquitination and proteasomal
degradation through its phosphorylation. Wnt signaling
hyperactivation contributes to tumor cell proliferation and its
activation is required for tumor growth in the advanced cancer
stage, especially in CRC (10, 16).

PI3K Signaling Pathway
PI3K is an important intracellular lipid kinase that regulates a
variety of cellular activities such as cell growth, proliferation,
differentiation, migration and survival (17). PI3K is a
heterodimeric molecule containing two subunits, p85 (a
regulatory subunit) and p110 (a catalytic subunit). Protein
kinase B (AKT/PKB), a serine/threonine-protein kinase (Ser/
Thr kinase) and a downstream effector of PI3K, regulates the
PI3K effects on tumor growth and progression (18). AKT
phosphorylation was reported to be involved in cell
proliferation and apoptosis inhibition from human CRC.
Therefore, inhibition of PI3K/Akt pathway was used for
treatment in many cancers (19). PI3K is activated upon ligand
binding to receptor tyrosine kinases (RTK). Then, activated PI3K
phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to
phosphatidylinositol 3,4,5-trisphosphate (PIP3). Next, PIP3
activates AKT upon its serine and threonine residues, resulting
in cell proliferation and cell survival. AKT regulates downstream
proteins such as the mammalian target of rapamycin (mTOR),
which mediates cell cycle, proliferation, angiogenesis, protein
translation, and growth and survival. Phosphatase and tensin
homolog (PTEN), a tumor suppressor and a PI3K pathway
downregulatory protein, dephosphorylates PIP3. This altered
expression of the pathway is often observed in CRC which
results in the continuous growth of cells and leads to cancer.
Overall, PI3K signaling pathway was reported to play an
oncogenic role in the initiation and development of CRC.

TGF-b Signaling Pathway
TGF-b signaling pathway is known to be involved in cell
proliferation, growth, differentiation, division, migration and
adhesion. TGF-b signaling is initiated upon its ligand binding to
its receptors where these 2 heterodimer receptors group together
to form a complex through receptor dimerization. Next, the kinase
domain of these receptors is activated by phosphorylation and the
downstream transcription factors, SMAD proteins, are further
activated. Specifically, SMAD2 and SMAD3 are activated by
forming phosphorylated heterodimers and this heterodimer
complex binds to SMAD4 to form a heterotrimer. Then, the
heterotrimers translocate into the nucleus to bind to TGF-b target
genes and to regulate the transcription. Recent studies have
April 2022 | Volume 12 | Article 852927
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reported that TGF-b, as a tumor suppressor, mediates cell division,
proliferation, apoptosis and differentiation in colon epithelial cells
(20). TGF−b is lost in CRC cells from early stages, thereby growth
inhibition resistance is often observed. Whereas, in CRC late
stages, the expression of TGF-b expression is increased leading
to epithelia-to-mesenchymal transition (EMT). As a result, the
normal cellular immune response was decreased due to the
increased invasion and cell migration. TGF-b can also induce
EMT via a SMAD4 independent pathway, through the Ras
homolog family member A (RhoA) signaling pathway (21).

Notch Signaling Pathway
The Notch signaling pathway is a highly conserved intercellular
pathway that regulates cell development, differentiation,
proliferation, growth and apoptosis (22). The notch signaling
pathway possesses 4 types of notch receptors (Notch 1-4) and 2
types of ligands (the Jagged protein family, JAG 1 and 2, and the
Delta-like protein family, DLL 1, 3, and 4). The Notch receptors
are transmembrane proteins containing both extracellular and
intracellular domains, and Notch ligands are the single-pass
transmembrane proteins containing EGF-like repeats (23).
Notch signaling is initiated when Notch ligands are activated
through ubiquitination by a mind bomb protein (MIB). Then,
the activated ligand binds to the extracellular component of the
Notch receptor and the extracellular domain of the notch
receptor is cleaved by a disintegrin and metalloproteinase
(ADAM protease). Subsequently, Notch intracellular domain
(NICD) is cleaved by g-secretase, causing it to dissociate from
the transmembrane domain of its receptor. Next, the free NICD
translocates into the nucleus and binds to the CSL (CBF-1/
suppressor hairless/LAG1) transcription factor, forming a
complex with co-activators MAML (mastermind-like proteins)
and a histone acetylase, p300. The p300 and the histone
acetyltransferase (HAT) cause the activation of transcription
factors and the transcription of notch-target genes (24, 25).
Previous studies have found that the Notch receptors, Notch
ligands and some downstream Notch signaling targets are
overexpressed in CRC (26). A recent study has reported that
Notch signaling enhanced CRC severity by regulating the cell
cycle and apoptosis of p21 and p53 upregulated modulator of
apoptosis (PUMA) genes (27). Therefore, inhibition of Notch
signaling could be one potential treatment for CRC patients.

NF-kB Signaling Pathway
NF-kB is a heterodimer protein, containing 2 subunits p65 and
p50 which are indispensable for NF-kB activation and nuclear
translocation. NF-kB family consists of five transcription factors
including Rel proto-oncogene (Rel)A/p65, RelB, c-Rel, NF-kB1
(p50/p105) and NF-kB2 (p52/p100), which are involved in
several biological processes such as cell development,
differentiation, cell cycle, and migration. These members
function as heterodimers with interrelated arms of the NF-kB
pathway (28, 29). Extracellular factors such as growth factors,
virus, cytokines, lipopolysaccharides (LPS), Toll-like receptor
(TLR), and T/B cell receptor bind to their specific ligands
resulting in an upregulation of the IkB kinase (IKK) complex.
Frontiers in Oncology | www.frontiersin.org 4
The IKK complex phosphorylates IkB which binds to p65/p50
dimers. The phosphorylated IkB is subsequently degraded by the
ubiquitin-proteasome, allowing for the activation of NF-kB.
Activated NF-kB is translocated to the nucleus, triggering
downstream genes expression to promote CRC initiation and
progression (29). On the other hand, the NF-kB pathway is also
activated by ligands such as the cluster of differentiation 40
ligand (CD40L), B-cell activating factor (BAFF), receptor
activator of NF-kB ligand (RANKL), lymphotoxin-b receptor
(LTBR) and RelB/p100 subunits. IKKa homodimers and NF-kB-
inducing kinase (NIK) are also included (30). Upon NIK
activation, IKKa is further phosphorylated and induces the
phosphorylation of p100, triggering the conversion of p100 to
p52. The RelB/p52 dimer translocates to the nucleus to promote
gene transcription. Previous studies found that NF-kB signaling
is extensively implicated in CRC progression and plays
important role in malignancy development in multiple stages
of CRC (29). It was reported that NF-kB contributes to CRC cell
growth, anchorage-independent growth and cell migration (31).
Collectively, the role of NF-kB plays in CRC progression makes
it’s a viable target for CRC treatment.

CRC Microenvironment Modulation
Increasing evidence suggests that tumor progression and
recurrence are not only regulated by genetic changes of tumor
cells but also by tumor microenvironment (TME). TME,
composed of tumor cells, stromal cells, immune cells, and
extracellular matrix which surround tumor cells, is a complex
system that is involved with tumor growth and development.
Metastasis formation is a multistep process that promotes
transformed cells to get into the bloodstream, deposited to the
target organs through microvasculature circulation, and
ultimately survive and grow in a foreign tissue. The immune
system, as the immunosurveillance, is responsible for destroying
most of the metastatic cells. With the communication of tumor
cells and the cellular compartment, new cells such as
inflammatory cells and immune cells are recruited into the
TME, resulting in altered metabolism of surrounding stroma,
and interrupted anti-tumor effect of the immune systems (32). It
is known that tumor cells and TME cells can also program
immune cells into tumor−tolerant or tumor−promoting
phenotypes. Interleukin-6 (IL-6) is a common cytokine
involved in TME and its expression is significantly elevated
during CRC progression from occurrence to development.
Various cells, such as tumor-associated macrophages,
fibroblasts, granulocytes, dendritic cells, lymphocytes, and CRC
cells are all sources of IL-6 in the TME. One study showed that
tumor-associated macrophage-derived IL-6 activates the Janus
kinase (JAK) 2/signal transducer and activator of transcription
(STAT) 3 axis to modulate cell migration and invasion in CRC
(33). Studies have also shown that IL-6 activates autophagy
through the IL-6/JAK2/Beclin-1 pathway and promotes
chemotherapy resistance in CRC (34).

Metastatic CRC tumorswithMSI, often associated with genetic
hypermutability, produce many neoantigens on the major
histocompatibility complex (MHC) of antigen-presenting cells
April 2022 | Volume 12 | Article 852927
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and serve as a foreigner recognized by T cells (35). Thus, the TME
of CRC tumors with MSI is abundant with tumor-infiltrating
lymphocytes (TILs) and the adaptive immune system plays a
significant role in tumor progression suppression. Then, the
strongly activated immune cells provoke the expression of
immune-checkpoint receptors and ligands, such as cell surface
proteinprogrammeddeath-1 (PD-1) andcytotoxicT-lymphocyte-
associated protein 4 (CTLA4), and transmembrane protein
programmed death-ligand 1(PD-L1) on tumor cells, TILs,
regulatory T (Treg) cells and tumor-associated macrophages.
Therefore, as reported, patients diagnosed with metastatic CRC
tumors with MSI are responsive to PD-1 blockade therapy.
However, the frequency of MSI-CRC in stage IV is ~5% (36) and
the majority of metastatic CRC tumors with microsatellite stable
(MSS)were found tobe a lower response toPD-1/PD-L1orCTLA4
therapy (37, 38). This could be explained that CRC tumors with
MSS have fewer tumor mutations and neoantigens and are lack
infiltrating immune effector cells. All these factors promote tumor
evasion from adaptive immunity to immune resistance against
immune checkpoint therapy. Recent studies reported that in
metastatic CRC tumors, a higher immune score, quantification
of T cells (CD3) and cytotoxic T cells (CD8), positively correlates
with a decreased metastasis (39) and can also predict the overall
prolonged survival rate in patients with metastatic CRC (40).

Most recently, Osman et al. have found that T cell factor-1
(TCF-1) could control distinct clusters of Treg functions by
regulating gene expression in Treg, inflammation and severity in
CRC. TCF-1-deficient Treg cells strongly suppress T cell
proliferation and CD8 T-cell cytotoxicity, leading to more
severe and aggressive CRC (41). Although multiple
transcription factors have already been well studied before this
study, this is the first time that the link between TCF-1 and CRC
was explored, and this pathway could help future drug
development for CRC prevention or improve response
to therapy.

Moreover,Cancer-associatedfibroblasts (CAFs)ormacrophages
(CAMs) synergize the production of reactive oxygen species (ROS)
which helps the tumor cells escape from the immune surveillance
system (42). It is known that cancer cells can transform fibroblasts
located at metastatic sites into CAFs, thus promoting tumor
growth and metastasis by producing growth factors and ECM
degrading proteases. Interestingly, in CRC, the release of TGF−b is
correlated to redox control of TME by the activation of MAPK or
ERK-mediated SMAD 2 phosphorylation, which further
stimulates CAFs to secrete IL−11 and strengthen the survival
ability of metastatic cells (43). CAFs have been identified as an
important source of IL-6 recently and IL-6 mediated STAT3
activation in CAFs facilitates CRC tumor development (44).

What’s more, SHP2, an oncogenic tyrosine phosphatase and a
major downstream signalingmolecule required for the PD-1 immune
checkpoint pathway, was defined to play essential roles in all cell types
of TME from mouse CRC models by single-cell sequencing
technology. SHP2 modulates tumor immunosuppression by
negatively regulating type I interferon signaling and allosteric
inhibition of SHP2 remolds the anti-tumor TME in CRC patients,
indicating SHP2 is a promising target for CRC immunotherapy (45).
Frontiers in Oncology | www.frontiersin.org 5
In summary, understanding the relationship between CRC
tumors progression and microenvironment modulation could be
fundamental in developing novel therapeutic strategies for a
better response on CRC patients.

CRC Epigenetic Changes
CRC progression from adenoma to adenocarcinoma is both
affected by genetic and epigenetic alternations. Epigenetics is
defined as heritable alterations in gene expression without DNA
sequence changes, including DNA methylation, histone
modification, chromatin remodeling, noncoding RNA, and
microRNAs. Epigenetic disruption is a common hallmark of
CRC (46). Among the above epigenetic mechanisms, DNA
promoter methylation and histone modifications have gained
particular interest in CRC studies because gene promoter
hypermethylation transcriptionally silences the tumor
suppressor genes (47) and histone modification regulates gene
expression directly or by interacting with DNAmethylation (48).
During CRC carcinogenesis, DNA methylation typically occurs
in CpG islands, characterized as the covalent modification of
DNA with a methyl group (CH3) at the C5 position of the
cytosine ring by DNA methyltransferases (DNMTs), generating
5-methylcytosine and this represents the most extensively
studied epigenetic marks. For example, silencing of E−cadherin
caused by hypermethylation results in decreased cell-cell
adhesion, tumor progression and increased invasion in
CRC (49).

As mentioned above, in addition to DNA methylation
regulating gene expression levels, posttranslational covalent
modification of histone tails is another fundamental epigenetic
modification in regulating chromatin state and gene expression
in human tumors. Most of the studies have focused on histone
(de) acetylation, catalyzed by histone acetyltransferases (HATs)
or histone deacetylases (HDACs), and methylation of lysine and
arginine residues within histone tails in CRC. Histones are
composed of core histones and linker histones. Specifically, the
core histones consist of histones H2A, H2B, H3, and H4, and a
pair of each four core histones are formed into an octamer called
nucleosomes, which are interacted with other nuclear proteins to
form chromatin. And the linker histones, the H1 family,
localized on the entry and exit sites of the DNA to maintain its
correct wrapping with core histones. Several researchers reported
that global hypoacetylation in H3 and H4 lysine is often
associated with decreased expression of tumor suppressors and
metastasis suppressors in cell lines and primary tumors from
CRC (50). It has been found that increased HDACs expression is
associated with a shorter survival time of CRC patients (51).
Recent studies suggested that epigenetic regulators induced
transcriptional plasticity is associated with chemoresistance in
CRC and these epigenetic alterations are reversible, thus
providing novel opportunities for CRC treatment (52–55).

In addition, long non-coding RNAs (lncRNAs) and
microRNAs (miRNAs) also play important roles in regulating
signaling pathways relevant to colorectal cancer (CRC). MiRNAs
function at the posttranscriptional level by regulating specific
individual target mRNAs, or serve as general regulators of gene
April 2022 | Volume 12 | Article 852927
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expression, simultaneously mediating hundreds of genes
expression. Many studies have identified different miRNAs
expression levels between neoplastic tissues and tumor-adjacent
normal tissues inCRC (56, 57).MiRNAs can act both as oncogenes
or tumor suppressors, depending not only on their altered
pathways but also on the primary location, such as colon or
rectal cancer. Specifically, miRNA-9 (58) and miRNA-101 (59)
serve as tumor suppressors inCRCby suppressing coloncancer cell
migration. miRNA-200 (60), miRNA-17 (61) and miR-141 (62)
are all well-known oncogenes in CRCacting by inhibiting different
tumor suppressor genes or promoting cancer cells proliferation.
Moreover, it was reported that overexpression of miRNA-21 was
correlated with the 5-Fluorouracil chemotherapeutic drug
resistance in CRC and miRNA-21 reduces G2/M arrest and
apoptosis by downregulating the MSH proteins. Thus, miRNA-
21 could be a potential therapeutic marker in CRC (63). Despite
several miRNAs having shown great value as biomarkers for
disease detection (64), progression (65), and prognosis (66) in
CRC, there still are several practical problems formiRNA acting as
biomarkers. For example, more sensitive detection methods and
lower detection costs are required (67). Moreover, miRNAs are
usually not specific to one type of cancer. For example,miRNA-155
decelerates CRCmetastasis and progression (68), while it serves as
a potential biomarker for cervical cancer andbreast cancer (69, 70).
LncRNAs are involved in many CRC-related signaling pathways
such as the Wnt/b-catenin, EGFR, and TGF-b, thus affecting all
pathophysiological steps in CRC carcinogenesis, progression, and
metastasis (71).

Overall, epigenetic changes of CRC are of great significance to
early diagnosis and prognosis evaluation, providing a new
thought for the CRC treatment.

CRC and Inflammatory Bowel
Disease (IBD)
Emerging evidence indicates that IBD is associated with an
increased incidence of CRC development. Unlike common
sCRC, IBD-CRC initiates and drives tumorigenesis from a
different mechanism (72). The tumor tissues of IBD-CRC
patients present less frequent somatic mutations of APC and
KRAS, while p53 genomic alterations are more frequent and
detected earlier during tumor progression, compared to sCRC
(73–75). It has been reported that chronic inflammation in IBD
promotes aberrant DNA methylation, which in turn facilitates
tumor development (76). Progressively increased percentage of
methylated genes in the Wnt/b-catenin pathway was observed
from normal colon samples to IBD to IBD-CRC, suggesting their
potential role during CRC development (75).

As previously described, tumor-associated macrophages are
important immune cells in TME, and they might also play critical
roles in IBD-CRC progression. It has been found that Wnt5a, a
protein from the Wnt family, stimulates M2 polarization of
tumor-associated macrophages via IL-10 to promote CRC
progression (77). Thus, the Wnt/b-catenin signaling pathway
can significantly impact inflammation and the IBD-CRC onset.
In addition, altered M2 macrophage polarization resulting in
delayed tumor progression was reported in a mouse IBD-CRC
Frontiers in Oncology | www.frontiersin.org 6
model recently (78). It is known that the two most well studies
proinflammatory pathways in IBD-CRC, NF-kB and IL-6/STAT3
signaling pathways, are dysregulated and thus promote IBD-CRC
progression (79). Hence, therapies against specific inflammatory
cytokines involved in tumorigenesis of IBD-CRC could provide a
novel approach to prevent CRC tumor initiation or progression.

CRC Biomarkers
CRC Biomarkers, derived from a patients’ tissue, blood or stool
samples, play crucial roles in the early diagnosis and prognostic
stratification of the disease under targeted CRC treatment (30).
Based on clinical criteria, CRC biomarkers can be divided into
two groups: diagnostic biomarkers (for detection or confirmation
of the presence of a disease) and clinical biomarkers (for
prediction of patients’ response to a specific treatment or
their prognosis).

CRC Diagnostic Biomarkers
It has been reported that CRC cells consistently express
cytokeratin 20 and CDX-2 (an intestinal epithelia-specific
nuclear transcription factor), but cytokeratin 7 expression is
generally negative, therefore, these three markers can serve as
the diagnostic biomarkers for CRC (80–82). Several blood-based
biomarkers, such as cancer antigen 19-9, serum tissue
polypeptide-specific antigen (TPS) and tissue polypeptide
antigen (TPA), cytokeratin 8, 18 and 19, as well as Kininogen-1
(KNG1) were all identified as potentially useful biomarkers for
both early detection and prognostic purposes in CRC (83, 84).
Besides peripheral blood, cell-free DNA (cfDNA) is also used to
determine cellular apoptosis in patients from CRC (85). Stool-
based testing, for example, hemoglobin testing, DNA and RNA-
based testing and miRNA testing have also been determined as
feasible biomarkers for CRC (86–88). Researchers also reported
that gene expression andmetabolomic profiles of urine and tissue
samples from CRC-bearing mice and CRC patients revealed
metabolites associated with specific metabolic changes can
indicate CRC development in early-stage and these urine and
tissue biomarkers could be used in the early detection of CRC
(89). Recently, a single protein marker, tissue inhibitor of
metalloproteinase-1 (TIMP-1) was found to be a useful non-
invasive screening marker for clinical CRC as it exhibits a
potential diagnostic value with around 65% sensitivity and 95%
specificity for CRC (90). What’s more, increased levels of insulin-
like growth factor-binding protein 2 (IGFBP2) and pyruvate
kinase (PKM2) have been revealed in CRC, appearing as
diagnostic tools for early detection and screening of CRC (91).

CRC Prognostic Biomarkers
A CRC prognostic biomarker is defined as a marker that can be
used to provide information about the outcome in CRC.
Currently, the CRC staging is guided by the tumor (tumor
invasion depth), node (nodal involvement) and metastasis
(TNM) system. However, the prognosis outcome can be
different among patients in the same disease stage. Sometimes,
patients at early stages may exhibit poorer outcomes compared
to patients at latter stages since CRC is a complex process with a
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combination of clinical and pathological variables (92).
Carcinoembryonic antigen (CEA), a glycoprotein highly
expressed in colorectal malignancies, is the main prognostic
blood-based biomarker widely used in clinical. The elevated
level of CEA positively correlates with cancer progression and
indicates CRC recurrence after surgical resection. However, CEA
is not specific to CRC as increased CEA levels were also observed
in other complications, such as inflammatory bowel disease,
hepatic metastasis, and pancreatitis (93–95). Therefore,
additional prognostic biomarkers are urgently needed for CRC
patients’ management and follow-up. A recent study has
demonstrated that collagen proteins could be promising
biomarkers for CRC metastasis through a mass spectrum-
based proteomic approach, as 19 of 22 collagen alpha chains
were found to be upregulated in CRC liver metastasis tissue
compared to healthy adjacent liver. The upregulation of collagen
type XII in the metastatic tissue was confirmed by
immunohistochemistry (96). Interestingly, some studies
reported that a urinary prostaglandin metabolite PGE-M might
be an interesting CRC biomarker because PGE-M plays an
important role in the regulation of cyclooxygenase-2 effects in
CRC and elevated levels of PGE-M is associated with advanced
adenomas and increased risk of CRC (97). Lymph node
involvement results in poor prognosis, therefore, non-invasive
protein prognostic biomarkers used for nodal status
determination are urgently needed. Recently, three tissue-based
protein biomarkers, FXYD3, S100A11 and GSTM3 were
identified as useful markers of regional lymph node metastasis
in CRC via a proteomic approach (98). Similarly, MX1 from
CRC tissue of lymph node was also identified as a protein
biomarker for predicting regional lymph node metastasis (99).
Recurrence detection is most concerned for CRC patients after
surgery. After surgery, around 30-40% of patients showed distant
metastasis or locoregional recurrence (100). The expression of
Maspin has been recently identified as a marker for early
recurrence in stage IV CRC and late recurrence after surgery
for CRC liver metastasis (101).

CRC Predictive Biomarkers
A CRC predictive biomarker is used to indicate the response of a
specific treatment and is crucial for the management of CRC
patients. Numerous numbers of immunotherapy, chemotherapy
and targeted therapies make it necessary to discover important
biomarkers for treatment response and monitoring (102, 103).
Researchers found that poly(C)-binding protein 1 (PCBP1)
expression was significantly elevated in oxaliplatin resistance
patients than in responsive patients, suggesting that PCBP1 is a
protein predictive marker of oxaliplatin resistance in CRCs
(104). Katsila et al. evaluated the response to EGFR targeted
therapies in plasma from patients with metastatic CRC. It was
observed that plasma level of phosphorylated-EGFR (pEGFR)
was correlated with sensitivity to cetuximab therapy, suggesting
that circulating pEGFR is a potential predictive treatment-
response biomarker (105). The response to tyrosine kinase-
targeted therapies was also evaluated by McKinley et al.
through a global phosphotyrosine proteomics analysis of
Frontiers in Oncology | www.frontiersin.org 7
patients with metastatic CRC treated with dasatinib, an
effective inhibitor of the Src family of tyrosine kinases with
significant anti-tumor effects (106). It was found that PKCdelta is
a marker of responsiveness of Src inhibition in CRC cells lines,
indicating that PKCdelta could be a useful biomarker for
evaluation response to dasatinib in CRC. In general, the
predictive biomarkers have the same problem of poor
translation to clinical use as diagnostic biomarkers and further
validation of clinical studies are needed before it can be
translated into useful routine practice.

Liquid Biopsy in CRC
Recent research has focused on diverse biomarkers including
circulating tumor cells (CTCs), circulating tumor DNAs
(ctDNAs), circulating tumor exosomes, and circulating tumor
RNAs (such as miRNAs) (107). Therefore, the concept of liquid
biopsy by using these circulating biomarkers to detect tumors
released from primary to metastatic sites is generated (108). Liquid
biopsy has multiple advantages in terms of noninvasiveness, fast,
and easy to be sampling, compared to solid biopsy. The use of
CTCs in gastrointestinal cancers showed promising results in
prognostic stratification, therapeutic implications, and early
diagnosis (109, 110). Recently, ExoScreen technique was used
for profiling exosomes such as CD147 and CD 9 in serum from
CRC patients but not in healthy individuals (110). The amount of
ctDNAs was also reported to be increased progressively from early
stage to metastatic CRC (111). In addition to CTCs, ctDNAs, and
exosomes, ctRNAs, specifically, miRNAs, are also used as CRC
markers (108, 110). The application of liquid biopsy in early
diagnosis, screening, and prognosis for CRC patients in clinical
practice provides a new strategy for treatment guidance and post-
treatment surveillance.

Thus, early diagnosis of the disease, early surgical resection
and effective response of a specific treatment always offer the best
chance of cure. However, accurate, and consistent protein
biomarkers for CRC use are still lacking. Therefore,
identification, validation, and translation of new diagnostic,
prognostic, and predictive biomarkers are important to fill the
presented gaps in our knowledge.
OPPORTUNITIES FOR CRC TREATMENT

Treatments of CRC include surgical resection, chemotherapy,
targeted therapy, immunotherapy, gene therapy and
combination therapies.

Chemotherapeutic intervention coupled with surgery is the
traditional treatment for survival rate enhancement of metastatic
CRC. For decades, commonly used CRC chemotherapeutic
agents include 5-Fluorouracil, Irinotecan, Oxaliplatin, Calcium
folinate, Capecitabine, S-1 (Tegafur/gimeracil/oteracil), and
TAS-102 (Trifluridine/Tipiracil). CRC chemotherapies are
usually combinations of several of those chemotherapeutic
agents, such as FOLFOX (5-Fluorouracil, Calcium folinate,
Oxaliplatin); FOLFIRI (5-Fluorouracil, Calcium folinate,
Irinotecan); CAPEOX (Capecitabine, Oxaliplatin); FOLFOXIRI
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(5-Fluorouracil, Calcium folinate, Irinotecan, Oxaliplatin) (112).
Targeted therapies can be divided into two major categories:

small molecule signal transduction inhibitors and monoclonal
antibodies. Small molecule inhibitors can eliminate cancer cells
by specifically blocking the signaling pathways necessary for
tumor growth and proliferation and they can be administered
orally, with high specificity and short half-life. Monoclonal
antibodies, with high specificity and long half-life, recognize
tumor cells through the specific antigen and antibody
interaction, which are mostly administered intravenously,
without hepatic metabolism. Genomic profiling for somatic
mutations detection is very important because it identifies
which treatments may be effective for CRC patients. Several
molecular biomarkers such as KRAS mutations, BRAF
mutations, and deficient MMR/MSI are commonly observed
in CRC.

KRAS, a downstream pathway of EGFR, is the most observed
mutation in CRC. Therefore, inhibition of EGFR can suppress
the activation of KRAS and its downstream pathways.
Cetuximab (Epitol), a monoclonal antibody specifically used
for blocking EGFR, is one of the most representative drugs of
targeted therapy and is currently approved for first-line
monotherapy in CRC patients (113). However, CRC patients
with KRAS mutation are very unlikely to benefit from anti-EGFR
therapy. Eventually, its downstream pathways such as BRAF,
MEK and ERK were continuously activated by KRAS, resulting
in tumor cells proliferation and metastasis. Thus, CRC patients
with KRAS mutations need to be treated with other effective
therapies. Cetuximab can also be used in combination with
Irinotecan, 5-Fluorouracil, and calcium folinate in the first-line
treatment regimen for CRC. It was reported that the overall
survival (OS) of CRC patients with wild type KRAS under
Cetuximab and FOLFIRI combination treatment was improved
8.2 months compared with patients treated with FOLFIRI alone
in the CRYSTAL study (114, 115). EGFR can initiate cell
proliferation downstream pathway in addition to activation of
KRAS. Particularly, most patients with advanced CRC are
accompanied by EGFR overexpression and metastasis in the
liver and lung, resulting in poor prognosis outcomes with first-
and second-line therapies. Currently, clinical studies have
confirmed the beneficial effects of third-line treatment of
metastatic CRC with Cetuximab in Australia and Europe
(116, 117).

Angiogenesis plays an important role in CRC progression and
vascular endothelial growth factor (VEGF) is a major angiogenic
factor in CRC (118). Increased VEGF levels were significantly
correlated with CRC progression and metastasis (119).
Bevacizumab, a humanized IgG monoclonal antibody, was
approved by FDA as the first VEGF-targeted agent for metastatic
CRC (120) and it is still the only FDA-approved VEGF-targeted
agent used as a first- and second-line for CRC treatment (121).
What’s more, various approved novel anti-VEGF receptor
(VEGFR) agents such as Aflibercept (a VEGFR-1 and VEGFR-2
extracellular domain recombinant fusion protein) and
Ramucirumab (a fully humanized monoclonal VEGFR-2-
targeted IgG antibody) remained as second-line treatment of
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metastatic CRC. This is mainly because the combination of
Aflibercept or Ramucirumab with FOLFOX regimen did not
show beneficial results in progression-free survival (PFS) or
response rate (122, 123). Other agents, such as various tyrosine
kinase inhibitors, including Regorafenib (124) and Fruquintinib
(125) are recommended for chemotherapy against refractory
metastatic CRC.

Growing evidence indicates that the hepatocyte growth factor
(HGF) and its tyrosine kinase receptor, mesenchymal-epithelial
transition factor (c-MET) pathway plays a crucial role in tumor
invasive growth and metastasis of CRC (126, 127). MET
amplification and HGF/c-MET overexpression have been
reported as causing factors for CRC carcinogenesis. This
aberrant signaling axis triggers a series of signaling cascades
activation, including EGFR/MAPK, PI3K/AKT, and JAK/STAT
pathways, and is associated with dysregulated cell proliferation,
apoptosis, and poor prognosis (121). Thus, various newly
developed monoclonal antibodies, small molecules or miRNAs
targeting HGF/c-MET have emerged. Recently, a few monoclonal
HGF neutralizing antibodies have been investigated under clinical
trials. Rilotumumab, a fully humanized monoclonal antibody, has
demonstrated median prolonged PFS and OS in patients with
MET overexpression using Rilotumumab in combination with
ECX (epirubicin, cisplatin, and capecitabine) compared with those
in the placebo plus ECX arm (128). There are also several novel
MET antibodies, like ABT-700 and Emibetuzumab, that have been
used in clinical trials (121). Small molecule c-Met kinase inhibitors
target activation sites of the receptor inside the cells via inhibiting
phosphorylation and its downstream signaling pathway. PHA-
665752, c-Met inhibitor, with the combination of cetuximab
suppressed more efficiently the CRC cell growth in vitro and in
vivo compared with either single agent treatment (129). In
addition, miRNA, such as miR-206, has been identified to be
able to affect the c-MET/HGF signaling pathway via inhibiting
CRC cells proliferation and invasion (130).

In CRC, in addition to common mutations in KRAS and
BRAF, mutations in human epidermal growth factor receptor
(HER) 2 are also present. Indeed, HER2 amplification has been
detected in approximately 2-3% of CRC patients. However, there
was no approved targeted therapy in HER2-positive metastatic
CRC patients. Most recently, an open-label, multicenter, phase 2
study confirms the role of Enhertu (DS-8201, an antibody-drug
conjugate targeting HER2) in HER2 overexpressing CRC. It has
demonstrated that Enhertu showed promising activity in terms
of objective response rate, disease control rate, PFS and OS with
long-term follow-up in CRC patients with HER2 expressing
which brings new hope to the majority of these patients
(DS8201-A-J203, NCT03384940).

Immunotherapy, as an innovative type of cancer treatment,
fights tumors by activating the body’s immune system without
direct attacking tumor cells. Immune checkpoint inhibitors
exhibit an immense breakthrough in cancer therapeutics and
the most representative ones are PD-1/PD-L1 inhibitors and
CTLA-4 inhibitors. Some of these immune checkpoint inhibitors
have been approved for CRC treatment. For example, nivolumab
and pembrolizumab, the two most promising PD-1 inhibitors,
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have been approved by FDA for the second-line treatment of
metastatic CRC patients with high levels of MSI and deficient
MMR in 2017 (131). However, a recent clinical study reported
limited response with antibodies blocking PD1 and CTLA4 in
CRC patients with MMR-MSI mutations (132). Therefore, other
alternative approaches of immune modulations are required to
enhance the recruitment of immune cells to the tumor, such as
combination therapy. In addition to pro-proliferative effects on
tumors, activation of the RAS/MAPK/MEK pathway has been
associated with decreased T cell infiltration into CRC tumors and
MEK is a transducer of this signaling cascade and plays a crucial
role in CRC development and progression. Thus, several clinical
trials with the combination of MEK inhibitors with PD-1/PD-L1
and chemotherapies are ongoing.

Gene therapy has shown remarkable efficacy in recent clinical
studies (133). Lack of efficient and reliable delivery methods is
the most common challenge for gene therapy, although
retrovirus delivery systems are the most used. Recently,
nanotechnology-based gene therapy has been approved in the
clinic because it can be well-controlled (134). A group found that
cancer-targeted gene therapy pigment epithelium-derived factor
DNA liposomes (R-LP/PEDF) demonstrated enhanced
inhibitory effects on migration, invasion, and pro-apoptosis of
CRC cells and without any toxic pathological changes in the vital
organs of mice that received the R-LP/PEDF treatment (135).
What’s more, a nano vector made from ginger-derived lipids was
reported that can serve as a delivery platform for the therapeutic
agent doxorubicin to treat CRC (136). This study expands our
current understanding of drug-delivery systems and could be
used as a foundation for a less toxic drug-delivery approach.

In recent years, proteolysis targeting chimeric (PROTAC)
technology that degrades endogenous disease-related proteins
through the ubiquitin-proteasome system has achieved
remarkable efficacy in tumor growth inhibition and is also a
promising strategy for the drug-resistant target. As discussed
previously, KRAS is a well-known “undruggable” target in CRC
due to its lack of deep pockets and is associated with poor
prognosis and drug resistance. It has been reported that potent
KRAS-specific degraders can target tumors with mutant KRAS
(137). A research group led by Professor Craig M. Crews, a
pioneer of PROTACs technology, firstly reported the
development of endogenous KRASG12C degrader LC-2, where
over half of KRAS mutant lung cancer and 3% of CRC express
KRASG12C. It was demonstrated that LC-2 rapidly and
consistently degraded KRASG12C, leading to inhibition of
MAPK signaling. Suggesting that PROTACs-mediated
degradation is a feasible strategy to attenuate oncogenic KRAS
levels and downstream signaling in cancer cells (138). Therefore,
PROTAC approaches can broaden drug target scope, overcome
drug resistance, enhance target selectivity and this technology
could be a key therapeutic modality that provides innovative
treatment options for cancer patients.

It should be noted that patients with colon and rectal cancer
are managed differently, and their epidemiology and clinical
outcomes also exhibit different patterns (139). Zhang et al.
recently reported that several genes can be used as biomarkers
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to identify colon cancer from rectal cancer based on the
prediction of vector machine method algorithm and RNA-
sequencing data, while additional research is required to
support this finding (140). However, a study conducted by The
Cancer Genome Atlas (TCGA) showed similar patterns of
genetic alterations in the colon and rectal tissues from non-
hypermutated tumors. There were almost indistinguishable
differences in copy number, CIMP, mRNA and miRNA
between the colon and rectal cancers from the above samples
(141). A follow-up proteomics study of colon and rectal tumors
analyzed previously by TCGA identified that CRC subtypes are
similar to those detected by transcriptome analysis (142). The
main difference between colon cancer and rectal cancer is the
anatomical location, which determines the differences in their
treatments modalities such as differences in surgical approaches,
and preoperative and postoperative adjuvant therapies
(radiotherapies). Drugs approved for colon and rectal cancer
are identical according to their identical biology. Nevertheless,
chemotherapies were used differently for different purposes and
indications caused by their different anatomical location
(143–145).
CONCLUSION

In summary, as discussed in this review, CRC represents a
complex and heterogeneous group of disorders at molecular
levels and signaling pathways, in which different patterns of
genetic mutations and epigenetic alterations contribute to the
onset and progression and are responsible for responding to the
specific therapy. CRC results from the activation of multiple
signaling pathways and cannot be targeted with a single
treatment. Thus, a combination of conventional therapeutics
with innovative inhibitors targeting different dysregulated
pathways is urgently needed. A deeper understanding of CRC
is required, and the efficiency of targeted therapies and the
development of more efficient biomarkers provides an
encouraging prospect for the future management of CRC. We
believed that with the discovery of more novel targeted
therapeutics, the disease burden of CRC can be decreased in
the future.
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Molecular Pathways in Colorectal Cancer: Adiponectin, Interleukin-6 and
Opioid Signaling. Biochim Biophys Acta Rev Cancer (2021) 1875(1):188460.
doi: 10.1016/j.bbcan.2020.188460

17. Narayanankutty A. PI3K/ Akt/ mTOR Pathway as a Therapeutic Target for
Colorectal Cancer: A Review of Preclinical and Clinical Evidence. Curr Drug
Targets (2019) 20(12):1217–26. doi: 10.2174/1389450120666190618123846

18. Kaya Temiz T, Altun A, Turgut N, Balcı E. Investigation of the Effects of
Drugs Effective on PI3K-AKT Signaling Pathway in Colorectal Cancer Alone
and in Combination. Cumhuriyet Med J (2014) 36(2):167–77. doi: 10.7197/
1305-0028.33144

19. Castel P, Toska E, Engelman JA, Scaltriti M. The Present and Future of PI3K
Inhibitors for Cancer Therapy. Nat Cancer (2021) 2(6):587–97. doi: 10.1038/
s43018-021-00218-4

20. Jung B, Staudacher JJ, Beauchamp D. Transforming Growth Factor b
Superfamily Signaling in Development of Colorectal Cancer.
Gastroenterology (2017) 152(1):36–52. doi: 10.1053/j.gastro.2016.10.015

21. Levy L, Hill CS. Smad4 Dependency Defines Two Classes of Transforming
Growth Factor {Beta} (TGF-{Beta}) Target Genes and Distinguishes TGF-
{Beta}-Induced Epithelial-Mesenchymal Transition From Its Antiproliferative
Frontiers in Oncology | www.frontiersin.org 10
and Migratory Responses. Mol Cell Biol (2005) 25(18):8108–25. doi: 10.1128/
MCB.25.18.8108-8125.2005

22. Previs RA, Coleman RL, Harris AL, Sood AK. Molecular Pathways:
Translational and Therapeutic Implications of the Notch Signaling Pathway
in Cancer. Clin Cancer Res (2015) 21(5):955–61. doi: 10.1158/1078-
0432.CCR-14-0809

23. Vinson KE, George DC, Fender AW, Bertrand FE, Sigounas G. The Notch
Pathway in Colorectal Cancer. Int J Cancer (2016) 138(8):1835–42. doi:
10.1002/ijc.29800

24. Borggrefe T, Oswald F. Setting the Stage for Notch: The Drosophila Su(H)-
Hairless Repressor Complex. PloS Biol (2016) 14(7):e1002524. doi: 10.1371/
journal.pbio.1002524

25. Carulli AJ, Keeley TM, Demitrack ES, Chung J, Maillard I, Samuelson LC.
Notch Receptor Regulation of Intestinal Stem Cell Homeostasis and Crypt
Regeneration. Dev Biol (2015) 402(1):98–108. doi: 10.1016/j.ydbio.2015.
03.012

26. Tiwari A, Saraf S, Verma A, Panda PK, Jain SK. Novel Targeting Approaches
and Signaling Pathways of Colorectal Cancer: An Insight. World J
Gastroenterol (2018) 24(39):4428–35. doi: 10.3748/wjg.v24.i39.4428

27. Liao W, Li G, You Y, Wan H, Wu Q, Wang C, et al. Antitumor Activity of
Notch−1 Inhibition in Human Colorectal Carcinoma Cells. Oncol Rep (2018)
39(3):1063–71. doi: 10.3892/or.2017.6176

28. Wong D, Teixeira A, Oikonomopoulos S, Humburg P, Lone IN, Saliba D, et al.
Extensive Characterization of NF-kb Binding Uncovers Non-Canonical
Motifs and Advances the Interpretation of Genetic Functional Traits.
Genome Biol (2011) 12(7):R70. doi: 10.1186/gb-2011-12-7-r70

29. Soleimani A, Rahmani F, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role
of the NF-kb Signaling Pathway in the Pathogenesis of Colorectal Cancer.
Gene (2020) 726:144132. doi: 10.1016/j.gene.2019.144132

30. Martin M, Sun M, Motolani A, Lu T. The Pivotal Player: Components of NF-
kb Pathway as Promising Biomarkers in Colorectal Cancer. Int J Mol Sci
(2021) 22(14):7429. doi: 10.3390/ijms22147429

31. Hartley AV, Wang B, Jiang G, Wei H, Sun M, Prabhu L, et al. Regulation of a
PRMT5/NF-kb Axis by Phosphorylation of PRMT5 at Serine 15 in Colorectal
Cancer. Int J Mol Sci (2020) 21(10):3684. doi: 10.3390/ijms21103684

32. Welch DR, Hurst DR. Defining the Hallmarks of Metastasis. Cancer Res
(2019) 79(12):3011–27. doi: 10.1158/0008-5472.CAN-19-0458

33. Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, et al. Crosstalk Between
Cancer Cells and Tumor Associated Macrophages Is Required for
Mesenchymal Circulating Tumor Cell-Mediated Colorectal Cancer
Metastasis. Mol Cancer (2019) 18(1):64. doi: 10.1186/s12943-019-0976-4

34. Hu F, Song D, Yan Y, Huang C, Shen C, Lan J, et al. IL-6 Regulates Autophagy
and Chemotherapy Resistance by Promoting BECN1 Phosphorylation. Nat
Commun (2021) 12(1):3651. doi: 10.1038/s41467-021-23923-1

35. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, et al.
The Vigorous Immune Microenvironment of Microsatellite Instable Colon
Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints. Cancer
Discov (2015) 5(1):43–51. doi: 10.1158/2159-8290.CD-14-0863

36. Ooki A, Shinozaki E, Yamaguchi K. Immunotherapy in Colorectal Cancer:
Current and Future Strategies. J Anus Rectum Colon (2021) 5(1):11–24. doi:
10.23922/jarc.2020-064

37. Breakstone R. Colon Cancer and Immunotherapy-can We Go Beyond
Microsatellite Instability? Trans Gastroenterol Hepatol (2021) 6:12. doi:
10.21037/tgh.2020.03.08

38. Kreidieh M, Mukherji D, Temraz S, Shamseddine A. Expanding the Scope of
Immunotherapy in Colorectal Cancer: Current Clinical Approaches and
Future Directions. BioMed Res Int (2020) 2020:9037217. doi: 10.1155/2020/
9037217

39. Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M, et al.
The Tumor Microenvironment and Immunoscore Are Critical Determinants
of Dissemination to Distant Metastasis. Sci Trans Med (2016) 8
(327):327ra326. doi: 10.1126/scitranslmed.aad6352

40. Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen
T, et al. Comprehensive Intrametastatic Immune Quantification and Major
Impact of Immunoscore on Survival. J Natl Cancer Institute (2018) 110(1):97–
108. doi: 10.1093/jnci/djx123

41. Osman A, Yan B, Li Y, Pavelko KD, Quandt J, Saadalla A, et al. TCF-1
Controls T(reg) Cell Functions That Regulate Inflammation, CD8(+) T Cell
April 2022 | Volume 12 | Article 852927

https://doi.org/10.3322/caac.21492
https://doi.org/10.3978/j.issn.2078-6891.2012.030
https://doi.org/10.1053/j.gastro.2010.01.054
https://doi.org/10.1053/j.gastro.2010.01.054
https://doi.org/10.1038/s41575-019-0189-8
https://doi.org/10.1093/hmg/ddab208
https://doi.org/10.3892/ol.2018.8679
https://doi.org/10.1146/annurev-pathol-011110-130235
https://doi.org/10.1038/s41577-021-00534-x
https://doi.org/10.1093/carcin/21.8.1567
https://doi.org/10.1186/s13578-019-0361-4
https://doi.org/10.3892/ijmm.2021.4847
https://doi.org/10.1158/1541-7786.MCR-20-0687
https://doi.org/10.1038/s41698-018-0049-y
https://doi.org/10.2147/GICTT.S49002
https://doi.org/10.3390/ijms22010130
https://doi.org/10.1016/j.bbcan.2020.188460
https://doi.org/10.2174/1389450120666190618123846
https://doi.org/10.7197/1305-0028.33144
https://doi.org/10.7197/1305-0028.33144
https://doi.org/10.1038/s43018-021-00218-4
https://doi.org/10.1038/s43018-021-00218-4
https://doi.org/10.1053/j.gastro.2016.10.015
https://doi.org/10.1128/MCB.25.18.8108-8125.2005
https://doi.org/10.1128/MCB.25.18.8108-8125.2005
https://doi.org/10.1158/1078-0432.CCR-14-0809
https://doi.org/10.1158/1078-0432.CCR-14-0809
https://doi.org/10.1002/ijc.29800
https://doi.org/10.1371/journal.pbio.1002524
https://doi.org/10.1371/journal.pbio.1002524
https://doi.org/10.1016/j.ydbio.2015.03.012
https://doi.org/10.1016/j.ydbio.2015.03.012
https://doi.org/10.3748/wjg.v24.i39.4428
https://doi.org/10.3892/or.2017.6176
https://doi.org/10.1186/gb-2011-12-7-r70
https://doi.org/10.1016/j.gene.2019.144132
https://doi.org/10.3390/ijms22147429
https://doi.org/10.3390/ijms21103684
https://doi.org/10.1158/0008-5472.CAN-19-0458
https://doi.org/10.1186/s12943-019-0976-4
https://doi.org/10.1038/s41467-021-23923-1
https://doi.org/10.1158/2159-8290.CD-14-0863
https://doi.org/10.23922/jarc.2020-064
https://doi.org/10.21037/tgh.2020.03.08
https://doi.org/10.1155/2020/9037217
https://doi.org/10.1155/2020/9037217
https://doi.org/10.1126/scitranslmed.aad6352
https://doi.org/10.1093/jnci/djx123
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang and Yang Molecular Network of Colorectal Cancer
Cytotoxicity and Severity of Colon Cancer. Nat Immunol (2021) 22(9):1152–
62. doi: 10.1038/s41590-021-00987-1

42. Giannoni E, Parri M, Chiarugi P. EMT and Oxidative Stress: A Bidirectional
Interplay Affecting Tumor Malignancy. Antioxid Redox Signaling (2012) 16
(11):1248–63. doi: 10.1089/ars.2011.4280

43. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Céspedes MV,
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