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in form of retinol (ROH) or as provitamin  � -carotene. 
The latter is converted to ROH in a two-step process in 
intestinal mucosa cells ( 2 ). ROH is transported in the cir-
culation either unesterifi ed, bound to ROH-binding pro-
tein 4 (RBP4), or esterifi ed as retinyl esters (REs) in the 
hydrophobic core of lipoproteins. Furthermore, REs rep-
resent the storage form of vitamin A and are deposited in 
cytosolic lipid droplets (LDs) of various cell types [for re-
view see ( 3–5 )]. 

 For normo-physiologic function, mammals require 
small amounts of retinoids (vitamin A and metabolites) 
for biological activities: 11 -cis -retinal is the bioactive me-
tabolite in the visual cycle, and 9 -cis  and all- trans  retinoic 
acids are the ligands for nuclear receptors which, upon 
binding, transactivate gene expression ( 6, 7 ). Despite the 
small amounts of vitamin A required for biological activi-
ties (e.g., <25 pmol retinoic acid per gram tissue), large 
amounts of vitamin A ( � 1  � mol/g liver) are stored as REs 
in LDs of specialized liver cells that are known as fat-storing 
cells, lipocytes, Ito cells, or hepatic stellate cells (HSCs) 
( 8, 9 ). In mice, for instance, this hepatic vitamin A pool is 
suffi cient to ensure and maintain vitamin A supply for 
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 In this study, we employed the rat HSC-T6 cell line for a 
lipidomic and proteomic characterization of HSC-derived 
LDs. We induced LD formation by loading cells with ROH 
and oleic or palmitic acid. Lipidomic analysis of LDs re-
vealed that FA composition of TGs and REs shifted toward 
FA species used for loading of HSC-T6 cells. This was much 
less evident for CE and PL species. Proteomic analysis of 
LDs identifi ed a number of well-established LD-associated 
proteins, such as ATGL, CGI-58, and adipose differentiation-
related protein/perilipin 2 (ADRP/PLIN2) with known 
functions in TG and RE mobilization, respectively. Bioin-
formatic search for  � / � -hydrolase fold-containing pro-
teins in the LD proteome did not reveal additional known 
neutral lipid hydrolases. In vitro hydrolase activity assays 
demonstrate that rat (r)ATGL, activated by rat (r)CGI-58, 
effi ciently hydrolyzes both TGs and REs. Because previous 
studies showed that ATGL-KO mice do not exhibit in-
creased RE stores in the liver, we speculate that an addi-
tional, so far unidentifi ed, RE hydrolase must exist, which 
determines RE content of HSCs. 

 MATERIALS AND METHODS 

 Materials 
 Essentially FA-free BSA was obtained from Sigma-Aldrich (St. 

Louis, MO). The 1,2-diheptadecanoyl- sn -glycero-3-phosphatidyl-
choline (PC), 1,2-dinonadecanoyl- sn -glycero-3-PC, triheptadecanoin, 
and trinonadecanoin were obtained from Larodan (Stockholm, 
Sweden) and used as internal standards (ISTDs). Retinyl- and 
cholesteryl-palmitate were purchased from Sigma-Aldrich. 

 Cultivation of HSC-T6 cells and loading with 
ROH and FAs 

 HSC-T6 cells were obtained from Dr. William S. Blaner, Columbia 
University of New York. HSC-T6 cells were cultured in DMEM, 
high glucose (Gibco®; Invitrogen GmbH, Lofer, Germany), sup-
plemented with 10% fetal calf serum and antibiotics at 37°C under 
humidifi ed atmosphere and 7% CO 2 . To promote LD formation, 
cells were incubated for 16 h in DMEM supplemented with vari-
ous concentrations of ROH (5–50  � M; 10 mM stock solution in 
ethanol) and oleic or palmitic acid (20–200  � M; 4 mM stock solu-
tion in PBS, complexed to essentially FA-free BSA in a ratio of 
3/1   mol/mol). In some cases, HSC-T6 cells were serum-starved 
prior to harvest for 2 h by replacing incubation media with serum-
free DMEM supplemented with 2% BSA (serum-starvation). 

 Isolation of LDs by centrifugation 
 HSC-T6 cells were collected by trypsinization and resuspended 

in solution A [250 mM sucrose, 20 mM potassium phosphate (pH 
7.0), 1 mM EDTA, 1 mM DTT] containing protease inhibitor mix 
(20  � g/ml leupeptin, 2  � g/ml antipain, and 1  � g/ml pepstatin). 
For disruption, the HSC-T6 cell suspension was placed in a 45 ml 
cell disruption vessel (Parr Instrument Co., Moline, IL) and pres-
surized with 650 PSI N 2  gas for 30 min. Then, cell lysate was col-
lected and centrifuged at 1,000  g  for 5 min at 4°C to remove 
unbroken cells and nuclei. The supernatant was transferred into 
a centrifuge tube (Ultra-Clear™ centrifuge tubes; Beckman Instru-
ments Inc.™, Palo Alto, CA), overlaid with solution B [50 mM 
potassium phosphate (pH 7.4), 100 mM KCl, 1 mM EDTA, prote-
ase inhibitor mix), and centrifuged at 100,000  g  for 1 h at 4°C. The 
LD layer on the top was collected and used for analyses. 

several weeks ( 10, 11 ). Interestingly, hepatic vitamin A 
stores are also mobilized under pathological conditions, 
e.g., chronic alcoholic injury of the liver ( 12, 13 ). How-
ever, loss of vitamin A stores upon advanced liver disease 
(at the stage of liver fi brosis) is basically nonreversible 
( 14–16 )  . 

 LDs of HSCs not only contain REs but also TGs and cho-
lesteryl esters (CEs) which are surrounded by a phospho-
lipid (PL) monolayer (relative amounts of lipids are  � 40% 
REs,  � 40% TGs,  � 15% CEs, and  � 5% PLs, which vary 
depending on nutrition) ( 17, 18 ). Neutral glycerolipids 
have in common that the hydroxyl groups of their back-
bones are esterifi ed to FAs. The mobilization of these 
storage lipids requires the hydrolysis of respective ester 
bonds by specifi c enzymes, so-called lipases. Several stud-
ies have addressed the question of which lipases are ex-
pressed and involved in the hydrolysis of neutral lipids in 
HSCs. Mello et al. ( 19 ) reported that adipose TG lipase 
(ATGL) [annotated as patatin-like phospholipase do-
main containing protein 2 (PNPLA2)] and LPL are de-
tectable in rat HSCs at the mRNA level. In quiescent 
HSCs, ATGL mRNA levels were found to be higher than 
those of LPL. In contrast, in activated HSCs, mRNA levels 
of LPL increased, while those of ATGL decreased. At the 
protein level, pancreatic lipase-related protein 2 (PLRP2) 
and adiponutrin [annotated as patatin-like phospholi-
pase domain containing protein 3 (PNPLA3)] have been 
shown to be expressed in HSC-T6 cells and human pri-
mary HSCs, respectively ( 20, 21 ). Silencing of procoli-
pase (Clps) expression, the activator protein of pancreatic 
TG lipase and PLRP2, increased cellular RE content in 
HSC-T6 cells ( 20 ). Similarly, silencing of adiponutrin in 
the human cell line, LX-2, increased cellular RE content 
( 21 ). More recently, Taschler et al. ( 22 ) showed that mu-
rine ATGL, together with its coactivator comparative 
gene identifi cation-58 (CGI-58), hydrolyzes both TGs 
and REs. Interestingly, ATGL-KO mice do not accumu-
late more REs in the liver than their wild-type littermates. 
Furthermore, primary HSCs isolated from these mice are 
capable of mobilizing RE stores, which argues against a 
limiting role of ATGL in RE mobilization, at least in mu-
rine HSCs. Mice globally lacking PLRP2 or adiponutrin 
have not been reported to show any defect in hepatic RE 
mobilization  . Thus, to date, the identity of the lipase(s) 
responsible for the mobilization of REs in HSCs is 
unclear. 

 One of the reasons why only few studies have attempted 
to identify lipases of HSCs is the low abundance of HSCs in 
the liver (5–15% of all liver cells) ( 8 ). Hence, the isolation 
of primary HSCs gives either very low yield or high impuri-
ties. The generation of immortalized HSC cell lines, like 
rat HSC-T6 and human LX-1 and LX-2 cell lines, provide 
stable, homogenous, and unlimited sources of HSCs. 
These cell lines have been extensively characterized and 
have been shown to retain key features of quiescent HSCs 
( 23, 24 ). Thus, such cell lines can be used to biochemically 
characterize LDs by lipidomic and proteomic approaches 
and, more importantly, to identify lipolytic enzymes of the 
LDs. 
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MassLynx 4.1 software (Waters Corporation). Lipids were analyzed 
with the Lipid Data Analyzer 1.6.2 software ( 27 ), normalized to 
ISTDs, and expressed as percent composition. 

 SDS-PAGE and LC-MS/MS analysis 
 For proteomic analysis of LDs, acetone delipidated proteins 

were separated by SDS-PAGE and stained with Coomassie-bril-
liant blue. Then, gel lanes were cut into  � 60 slices of approxi-
mately equal size. Prior to digestion, individual slices were cut 
into several 1 mm 2  pieces. Tryptic digest was performed according 
to the method by Shevchenko et al. ( 28 ). Peptide extracts were 
dissolved in 0.1% formic acid and separated on an ULTIMATE 
3000™ dual gradient nano-HPLC system (Dionex, Amsterdam, 
The Netherlands). Samples were injected and concentrated on 
the loading column (PepMap™ C-18, 5  � m 100 Å, 300  � m inner 
diameter   × 1 mm; LC Packings, Amsterdam, The Netherlands) 
for 5 min using 0.1% formic acid as isocratic solvent at a fl ow 
rate of 20  � l/min. The column was then switched into the nano-
fl ow circuit and the sample was loaded on the nano-column (C-18 
PepMap™, 75  � m inner diameter × 150 mm, LC Packings) at 
a fl ow rate of 300 nl/min and separated using a gradient from 
0.3% formic acid and 5% acetonitrile to 0.3% formic acid and 
50% acetonitrile over 60 min. Samples were ionized in a Finni-
gan nano-ESI source (1.5 kV spray voltage) equipped with Nano-
Spray tips (PicoTip™ Emitter, New Objective) and analyzed in a 
LTQ iontrap mass spectrometer (Thermo Fisher Scientifi c). 

 Data analyses and bioinformatics 
 MS/MS spectra were identifi ed by search of the NCBI nonredun-

dant public database (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/) 
using SpectrumMill Rev. 03.03.084 SR4 software (Agilent). The 
following search parameters were used: tryptic digestion with one 
missing cleavage; carbamidomethylation as fi xed modifi cation; 
oxidized methionine, N-terminal pyro-glutamic acid, acrylamide 
at cysteine as variable modifi cations; sequence tag length >3; 
minimum detected peaks of 4; minimum matched peak intensity 
of 50%; precursor ion mass tolerance of ±2.5 Da, and product 
mass tolerance of ±0.7 Da. Acceptance parameters were three or 
more identifi ed distinct peptides with minimum sequence cover-
age of 20% and probability score of >95% according to Carr et al. 
( 29 ). Peptide validation and protein clustering were performed 
with the open access software, MASPECTRAS 2 ( 30 ). For peptide 
fi ltering, a threshold of 7.5 was used as peptide score and 75% as 
scored peak intensity score, respectively  . Proteins were accepted 
as identifi ed when at least two peptides passed the aforemen-
tioned fi lters and a total protein score of 25 was reached. Identi-
fi ed proteins were fi ltered according to:  i ) the plausibility that on 
the basis of their theoretical molecular mass they could have 
been identifi ed in the given gel slice;  ii ) the taxonomic classifi ca-
tion ( Rattus norvegicus ); and  iii ) their identifi cation in both bio-
logical replicates. Identifi ed proteins were grouped based on 
shared identifi ed peptides, whereas the protein with the highest 
number of identifi ed peptides was selected. The resulting protein 
list displays the LD proteome of respective sample sets. These lists 
were screened for putative hydrolases using the following ap-
proaches:  i ) scan of the protein sequences for the GXSXG sequence 
motif;  ii ) scan for proteins containing the  � / � -hydrolase-conserved 
domain using CDSearch ( 30, 31 ); and  iii ) a Reversed Position 
Specifi c BLAST (RPSBLAST) scan of the CDD database (version 
3.10, fi ltered for domain entries specifi c for  � / � -hydrolases) ( 32 ), 
to scan for potential  � / � -hydrolase domain regions. 

 Cloning of recombinant His-tagged rATGL and rCGI-58 
 The sequences containing the complete open reading frame 

of rATGL and rCGI-58 were amplifi ed by PCR from rat cDNA 

 Assessment of purity of LD preparations by 
immunoblotting 

 Proteins of LDs ( � 100  � g protein) were precipitated with ice-
cold 100% acetone (LD solution/acetone, 1/5, v/v) for 12 h at 
 � 20°C, centrifuged at 13,000  g  for 30 min at 4°C, and brought to 
dryness. Proteins were dissolved in SDS sample buffer, separated 
by SDS-PAGE, and transferred onto a polyvinylidene difl uoride 
membrane  . The membrane was blocked with nonfat dry milk and 
probed with antibodies specifi c for the following marker proteins: 
GAPDH for cytosol, inositol requiring protein 1 �  (IRE1 � ) for mi-
crosomes, and PLIN2 for LDs. For detection, the membrane was 
incubated with horseradish peroxidase-labeled secondary anti-
bodies. Bands were visualized using the ECL Plus Western blotting 
detection reagent (Thermo Fischer Scientifi c, Waltham, MA). 

 Extraction and quantifi cation of neutral lipids by HPLC 
 HSC-T6 cells were extracted twice with hexane/isopropanol 

(3/2, v/v) for 10 min under constant shaking. The organic phases 
were combined, evaporated, and lipids were dissolved in chloro-
form/methanol (2/1, v/v). TGs and CEs were separated on a 
Betasil® diol column (100 × 4.6 mm, 5  � m; Thermo Fisher Scien-
tifi c) using a ternary gradient solvent system and detected by 
HPLC-evaporative light scattering detection  , as described ( 25 ). 
The HPLC system consisted of a precooled sample manager (at 
4°C), pump, injector, and column oven (at 40°C), all of the Agi-
lent 1100 series (Agilent, Santa Clara, CA), and were coupled to a 
Sedex 85 evaporative light scattering detector (Sedere, Alfort-
ville, France). Data were analyzed using the ChemStation soft-
ware (B 04.01; Agilent). REs were separated on a YMC-Pro C18 
column (150 × 4.6 mm, S-5  � m, 12 nm; YMC Europe GmbH, 
Dinslaken, Germany) using an isocratic solvent system (98% 
methanol, 2% water, 1.2 ml/min) and detected at excitation 325 
nm/emission 450 nm. The HPLC system consisted of a Waters 
e2695 separation module, including a column oven (at 35°C) and a 
Waters 2475 fl uorescence detector (Waters Corporation, Milford, 
MA). Data were analyzed using Empower 3 chromatography data 
software (Waters Corporation). Neutral lipid standards were pre-
pared as 1 mg/ml stock solutions in chloroform/methanol (2/1, 
v/v). Calibration curves were measured from 2.7 to 350  � g/ml. 

 Separation of neutral lipids by TLC 
 Extracted lipids were spotted on a silica gel 60 (Merck, Darm-

stadt, Germany). For comparison, standard solutions containing 
cholesteryl-palmitate, retinyl-palmitate, and triolein were used. 
The silica gel was developed using n-hexane/diethylether/acetic 
acid (80/20/2, v/v/v) as solvent system and lipids were visualized 
by charring using concentrated sulfuric acid. 

 Lipidomic analyses of neutral and PL species of LD 
preparations 

 Total lipids of LD preparations (corresponding to 60  � g LD pro-
tein including ISTDs) were extracted using chloroform/metha-
nol/water (2/1/0.6, v/v/v). Extraction was performed under 
constant shaking for 90 min at room temperature. After centrifuga-
tion at 1,000  g  for 15 min at 4°C, the organic phase was collected. 
Then, chloroform was added to the aqueous phase and extracted as 
above. Combined organic phases were dried under a stream of ni-
trogen and dissolved in 1 ml chloroform/methanol/2-propanol 
(2/1/12, v/v/v) for ultra-performance (UP)LC-quadrupole time 
of fl ight (qTOF) analysis. Chromatographic separation was per-
formed using an AQUITY-UPLC system (Waters Corporation) 
equipped with a BEH-C18 column (2.1 × 150 mm, 1.7  � m; Waters 
Corporation) as previously described ( 26 ). A SYNAPT™ G1 qTOF 
HD mass spectrometer (Waters Corporation) equipped with an ESI 
source was used for detection. Data acquisition was done by the 
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morphology) ( 24 ). For isolation of LDs, we loaded cells 
with ROH and FAs to promote LD formation and RE ac-
cumulation. First, we tested different loading conditions 
with increasing concentrations of ROH (5, 10, 20, and 
50  � M) and a constant concentration of palmitic acid 
(FA16:0; 50  � M). Then, we measured cellular neutral lipid 
content (TGs, CEs, and REs) by HPLC. Although CEs 
could not be separately analyzed from REs because they 
coeluted, values refl ected mostly CEs(+REs) because cel-
lular CE content was much higher ( � 10-fold) than that of 
REs. We initially chose FA16:0 for loading because the pre-
dominant naturally occurring RE species in the liver is 
retinyl-palmitate (RE16:0) ( 35 ). As expected, upon load-
ing with increasing ROH concentrations, cellular ROH as 
well as RE content increased, while this was much less pro-
nounced for cellular TG and CE(+RE) contents (  Fig. 1A  ).  
Next, we examined whether increasing concentrations of 
oleic acid (FA18:1) or FA16:0 in combination with ROH 
(50  � M) would preferentially promote accumulation of 
any of the neutral lipid classes. In fact, we found that incu-
bation of HSC-T6 cells with increasing FA18:1 (and con-
stant ROH) concentration led to a dose-dependent 
increase in TG and CE(+RE) content, while for the latter, 
this increase was much less pronounced ( Fig. 1B ). Virtu-
ally no increase in RE content was observed, while cellular 
ROH content was actually decreased ( Fig. 1B ). Similarly, 
incubation of cells with increasing concentrations of 
FA16:0 led to an increase in cellular TGs, albeit to a lesser 
extent as compared with that of FA18:1-loaded cells 
( � 30%). Again, a minor increase in CE(+RE) content was 
observed, while RE content remained unchanged and 
ROH content again decreased ( Fig. 1C ). Taken together, 
the most pronounced increase in neutral lipid content was 
observed when cells were loaded with 200  � M FA18:1 + 50 
 � M ROH. 

 Lipidomic profi le of LDs of HSC-T6 cells 
 For the analysis of the lipidomic profi le, we loaded 

HSC-T6 cells with ROH+FA18:1 (50  � M and 200  � M, re-
spectively) and isolated LDs by nitrogen-cavitation and 
ultracentrifugation. Assessment of the purity of LDs by 
Western blotting revealed that the LD fraction contained 
the LD marker protein, PLIN2 (PAT-protein family mem-
ber, ADRP), while no signal was observed for GAPDH and 
IRE1 � , marker proteins for the cytosol and the endoplas-
mic reticulum fraction, respectively   (  Fig. 2A  ).  In contrast 
to the LD fraction, the cytosolic and membrane fractions 
were positive for GAPDH and IRE1 � , respectively ( Fig. 2A ). 
To visualize the gross distribution of the major neutral lip-
ids, we Folch-extracted LDs and separated lipids by TLC. 
As apparent from  Fig. 2B , LDs contained comparable 
amounts of TGs and CEs, while the amount of REs was 
much less. This is in-line with the relative distribution of 
cellular neutral lipids (see  Fig. 1A–C ), where we found 
similar TG and CE contents, while that of RE was around 
10-fold lower. 

 For the analysis of PC, TG, CE, and RE lipid species, LDs 
isolated from ROH+FA16:0- or ROH+FA18:1-loaded cells 
were subjected to UPLC-qTOF measurements. All lipid 

using Phusion® high-fi delity DNA polymerase (New England 
BioLabs Inc., Ipswich, MA). cDNA was prepared from mRNA 
using SuperScript reverse transcriptase protocol (Invitrogen 
Life Technologies, Carlsbad, CA). The primers were designed 
to create endonuclease cleavage sites (underlined) for subsequent 
cloning strategies: rATGL forward 5 ′ - AAGAATTC ATG TT CCCAA-
GGG AGACCAAG-3 ′ , rATGL reverse 5 ′ - AAGCGGCC G CA   TCAGC-
AA GGTGGGAGGC CAGA-3 ′ , rCGI-58 forward 5 ′ - AGAATTC AT-
GAAAGCGATGGCGGCGGA-3 ′ , rCGI-58 reverse 5 ′ - AACTCGAG -
TC AG TCTACTGTGTGGCAGAT-3 ′ . 

 PCR products were ligated to compatible restriction sites of 
the eukaryotic expression vector, pcDNA4/HisMax (Invitrogen 
Life Technologies). A control pcDNA4/HisMax vector express-
ing  � -galactosidase (LacZ) was provided by the manufacturer 
(Invitrogen Life Technologies). 

 Expression of recombinant proteins and preparation 
of cell extracts 

 Monkey embryonic kidney cells (COS-7, ATCC CRL-1651) were 
transfected using Metafectene (Biontex GmbH, Munich, Ger-
many) as described ( 33 ). For the preparation of cell extracts, cells 
were collected by trypsinization, washed three times with PBS, and 
disrupted in solution A by sonication (Virsonic 475; Virtis, Gar-
diner, NY). Nuclei and unbroken cells were removed by centrifu-
gation at 1,000  g  for 5 min at 4°C. The expression of the His-tagged 
proteins was detected using Western blotting analysis. 

 Determination of neutral lipid hydrolase activities 
 COS-7 cell lysates containing rat proteins (40  � g in 100  � l) 

were incubated with various substrates (100  � l) in a water bath at 
37°C for 1 h. In some cases, 40  � M Atglistatin (Ai) (in DMSO) 
or DMSO as control were added. Substrates contained 330  � M 
triolein and radiolabeled [9,10-3H(N)]triolein (30,000 cpm/
nmol) as tracer, respectively. RE substrate contained 300  � M 
retinyl-palmitate. Substrates were emulsifi ed with either 45  � M 
(for triolein) or 100  � M (for retinyl-palmitate) PC/phosphati-
dylinositol (3/1, mol/mol) in 100 mM potassium phosphate (pH 
7.4) by repeated sonication (Virsonic 475, SP Scientifi c Virtis). 
Then, 5% essentially FA-free BSA was added. For assessment 
of TG hydrolase activity, radiolabeled FAs were extracted and 
the amount of radiolabeled FAs was determined by scintillation 
counting as described ( 34 ). Rates of TG hydrolysis were calcu-
lated by subtracting counts of blank incubations (100  � l solution A) 
and normalization to protein. For assessment of RE hydrolase 
activity, the release of ROH was determined by lipid extraction 
using 3 ml n-hexane/methanol (1/2, v/v), containing 0.5 mM 
butylated hydroxytoluene and 100 pmol retinylacetate per sample 
as ISTD, and ROH content was analyzed by HPLC-fl uorescence 
detection   ( 22 ). 

 Statistical analyses 
 Data are expressed as means + SD  . Statistically signifi cant dif-

ferences were determined by Student’s unpaired  t -test (two-
tailed). Group differences were considered statistically signifi cant 
for  P  < 0.05 (*),  P  < 0.01 (**), and  P  < 0.001 (***). 

 RESULTS 

 Neutral lipid accumulation in HSC-T6 cells upon loading 
with ROH and FAs 

 HSC-T6 is an established rat cell line which combines 
characteristics of quiescent (e.g., expression of retinoid-
related proteins) and activated HSCs (e.g., fi broblast-like 
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FA16:0 loading were observed in PC36:2 ( � 6-fold increase), 
suggesting that a signifi cant portion of FA18:1 was incor-
porated into PC species without further elongation and 
desaturation. 

 Analysis of CE species of LD preparations of either FA16:0- 
or FA18:1-loaded cells revealed that irrespective of the FA 
species used for loading, the three most abundant CE spe-
cies were CE18:1, CE20:1, and CE24:1 ( Fig. 2D ). Interest-
ingly, LDs of FA16:0-loaded cells contained more CE16:0 
and CE26:1 than those of FA18:1-loaded cells. In compari-
son, LDs of FA18:1-loaded cells contained more CE16:1, 
CE18:1, CE18:2, and, to a lesser degree, other unsaturated 

species with a relative abundance of >3% are depicted in 
 Fig. 2C–G . The major PC species of LDs from ROH+FA16:0-
loaded cells were PC32:0, PC32:1, PC34:1, and PC36:4, 
compatible with the idea that the PC species which are 
likely to contain one (PC32:1 and PC34:1) or two FA16:0s 
(PC32:0) are more prevalent ( Fig. 2C ). Loading of cells 
with ROH+FA18:1 shifted PC species of LDs toward 
FA18:1-containing species (e.g., PC34:2 and PC36:2 in-
creased by  � 2- and 6-fold, respectively), while PC species 
likely to contain at least one FA16:0 (PC32:0, PC32:1, 
PC34:1) were reduced by around 10–15% ( Fig. 2C ). Most 
prominent changes in PC species upon FA18:1 versus 

  Fig. 1.  Lipid loading of HSC-T6 cells induces accu-
mulation of neutral lipids. HSC-T6 cells were incu-
bated for 16 h with increasing concentrations of 
ROH and a constant concentration of palmitic acid 
(FA16:0) (A), increasing concentrations of oleic acid 
(FA18:1) and a constant concentration of ROH (B), 
or increasing concentrations of FA16:0 and a con-
stant concentration of ROH (C), as indicated. Cellular 
neutral lipids were extracted, quantifi ed by HPLC-
evaporative light scattering detection, and normal-
ized to cell protein. CEs and REs coeluted and thus 
are labeled as CE (+RE). Data are presented as means 
+ SD and are representative of three independent ex-
periments (* P  < 0.05, ** P  < 0.01, *** P  < 0.001).   
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  Fig. 2.  Lipidomic profi le of LDs of HSC-T6 cells upon loading with ROH and palmitic or oleic acid. HSC-T6 cells were incubated with 50  � M 
ROH and 200  � M palmitic (FA16:0) or oleic acid (FA18:1) for 16 h (A–G). Proteins of isolated LDs and cell fractions were analyzed by 
Western blotting using marker proteins for cytosol (GAPDH), membrane (IRE1 � ), and the LD fraction (PLIN2/ADRP). Coomassie bril-
liant blue stain was used as loading control (A). Lipid extracts of isolated LDs were separated by TLC and lipids were visualized by sulfuric 
acid charring (B). The relative distribution of PC species (C), CE species (D); TG species (E), and FA species esterifi ed to TGs (F) was ana-
lyzed by UPLC-qTOF. RE species (G) were analyzed by HPLC-fl uorescence detection. Data are presented as means + SD and are representa-
tive of three independent experiments (* P  < 0.05, ** P  < 0.01, *** P  < 0.001).   

CE species ( Fig. 2D ). Taken together, CE18:1 was the major 
CE species in FA-loaded HSC-T6 cells, irrespective of whether 
FA16:0 or FA18:1 was used for FA loading of cells. 

 TGs are the most prominent storage pool for FAs. Be-
cause TGs contain three FAs esterifi ed to the glycerol 
backbone, a large variety of combinations of different FA 
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tryptophan 5-monooxygenase activation proteins (14-3-3/
YWHA proteins). Because we aimed to identify neutral 
lipid hydrolyzing enzymes, we analyzed all identifi ed pro-
teins for the presence of an  � / � -hydrolase fold and the 
active serine consensus motif GXSXG. We found three 
proteins, namely CGI-58, cytosolic phospholipase A2  �  
(cPLA2a), and ATGL, which contained an  � / � -hydrolase 
fold, while two of them, cPLA2a and ATGL, also contained 
the GXSXG motif (  Table 2  ).  Interestingly, solely cPLA2a 
was found on LD preparations derived from nonstarved 
cells, while all of these  � / � -hydrolase fold-containing 
proteins were found on LD preparations derived from se-
rum-starved cells ( Fig. 3B ). To confi rm purity of the LD 
preparation, we performed Western blotting analyses. Us-
ing marker proteins for cytosol (GAPDH) and the mem-
brane and mitochondrial fraction [IRE1 �  and succinate 
dehydrogenase complex subunity A (SDHA), respectively], 
we observed no apparent contamination of the LD fraction 
(marker protein PLIN2/ADRP, see  Fig. 3B ). Signals for 
ATGL and CGI-58 were detectable in the LD fraction, which 
conformed to reports in the literature ( 36 ). In contrast, 14-
3-3 �  and AIF2 were detected in the cytosol and LD fraction 
( Fig. 3C ). Taken together, our proteomic analyses iden-
tifi ed ATGL, CGI-58, and cPLA2a as LD-associated  � / � -
hydrolase fold-containing proteins in HSC-T6 cells  . 

 Neutral lipid hydrolytic activities of rATGL 
 To investigate whether the hydrolytic activity of rATGL 

against TGs and REs is similarly stimulated by the presence 
of rCGI-58 as compared with murine ATGL and CGI-58, we 
expressed recombinant His-tagged rat proteins in mam-
malian COS-7 cells. Western blotting analysis indicated 
expression of both recombinant proteins at the corre-
sponding sizes (  Fig. 4A  ).  Then, lysates were subjected to in 
vitro neutral lipid hydrolase activity assays using triolein or 
retinyl-palmitate as substrates. Lysates containing rATGL 
exhibited  � 2-fold increased TG hydrolase activity as com-
pared with LacZ-expressing control lysates ( Fig. 4B ). This 
activity was stimulated  � 10-fold by the addition of rCGI-
58-containing lysates. Addition of the ATGL-specifi c in-
hibitor, Ai, completely blunted TG hydrolase activities 
of rATGL- and rATGL+rCGI-58-containing lysates to 
control levels ( Fig. 4B ). Furthermore, lysates containing 
rATGL+rCGI-58 exhibited  � 2.5-fold increased RE hydro-
lase activity as compared with LacZ control lysates ( Fig. 4C ). 
In summary, results indicate that rATGL, in the absence 
and presence of rCGI-58, hydrolyzes TGs, and that rATGL 
stimulated by rCGI-58 also hydrolyzes REs. In vitro activ-
ity of rATGL+rCGI-58 against TGs, however, was 100-fold 
higher as compared with RE hydrolase activity. 

 DISCUSSION 

 HSCs were initially termed “fat-storing cells.” This de-
rives from the large amount of neutral lipids which are 
stored in numerous LDs in the cytosol. These LDs contain 
not only TGs and CEs but also REs ( 17, 18 ). In fact, LDs of 
HSCs are the largest storage site for REs in the body ( 37, 38 ). 

species is possible. For example, if three FA16:0s are esteri-
fi ed to the glycerol backbone, the resulting TG species has 
a carbon atom number of 48 with a desaturation (double 
bond) of zero, termed as TG48:0, while if three FA18:1s 
are esterifi ed to the glycerol backbone, it gives a TG spe-
cies termed as TG54:3. Analysis of TG species of LDs de-
rived from ROH+FA16:0- or ROH+FA18:1-loaded HSC-T6 
cells revealed that the distribution of TG species was very 
much dependent on the FA species used for lipid load-
ing. LDs of FA16:0-loaded cells contained predominantly 
TG48:0, TG48:1, TG50:1, TG50:2, and TG52:2, with a rela-
tive abundance of >10%, all of which comprise TG species 
which contain at least one FA16:0 ( Fig. 2E , black bars). In 
contrast, if cells were loaded with FA18:1, the TG species 
profi le of LDs shifted toward TG species with increasing 
carbon numbers and desaturation. The most abundant 
TG species (>10% of total) were TG52:2, TG52:3, TG54:3, 
and TG56:3, again all of which contained at least one 
FA18:1 ( Fig. 2E , white bars). MS/MS analysis of TG spe-
cies revealed that upon FA16:0 loading of cells, around 
30% of all FAs esterifi ed to TG species were, in fact, 
FA16:0s and another  � 30% were FA18:1 ( Fig. 2F ). The 
relative abundance of other FA species (i.e., FA16:1, 
FA18:0, FA18:2, and FA18:3) was below 20%. In striking 
contrast, upon loading of cells with FA18:1, the utmost 
predominating FA species esterifi ed to TGs was FA18:1 
with a prevalence of  � 70% ( Fig. 2F ). Any of the other FA 
species determined accounted for less than 10%. These 
results clearly indicate that the majority of FAs taken up by 
HSC-T6 cells are immediately esterifi ed to TGs and depos-
ited within LDs. 

 In LD preparations of HSC-T6 cells, two RE species, 
namely RE16:0 and RE18:1, were detectable. Cells incu-
bated with FA16:0 contained  � 70% RE16:0 and  � 30% 
RE18:1, whereas cells incubated with FA18:1 contained 
10% RE16:0 and 90% RE18:1 ( Fig. 2G ). This indicates that 
both FA16:0 and FA18:1 are effi ciently esterifi ed to ROH. 

 Proteomic analysis of LDs 
 For the proteomic analysis of LDs, we loaded cells with 

ROH+FA18:1 to promote LD formation. In some cases, 
cells were serum-starved prior to harvest. We reasoned that 
starvation might induce expression of neutral lipid-catabo-
lizing enzymes. After isolation, LD proteins were separated 
by SDS-PAGE and analyzed by LC-MS/MS (  Fig. 3A  ).  As 
shown in  Fig. 3A , the protein pattern of the LD fraction 
was distinct from that of the cell homogenate or the mem-
brane fraction. In total, 168 and 131 LD-associated proteins 
were reproducibly identifi ed in the nonstarved (supplemen-
tary Table 1) and serum-starved preparations (supplemen-
tary Table 2), respectively, using the constraints of at least 
fi ve matching peptides and a protein score of >50.   Table 1   
lists identifi ed LD proteins which are directly or indirectly 
involved in the maintenance of lipid homeostasis.  Not sur-
prisingly, we not only found well-known LD-associated pro-
teins such as ATGL, its coactivator protein CGI-58, and the 
PAT family member PLIN2/ADRP, but also found UBX do-
main containing protein 8 (UBXD8), apoptosis inducing fac-
tor 2 (AIF2), and various isoforms of tyrosine 3-monooxygenase/
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hydrolases. In in vitro activity assays, we demonstrate that 
rATGL+rCGI-58 hydrolyze TGs and REs. 

 HSC-T6 cells do not contain suffi cient amounts of LDs a 
priori. Thus, we loaded cells with ROH and FAs. In agree-
ment with previous reports ( 24, 44 ), we found that loading 
of HSC-T6 cells with increasing concentrations of ROH 
and FAs triggered most prominently cellular retinoid and 
TG accumulation, respectively. Augmentation of RE stores 
of HSCs has also been demonstrated by feeding experi-
ments in rats which, after receiving a low- or high-ROH 
diet, exhibited decreased or increased cellular retinoid 
content (>50-fold difference), respectively ( 17 ). Further-
more, in our HSC-T6 cell loading experiments, the high-
est relative retinoid content was observed upon loading of 
cells with ROH and FA16:0 (50  � M each), giving a relative 
distribution of 3:43:54 of RE:TG:CE, respectively. Sev-
eral studies on isolated LDs of primary HSCs ( 17, 18 ) or 
sinusoidal cells (containing mostly HSCs) ( 45 ) reported 
higher RE than TG and total cholesterol contents, while in 
other studies the relative distribution of neutral lipids in 
primary HSCs or LDs of primary HSCs was reported to de-
crease in the order of TG>RE>CE ( 46, 47 ). These differ-
ences in the relative neutral lipid contents of HSCs are in 
line with our experimental data and results of vitamin A-
diet studies in rats ( 17 ), and suggest that the neutral lipid 

These RE stores are critical for ensuring a constant supply 
of vitamin A. In times of nutritional vitamin A undersup-
ply or defi ciency, these RE stores are mobilized and even-
tually depleted ( 4, 39, 40 ). Furthermore, hepatic RE stores 
are also depleted upon alcoholic injury ( 13   ), a phenome-
non which has attracted much attention. To date, the loss 
of the hepatic RE store is seen as a hallmark in the progres-
sion of liver disease from steatosis to fi brosis ( 8, 41–43 ). 
Despite this important role of the hepatic RE store under 
normo-physiological and pathological conditions, the iden-
tity of the protein(s) which facilitates the mobilization of 
neutral lipids (TGs, CEs, REs), in particular of REs, is still 
enigmatic. 

 In this study, we employed the rat HSC-T6 cell line as a 
source for the isolation of LDs. The aim was to determine 
the LD lipidome and proteome and to identify known or 
potential neutral lipid hydrolases by bioinformatic tools. 
We found that lipid species distribution of the TG and RE 
moiety was greatly affected by the FA species used for load-
ing, while this was much less the case for CE and PC spe-
cies. HSC-T6 cells accumulated about 10-fold more TGs 
and CEs than REs. Proteomic analysis revealed a number 
of well-known LD proteins, including ATGL, CGI-58, and 
PLIN2/ADRP. Interestingly, bioinformatic search for poten-
tial  � / � -hydrolase fold proteins did not reveal additional 

  Fig. 3.  Proteomic profi le of LDs derived from non-
starved or serum-starved HSC-T6 cells. HSC-T6 cells 
were incubated with 50  � M ROH and 200  � M oleic 
acid (FA18:1) for 16 h. In some cases, HSC-T6 cells 
were serum-starved for 2 h prior to cell harvest. Then, 
cytosolic, microsomal, and LD fractions were pre-
pared by ultra-centrifugation. A: Proteins of various 
fractions were separated by SDS-PAGE and stained 
with Coomassie brilliant blue. The protein lane of the 
LD fraction was sliced (as indicated) and subjected to 
proteomic analysis. B: Venn diagram of  � / � -hydrolase 
fold-containing proteins identifi ed on LDs from non-
starved or serum-starved HSC-T6 cells. C: Proteins 
of the cell homogenate (I), the cytosol (II), the mem-
brane/mitochondria (III), and the LD (IV) fraction 
were analyzed by Western blotting using antibodies 
against marker proteins GADPH for (II), IRE1 � /SDHA 
for (III), and PLIN2/ADRP for (IV), as well as against 
selected antibodies   ( � -, as indicated). In some cases 
proteins on the Western blot membrane were stained 
with Coomassie brilliant blue.   
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hepatocytes, reported TG50:1–3, TG52:2–4, TG54:3–6, and 
TG56:6–8 as main species ( 53 ). In the same study, the major 
PC species were reported to be PC38:4 and PC38:6, ac-
counting for  � 60% of all PC species; CE species were not 
analyzed. In comparison, we found in our lipidomic analysis 
that the RE and TG species distribution was very much de-
pendent on the FA species used for loading of the cells. If 
cells were loaded with FA18:1, the main RE species was 
RE18:1 ( � 90%) and FA18:1 was the predominating FA spe-
cies in all TG species ( � 70% of all FAs in the TG moiety  ). A 
similar shift in the FA distribution of RE and TG species was 
observed upon FA16:0 loading toward FA16:0-containing 
species. This responsiveness of the RE species distribution 
of HSC-T6 cells confi rms observations reported in the ini-
tial characterization study of HSC-T6 cells ( 24 ). In contrast 
to the TG and PC species distribution of activated primary 
HSCs ( 46 ) and hepatocytes ( 53 ), in our lipidomic analy-
sis of HSC-T6 cells, the major PC and TG species contained 
shorter FA chains with a lower degree of unsaturation (e.g., 
mostly TG48:0–1, TG50:1–3, and TG52:1–3; and PC32:1, 
PC34:1–2, and PC36:2  ). This suggests that the uptake of long-
chain polyunsaturated FAs from the diet (such as FA18:2, 

content of HSCs is dynamic and responds to the nutri-
tional availability of precursor lipids such as ROH and FAs. 
Interestingly, Testerink et al. ( 46 ) reported that upon acti-
vation of primary rat HSCs, the RE content was replaced 
by increasing TG and CE content. Because HSC-T6 cells 
exhibit an (partially) activated phenotype [fi broblast-like 
morphology, expression of  � -SMA, collagenase-1 ( 48, 49 )], 
changes in gene expression profi le may contribute to the 
relative distribution of neutral lipid composition of their 
LDs. An explanation of the relatively low cellular RE, but 
relatively high ROH content, of HSC-T6 cells in our ex-
periments could be that HSC-T6 cells did not effi ciently 
take up and esterify extracellular ROH, which, after etha-
nolic injection into the culture media, was likely com-
plexed to albumin (ROH:albumin) rather than to RBP4 
(ROH:RBP4). Fortuna et al. ( 50 ) showed that HSCs do 
not take up ROH:albumin as effi ciently as ROH:RBP4 (ap-
proximately two times less effi cient). Furthermore, they 
found that, after incubation of HSCs with ROH:albumin, 
a large portion of ROH was actually associated with the 
membrane fraction, presumably not available for esterifi -
cation ( 50 ). 

 Testerink et al. ( 46 ) compared the lipidomic profi le of 
LDs derived from quiescent and activated primary rat HSCs. 
In that study, 15–20% of neutral lipids in quiescent HSCs 
consisted of REs, with the main RE species being RE16:0 
( � 68% of all REs) and  � 9% being RE18:1, which is consis-
tent with earlier reports ( 51, 52 ). No information on TG or 
PL species distributions of quiescent HSCs is given, except 
that TG species containing long-chain polyunsaturated FAs 
(i.e., FA20-22 with four or more double bonds) dramatically 
increased upon HSC activation. A lipidomic analysis of LDs 
derived from another hepatic cell type, murine primary 

 TABLE 1. List of identifi ed LD proteins which are involved in lipid metabolism       

GI Number Protein Name

LD Preparation

Nonstarved (Score/Peptides)
Serum-starved 

(Score/Peptides)

9507243 14-3-3  � / �  (YWHAA/B) 185/5 160/11
13928824 14-3-3  �  (YWHAE) 290/13 192/11
9507245 14-3-3 � (YWHAG) 192/5 147/9
1051270 14-3-3 � (YWHAZ) 266/9 198/11
117558822 ABHD5 (CGI-58) 138/8 157/8
14192933 Aldehyde dehydrogenase, m.p. 326/19 —
6978501 Annexin A1 346/12 367/21
9845234 Annexin A2 360/10 349/19
55742832 Annexin A4 228/12 167/9
130502086 Annexin A6 407/18 —
213385255 Apoptosis-inducing factor 2 (AIF2) — 262/13
126722674 Cytosolic phospholipase A2 63/7 —
51948390 Estradiol 17- � -dehydrogenase 11 — 270/15
62945246 FAS-associated factor 2 (UBXD8) 132/8 —
16923952 Long-chain FA-CoA ligase 3 243/15 460/27
16758426 Long-chain FA-CoA ligase 4 447/27 524/30
213688411 Lysophosphatidylcholine acyltransferase 1 89/6 115/6
13928780 NADPH-cytochrome P450 reductase 133/9 —
189095277 PNPLA2 (ATGL) 200/11 256/15
55742862 perilpin 2 (ADRP/PLIN2) 393/21 436/21
16758568 Phosphatidylinositol transfer protein  � 162/12 —
11693142 Proliferating cell nuclear antigen 215/11 159/9
57164113 Sterol-4- � -carboxylate 3-dehydrogenase 146/9 —
17865351 Transitional endoplasmic reticulum ATPase 415/20 490/27
148747393 Trifunctional enzyme subunit  � 205/11 —

GI, genInfo identifi er; m.p., mitochondrial precursor.

 TABLE 2. List of identifi ed LD proteins which contain an  � / � -
hydrolase fold and/or the active serine consensus motif G-X-S-X-G     

GI Number Protein Name

Motif

 � / � -Hydrolase Fold G-X-S-X-G

117558822 ABHD5 (CGI-58) � —
126722674 Cytosolic phospholipase A2 � �
189095277 PNPLA2 (ATGL) � �

A � indicates proteins which contain the respective characteristic. 
GI, genInfo identifi er.



Proteome and lipidome of hepatic stellate cell LDs  1981

family members (fi ve classical perilipin family members, 
PLIN1–5), only PLIN2 (also known as adipophilin and 
ADRP) was found on the LD. In agreement with previous 
reports, PLIN2 is the most abundant PAT protein in the 
liver, while PLIN1 and PLIN5 are the most abundant PAT 
proteins in adipocytes and oxidative tissues, respectively 
( 56–58 ). PLIN2 expression has also been shown to posi-
tively correlate with the degree of liver steatosis ( 58, 59 ). 
Consistent with these observations, the knockdown of 
PLIN2 in mice leads to reduced TG accumulation in the 
liver and reduced hepatic steatosis in response to high-fat 
feeding ( 60 ). Also, in primary HSCs, PLIN2 expression 
correlates with lipid content ( 61, 62 ), indicating that in 
parenchymal and nonparenchymal liver cells, PLIN2 is the 
dominating PAT protein. Interestingly, Straub et al. ( 58 ) 
also identifi ed tail-interacting protein 47 (TIP47, anno-
tated as PLIN3) on LDs of HSCs, as assessed by immuno-
histochemistry of steatotic human livers. In our proteomic 
analysis, however, we did not fi nd TIP47, which might be 
due to a lower abundance of that protein. Because PLIN1 
and PLIN5 are the solely established substrates for protein 
kinase A ( 63, 64 ), it can be concluded that the mobilization 
of neutral lipids in HSCs is not hormonally regulated  . In-
terestingly, in human immortalized LX-2 HSCs, the up-
regulation of PLIN2 by FA+ROH loading was found to 
attenuate HSC activation, as evident by reduced expres-
sion of fibrogenic genes, while the opposite was found 
upon knockdown of PLIN2 expression by small interfering 

FA18:3, or FA20:4) and/or the elongation and desaturation 
of FAs signifi cantly contributes to the higher degree of very 
long-chain polyunsaturated FA species in TG as well as PL 
species contained in LDs of primary hepatocytes or acti-
vated HSCs. 

 The fact that the TG and RE species composition of 
HSC-T6 cells varied very much depending on the FA spe-
cies used for loading indicates a fl exibility which was not 
observed to that extent in the PC or CE pool. This fl exibil-
ity suggests that the acyltransferases, diacylglycerol  O -acyl-
transferases (DGATs), and lecithin:ROH  O -acyltransferase 
(LRAT), which are mainly responsible for TG and RE bio-
synthesis, do not exert pronounced acyl donor preference  . 
In fact, both DGAT1 and DGAT2 exhibit only an  � 2-fold 
preference for FA18:1 over FA16:0 ( 54 ). Similarly, LRAT 
exhibits virtually no preference for FA16:0 or FA18:1, al-
though it exhibits a clear preference for short acyl chains 
(e.g.,  � 50-fold higher activity for FA7:0) ( 55 ). Further-
more, this fl exibility also indicates that the neutral lipid 
store of HSCs quickly responds to FA and ROH overload 
and channels excess lipids for storage. This view goes in line 
with the observation that the relative lipid composition of 
primary HSCs is, in fact, very much dependent on the lipid 
composition and vitamin A content of the diet ( 17 ). 

 Proteomic analyses of LDs identifi ed a number of well-
known LD proteins, including one member of the PAT 
protein family, lipid hydrolases, acyltransferases, and regu-
latory proteins. Interestingly, from the nine PAT protein 

  Fig. 4.  rATGL exhibits TG and RE hydrolase activity. 
COS-7 cells were transfected with plasmids encoding 
His-tagged rATGL, rat CGI-58, and LacZ as control. A: 
Expression of recombinant proteins was analyzed by 
Western blotting. Coomassie brilliant blue stain was 
used as loading control. B: Cell-lysates (40  � g protein) 
containing various recombinant proteins were incu-
bated for 1 h with radiolabeled triolein and emulsi-
fi ed with PLs as substrate. In some cases Ai or solvent 
DMSO were added. After incubation, FAs were ex-
tracted and radioactivity determined by scintillation 
counting. C: Cell lysates (80  � g protein) were incu-
bated for 1 h with retinyl-palmitate and emulsifi ed with 
PLs as substrate. Then, retinyl-acetate was added as 
ISTD and retinoids were extracted. ROH content was 
determined by HPLC-fl uorescence detection  . All rates 
were calculated after blank-subtraction and were nor-
malized to cell protein. Data are presented as means + 
SD and are representative of three independent ex-
periments (* P  < 0.05, *** P  < 0.001).   
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proteins have been reported to be expressed in HSCs and to 
exhibit RE hydrolase activity ( 20, 21 ). One of the reasons 
could be that the expression levels of these proteins are rela-
tively low, and thus were below the detection limit of our 
MS/MS analysis. Another possibility could be that some of 
the lipases on the LDs of HSCs are regulated by transloca-
tion from the cytosol to the LD, in a similar manner as shown 
for HSL ( 72 ). In case that the absence of ROH in the incuba-
tion media triggers the expression of a RE hydrolases, in ad-
dition to ATGL (in opposite to the expression of LRAT 
which is induced by retinoids), we should have found these 
proteins in our serum-starved data set  . Furthermore, it is 
also possible that some of the LD-residing proteins got lost 
during the isolation procedure of LDs, and thus were not 
identifi ed  . From the identifi ed lipid hydrolases, it is feasible 
that ATGL contributes to the hydrolysis of TGs and REs. 

 The proteomic analysis of LDs has the limitation that 
“false positive” proteins might be identifi ed simply be-
cause of contamination with nonLD proteins. This may be 
caused by insuffi cient dilution of soluble proteins, but may 
also be caused by fl otation of organelles or membrane 
fragments because they got trapped in the LD fraction  . 
Our Western blotting analyses, however, showed no sign 
of contamination by other cellular fractions, ruling out ap-
parent contamination. Because the LC-MS/MS method is 
not quantitative, we have no information on the abun-
dance of any identifi ed protein. Thus, it could be that 
some of the identifi ed proteins are actually of rather low 
abundance (low-level contaminants) and were not detect-
able by Western blotting, but were identifi ed by MS/MS. 
Furthermore, Western blotting analysis for ATGL, CGI-58, 
AIF2, and 14-3-3 confi rmed that these proteins are in fact 
present in the LD preparation, confi rming the validity of 
the MS/MS analysis. 

 In summary, this proteomic study identifi es ATGL and 
CGI-58 as LD proteins of HSCs. Furthermore, we also dem-
onstrate that the rat homolog of ATGL hydrolyzes TGs and 
that rATGL hydrolyzes REs in the presence of rCGI-58, 
and thus may participate in the breakdown of both neutral 
lipid esters in HSCs  .  

 The authors thank Dr. William S. Blaner, Department of 
Medicine, Columbia University, New York, for providing the 
HSC-T6 cell line. 
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RNA ( 61 ). Furthermore, adenoviral overexpression of PLIN2 
in rat primary HSCs promoted LD formation but could 
not reverse the activated phenotype of the cells, as assessed 
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