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Abstract
Although the identification of inherent structure in chronic lymphocytic leukemia (CLL) gene

expression data using class discovery approaches has not been extensively explored, the

natural clustering of patient samples can reveal molecular subdivisions that have biological

and clinical implications. To explore this, we preprocessed raw gene expression data from

two published studies, combined the data to increase the statistical power, and performed

unsupervised clustering analysis. The clustering analysis was replicated in 4 independent

cohorts. To assess the biological significance of the resultant clusters, we evaluated their

prognostic value and identified cluster-specific markers. The clustering analysis revealed

two robust and stable subgroups of CLL patients in the pooled dataset. The subgroups

were confirmed by different methodological approaches (non-negative matrix factorization

NMF clustering and hierarchical clustering) and validated in different cohorts. The subdivi-

sions were related with differential clinical outcomes and markers associated with the micro-

environment and the MAPK and BCR signaling pathways. It was also found that the cluster

markers were independent of the immunoglobulin heavy chain variable (IGVH) genes muta-

tional status. These findings suggest that the microenvironment can influence the clinical

behavior of CLL, contributing to prognostic differences. The workflow followed here pro-

vides a new perspective on differences in prognosis and highlights new markers that should

be explored in this context.

Introduction
Chronic lymphocytic leukemia (CLL) is one the most frequently occurring leukemias in adults
in Western countries and is characterized by mature B cell accumulation in the blood, bone
marrow and secondary lymphoid organs. CLL patients can be divided into two major groups
based on whether their immunoglobulin heavy chain variable region (IGVH) genes are
mutated or unmutated. Patients with an unmutated IGVH gene have a less favorable prognosis
than patients with a mutated IGVH gene [1, 2]. Different chromosomal aberrations, such as

PLOSONE | DOI:10.1371/journal.pone.0137132 September 10, 2015 1 / 20

OPEN ACCESS

Citation: Yepes S, Torres MM, Andrade RE (2015)
Clustering of Expression Data in Chronic
Lymphocytic Leukemia Reveals New Molecular
Subdivisions. PLoS ONE 10(9): e0137132.
doi:10.1371/journal.pone.0137132

Editor: Ken Mills, Queen's University Belfast,
UNITED KINGDOM

Received: March 28, 2015

Accepted: August 12, 2015

Published: September 10, 2015

Copyright: © 2015 Yepes et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: Vicerectoría de Investigaciones and
Facultad de Ciencias, Universidad de los Andes
supported this work. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0137132&domain=pdf
http://creativecommons.org/licenses/by/4.0/


deletions in 11q, 13q, or 17p and trisomy 12, have also been found in CLL patients, with varied
prognostic implications [3]. Common genetic causes have not yet been identified [4], but
recurrent mutations in TP53 and ATM and new mutations in NOTCH1, SF3B1,MYD88,
BIRC3 and FBXW7 have been identified in recent years by next-generation sequencing [5].

Little research has been performed to examine the natural clustering of CLL patient samples
or to identify subtypes based on gene expression patterns, partly because expression studies in
CLL patients have focused on the analysis and comparison of established disease subtypes.
However, the identification of CLL patient groups is a current research goal, the realization of
which could contribute to the identification of different prognostic subtypes and help to
explain the heterogeneity in the clinical behavior of the disease. The main purpose of this study
was to assess the possibility of detecting molecular subtypes of CLL patients based on gene
expression microarrays in a relatively large group of samples obtained by merging expression
readouts. If so, the goal was to confirm subdivisions in different cohorts, identify markers in
the detected subgroups and explore the clinical and biological implications.

We followed the methodological workflow presented in Fig 1. Briefly, microarray datasets
from two different CLL expression studies were individually preprocessed, merged and cor-
rected for non-biological variation. The resulting pooled data were used to identify stable clus-
ters, or subgroups of patients with similar gene expression patterns. To this end, we applied
different unsupervised clustering methods to confirm the structure in the data (non-negative
matrix factorization NMF clustering, hierarchical clustering and multidimensional scaling).
Cluster analysis was performed in 4 other independent cohorts. To identify cluster-specific
genes, we identified genes that were differentially expressed between the clusters using the sig-
nificance analysis of the microarray SAMmethod in both the merged data and individual
cohorts.

The resulting genes were analyzed in relation with the biology of the disease, pathway
enrichment, and predictive role. The survival implication of the clusters and the individual
contribution of cluster-specific markers to survival were evaluated. The relationship of the clus-
ters to IGVHmutational status was also analyzed. A detailed explanation of the methodology
can be found in the Materials and Methods section.

Materials and Methods
A schematic description of the workflow is presented in Fig 1. Panel A shows the methodologi-
cal steps followed for clustering analysis, and panel B shows the steps for the biological evalua-
tion of the clusters.

Clustering Analysis
Dataset and Array Preprocessing. The present study used microarray expression profiles

of CLL obtained from the Gene Expression Omnibus (GEO) database of the National Center
for Biotechnology Information (NCBI). GSE39671: (n = 130) [6] and GSE22762: (n = 107) [7]
(both analyzed with the Affymetrix Human Genome U133 Plus 2.0 Array) were chosen for
clustering analysis because they contain data about time to treatment (TTT) and overall sur-
vival (OS), respectively, and have suitable, comparable and large numbers of samples. They
were independently preprocessed before combining them in one dataset for clustering and sub-
sequent analysis.

Another 4 cohorts that were analyzed using different microarray platforms were also chosen
and preprocessed for clustering analysis and to explore the relationship with IGVH mutational
status. These cohorts correspond to the following: GSE46261: (n = 211), Affymetrix Human
Gene 1.0 ST Array [8], GSE9992: (n = 60), Affymetrix Human Genome U133A Array [9],
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GSE2466: (n = 100), Affymetrix Human Genome U95A Array [10] and GSE38611: (n = 136)
Affymetrix Human Gene 1.0 ST Array [11].

Once the studies were selected, raw gene expression data from each study were indepen-
dently preprocessed; this process comprised 3 steps: 1) background correction to adjust the
intensity readings for nonspecific signals; 2) adjustment of the intensity readings for technical
variability to ensure that the measurements of all of the samples were comparable (normaliza-
tion); and 3) computation of a summary value for the different probes representing each gene
(summarization). Each probe was also linked to its corresponding gene name (annotation),

Fig 1. Methodology flow chart. Panel A shows the methodological steps followed for clustering analysis, and panel B shows the steps for the biological
evaluation of the clusters obtained.

doi:10.1371/journal.pone.0137132.g001
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and non-relevant information was removed (filtering) [12]. Individual cohort preprocessing
was performed using the RMA algorithm, a method that encompasses all 3 preprocessing steps
[13].

Entrez gene IDs for Affymetrix probes were obtained from the appropriate annotation pack-
age for each microarray platform. Gene filtering removed 10% of the unexpressed and non-
informative genes [14]. All of the analyses were performed using the appropriate package in R
[15]. Specifically, the ‘affy’ package was used for microarray reading and for the initial prepro-
cessing steps [16]. Gene annotation was performed using the annotation package [17]. Quality
control was performed with affyQCReport [18], and the filtering procedure was performed
with MetaDE software [19].

Dataset Pooling. Combining data from different studies can be beneficial for uncovering
underlying biological insights that are not easily identified in few cases and can increase the sta-
tistical power of the study. However, because non-biological experimental variation or “batch
effects” are observed across independent experiments, after merging cohorts, it is necessary to
correct for systematic variation without compromising the structure of the data or the biologi-
cal information contained within the data. Here, the cohorts GSE39671 and GSE22762 were
merged and corrected for non-biological variation using The COMBAT method (empirical
Bayes) implemented in the inSilicoMerging package [20].

Consensus-based Non-negative Matrix Factorization (NMF). To predict stable clusters
in the merged data, NMF was applied, which detects context-dependent patterns in gene
expression data rather than dividing clusters based on distance computation. NMF is based on
the decomposition of data into parts and can reduce the dimensionality of an expression set
from thousands of genes to several metagenes. Each metagene is defined as a positive linear
combination of genes in the expression data. NMF then groups the samples into clusters based
on the gene expression pattern of the samples as positive linear combinations of these meta-
genes. NMF Consensus repeatedly runs the clustering algorithm against perturbations of the
gene expression data and creates a consensus matrix to assess the stability of the resulting clus-
ters [21].

Let X be an nxp non-negative matrix and r>0 be an integer. Non-negative matrix factoriza-
tion consists of finding an approximation

X � WH;

whereW andH are nxp and rxp non-negative matrices, respectively. Because the objective is
to reduce the dimensionality of the original data, the factorization rank r is often used, such
that r<<min(n, p). The objective behind this choice is to summarize and split the informa-
tion contained in X into r factors: the columns ofW. The main approach to NMF is to estimate
the matricesW and H as a local minimum:

min
W;H�0

½DðX;W HÞ þ RðW;HÞ�;

¼ FðW;HÞ

where D is a loss function that measures the quality of the approximation. Common loss func-
tions are based on the Frobenius norm or the Kullback-Leibler divergence. The NMF algorithm
was applied in GenePattern software [22].

Cluster Number Selection and Outlier Removal. Selection of the number of classes or
clusters was performed using the quantitative Cophenetic coefficient defined in Brunet et al
[21]. The Cophenetic coefficient computes a score of global clustering robustness across the
consensus matrix. The number of clusters was also confirmed for inspection of the graphical
representation of the consensus matrix.
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Even though clustering methodologies using the consensus process can detect robust
groups, the identification of cluster-associated genes can be influenced by unusual samples. To
minimize the impact of outliers on cluster marker identification, samples with negative silhou-
ette widths were excluded, and only samples that were significantly associated with the center
of each cluster were included; this was performed using the cluster package [23].

Hierarchical Clustering and Multidimensional Scaling. To corroborate the subgroup
structure in the data, in addition to the NMF method, we also applied different methodological
approaches such as hierarchical clustering and multidimensional scaling. Preprocessed expres-
sion arrays were subjected to hierarchical clustering using the Ward method and the distance
1-r, where r is the Pearson correlation coefficient. Multidimensional scaling was applied to
visualize subdivisions in the merged data and to evaluate the distance used for the hierarchical
clustering. The analysis was performed using the cluster package [23].

Biological Evaluation of Clusters
Cluster Markers. To identify cluster-specific genes, we identified genes that were differen-

tially expressed between clusters using significance analysis of microarray (SAM) [24], allowing
the identification of up-regulated and down-regulated genes in each cluster. This method
assesses differential gene expression relative to the spread of expression across all genes. The
false discovery rate (FDR) was set to 0. The analysis was performed using the siggenes package
[25].

The markers obtained from SAM, using the merged data, were analyzed and used to predict
the more discriminatory genes for each cluster. To accomplish this, we used Prediction Analy-
sis for Microarrays (PAM), in which the nearest shrunken centroid for the data was computed
[26]. Leave one out cross validation (LOCV) was applied to cross-validate the classifier pro-
duced. The procedures were executed in the pamr package [27].

Functional Enrichment. To identify signaling pathways involved in the differences
between clusters, the differentially expressed genes identified with SAM were analyzed for
modular enrichment using the Genecodis server [28, 29, 30]. The method obtains co-occur-
rence annotations in the KEGG and Panther databases, the P values are calculated through
hypergeometric analysis corrected by FDR method

Nearest Template Prediction (NTP) and Microenvironment Signature. To associate the
class of a given sample (cluster membership) to a CLL microenvironment signature, the nearest
template prediction algorithm (NTP) [31] was applied to the merged dataset using GenePat-
tern software [22]. To obtain CLL microenvironment signatures, the original microarray data
from Herishanu et al [32] were used. Matched tissue and blood samples that were simulta-
neously obtained from CLL patients were preprocessed and analyzed to identify genes that
were differentially expressed between the lymph nodes (LN) and peripheral blood (PB), and
genes that were differentially expressed between bone marrow (BM) and PB. Differential
expression was assessed by SAM analysis (>2-fold change, FDR<20%). A B-cell receptor
(BCR) signature obtained by Pede et al [33] was used after BCR stimulation of CLL cells for
24 hours, and genes with a fold change>2 were considered.

Survival Analysis. Patients from cohorts GSE39671 and GSE22762 were used to deter-
mine whether the obtained clusters were related to survival (TTT and OS). Survival curves
were analyzed according to the Kaplan-Meier method and compared using the log-rank test.
To evaluate the contribution of individual genes to survival, Cox regressions were applied. The
analyses were performed using the survival package [34]. Given the relevance of the IGVH
mutational status for the prognosis of CLL, the relationship between clusters and the muta-
tional status was evaluated in the 4 independent cohorts.

Clustering of Expression Data in Chronic Lymphocytic Leukemia

PLOS ONE | DOI:10.1371/journal.pone.0137132 September 10, 2015 5 / 20



Heatmaps. Heatmaps were generated with Gene Pattern software. The genes in the heat-
maps were ordered based on their differential expression using a t test [22].

Results

Primary Cluster Identification in CLL
The use of small cohorts can prevent the identification of subgroups that are revealed when a
large and heterogeneous group of samples is employed. Therefore, in this paper, we combined
information from different and independent expression cohorts to increase the statistical
power of the study. We independently preprocessed the expression datasets GSE22762 and
GSE39671; both of these cohorts were originally assayed using the same microarray platform
(Affymetrix Human Genome U133 Plus 2.0 Array). After preprocessing, we obtained 16,287
genes for each dataset. We merged the above studies and adjusted for non-biological variation,
obtaining a list of 15,895 genes in common between the two studies and 237 samples in total.
This data matrix is available as S1 Table.

We used the NMF clustering method to cluster the described merged data according to
gene expression and identify patient subtypes. The NMF analysis defined two distinct high-
consensus CLL subgroups (Fig 2), to which we refer as cluster 1 and cluster 2. The subdivision
is evident when visualizing the consensus matrix (Fig 2A) and based on the highest value of the
global clustering robustness score for k = 2 (Fig 2B). Detailed clustering analysis results are pre-
sented in S2 Table and graphically represented in S1 Fig, in which the identity of the samples,
the cohort from which they were derived and their class membership after clustering with
NMF are shown.

To corroborate the partition of the samples into two different subtypes, we applied hierar-
chical clustering. We found class membership coincidence between the NMF consensus clus-
tering and the hierarchical clustering in 90% of the samples, as most samples belonged to the
same clusters in both analyses. This result supports two major subdivisions in the data. Fur-
thermore, hierarchical clustering allowed the two subgroups in the 4 independent cohorts to be
individually analyzed (Fig 3A and 3C–3F).

Multidimensional scaling was useful for evaluating the adequacy of the distance used in the
hierarchical clustering and made it possible to visualize two clusters in the data. This analysis
also revealed a lack of sample grouping on the basis of sample origin, confirming that the
pooled samples had been properly adjusted for batch effects (Fig 3B).

In conclusion, the merged expression dataset that represents a large and heterogeneous
group of patients with CLL can be naturally divided into two stable and robust transcriptional
subgroups. This subdivision is supported by methodological approaches of a different nature
(NMF clustering detects context-dependent patterns and hierarchical clustering divides data
based on distance computation) and was also confirmed in 4 independent cohorts.

Cluster-specific Marker Identification
We identified markers associated with the CLL subtypes by searching for genes that were dif-
ferentially expressed (DE) between the two clusters. The SAM analysis identified up to 3379
genes with a statistically significant difference between clusters in the merged dataset
(ΔSAM = 4 and FDR = zero). Under a more stringent cut-off (corrected P value = 0 and
median fold change>2), which may reflect a more biologically relevant scenario, we identified
230 genes that were differentially expressed between clusters.

Some of the most highly up-regulated genes in cluster 2 were FCRLA,HDHD2, TCL1A,
TNFRSF17 and SERPINI1; conversely, these genes were down-regulated in cluster 1. The
most up-regulated genes in cluster 1 include SERPINB2, DENND4B, C15ORF48, ZNF331 and
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NR4A2; conversely, their expression was down-regulated in cluster 2. The most highly up-regu-
lated genes in each cluster and their fold changes are presented in Table 1. A complete list of all
differentially expressed genes in each cluster as well as their statistical parameters and fold
changes can be found in the supplementary information (S1 File).

Importantly, the most significantly differentially expressed genes between clusters, obtained
either from the merged data or individual cohorts, showed outstanding reproducibility
(Table 2). The common genes found to be up-regulated in cluster 2 and conversely down-
regulated in cluster 1 include TCL1A, FCRLA, FIG4, AIM2, SELL, RAC2, CD27, SAMD9L.

The proto-oncogene TCL1 is of particular interest due to its crucial role in CLL pathogene-
sis. A high level of expression of this gene is associated with CLL development [35, 36, 37].
Recently, it has been demonstrated that stromal cells modulate TCL1 expression in CLL and
repress important target molecules such as FOS, JUN and members of the AP-1 complex, sug-
gesting that microenvironment-derived signals play an important role in the survival of CLL
cells [38]. TNFRSF17 was the first up-regulated gene identified in experiments in which CLL
cells were co-cultured with different stromal cells [38]. This gene was also identified as one of

Fig 2. NMF consensus clusters for the pooled data. NMF consensus analysis of the merged data revealed a good consensus for k = 2. A. Maximum
cophenetic coefficients for k = 2 to 5 clusters and the consensus matrices for k = 2 to 5 are shown. B. Plot showing a comparison of cophenetic coefficients
among k clusters. This score provides a summary of global clustering robustness across the consensus matrix, with zero indicating the least robust partition
and one indicating the most robust partition. From the perspective of robustness, the maximum peak of the cophenetic coefficient plot determines the optimal
number of subgroups in the data. The division in the data is also evident in the consensus matrix, which showed a clear boundary between red and blue
areas, indicating robust and stable clustering in comparison with other subdivisions.

doi:10.1371/journal.pone.0137132.g002
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Fig 3. CLL sample clustering showing the primary transcriptional subgroups.Dendrogram obtained by hierarchical clustering of different cohorts. A.
Merged dataset. B. Multidimensional scaling of the merged data; the left panel shows evidence of two clusters, and the right panel shows the two individual
cohorts after sample merging. However, some sample overlap between groups was evident. C. Cohort GSE38611. D. Cohort GSE9992. E. Cohort
GSE2466. F. Cohort GSE46261.

doi:10.1371/journal.pone.0137132.g003

Table 1. Most highly up-regulated genes in each cluster (merged data).

Cluster 2 Cluster 1

Gene Fold change Gene Fold change

1 FCRLA 4,51 SERPINB2 5,93

2 HDHD2 4,45 DENND4B 5,53

3 TCL1A 4,15 C15ORF48 5,36

4 TNFRSF17 3,93 ZNF331 5,20

5 SERPINI1 3,51 NR4A2 4,31

6 ANXA4 3,28 G0S2 4,28

7 UGDH 3,18 METRNL 3,91

8 GAPT 3,16 SLC7A5 3,60

9 AIM2 3,15 MAFB 3,43

10 CPNE5 3,10 IL1B 3,42

doi:10.1371/journal.pone.0137132.t001
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the most significantly differentially expressed genes between clusters in the merged data, sup-
porting the influence of stromal cells on cluster 2.

FCRL family of proteins showed differentially expression between clusters, these proteins
share many similar features with the classical Fc receptors and some members of this family
have predictive value for determining clinical progression in CLL [39]

Given the highly differential expression of TCL1 between clusters, its repeatable expression
pattern in different cohorts, and its role in the microenvironment and CLL progression, we call
attention to the biological implication of this gene in cluster subdivision.

Given the large number of genes that are differentially expressed between clusters and for
the purpose of proposing reliable cluster markers, we employed a prediction method (PAM) to
find the most discriminatory genes. From the 230 genes that were differentially expressed
between clusters, the method could identify a minimal set of 34 genes capable of predicting,
with an overall error rate of less than 5%, the cluster membership. The resulting markers
ordered by PAM score and showing the direction of gene expression are listed in Table 3.
Based on our analyses, the highest score was assigned to ZNF331 as a predictive marker of clus-
ters 1. ARID5A, C15ORF48, SLC7A5, ELL2,MTMR6, were also assigned to this cluster.
HDHD2, UGDH, TNFRSF17, FCRLA C11ORF73, ZNF559, and TCL1A, among other genes,
were assigned to cluster 2. Interestingly, one of the most biologically relevant genes in the clus-
ter 2, TCL1A, has roles as proto-oncogene, and the gene with the highest discrimination score
in the cluster 1, ZNF331, has roles as tumor suppressor gene.

We conclude that the similarity in different cohorts with regard to differential expression
patterns reflects the robustness in the group structure (i.e., the presence of two subtypes of
patients), and we suggest that important genes such as TCL1A and ZNF331 are accountable for
the biological subdivision.

Functional Enrichment. When analyzing the total list of genes that were differentially
expressed between clusters through functional enrichment, many co-occurring annotations
were found. The top annotations or terms, in order of corrected P values, were amino acid deg-
radation (2.87361e -14), purine and pyrimidine metabolism (3.32583e-13 and 1.00552e-11,
respectively), B cell receptor signaling pathway (6.55445e-11), protein processing in endoplas-
mic reticulum (8.21315e-11), RNA degradation (2.76037e-10), and RNA transport (6.45845e-
10). MAPK signaling also had a significant P value (1.52119e-06).

Given the importance of signaling pathways in cancer, we enlisted the genes identified in
the analysis that were involved in the BCR and MAPK signaling pathways. Genes involved in
the BCR signaling pathway includedMAPK1, CR2, CD19, BTK, PIK3R5, SYK, NFKB1, VAV1,

Table 2. Most highly up-regulated genes in cluster 2 (independent cohorts).

GSE39671 GSE22762 GSE9992 GSE46261 GSE24666 GSE38611

1 TNFRSF17 FCRLA TCL1A FCRL1 METTL7A FCRLA
2 TCL1A TCL1A SELL FCRL5 TCL1A SAMD9L

3 FCRLA HDHD2 TGFBI FCRLA CD79B FCRL1

4 HDHD2 SERPINI1 AIM2 PDGFD PTPN6 FCRL5

5 DYNLL1 ANXA4 CD79B ZMAT1 SYK TCL1A
6 CDC20 HIBCH FAM65B NDRG3 SKAP2 SLAMF6

7 IRF2 SLC25A43 TRAC SAMD9L CD27 FIG4

8 ZNF559 FIG4 C17ORF62 FCRL2 RAC2 FCRL2

9 HIST1H2AC C17ORF62 P2RY14 NIPAL2 FAM65B NDRG3

10 UGDH CPNE5 PSMB9 CCDC141 ACADM LYST

doi:10.1371/journal.pone.0137132.t002
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AKT1, CD79B, NFATC1, PPP3CB, PIK3CA, BLNK, FCGR2B,MAP2K2, PIK3R2, IKBKB,
PIK3AP1, RELA, RAF1, NRAS, SOS1, NFKBIB, NFATC2, PIK3R1, RAC2, PTPN6, PPP3CA,
PRKCB, and NFATC3. Genes involved in MAPK signaling includedMAPK1, BRAF,MAPK9,
PAK2, NFKB1, AKT1, PPP3CB,MAP2K2, IKBKB, RAF1, SOS1, NFATC2, NFKB2, CDC42, and
PPP3CA, among others. When the number of differentially expressed genes was reduced to
include only those with the largest differences in expression, the above annotations were main-
tained with significant P vales, and the BCR and MAPK pathways are highlighted (Fig 4).

It is possible that differences in the clusters are due to the B-cell receptor (BCR) activation,
which can trigger the activation of downstream signaling pathways such as the MAPK path-
way. This response can vary depending on the cellular microenvironment.

Table 3. Cluster-specific markers after prediction analysis-PAM.

Gene PAM score for cluster 2 PAM score for cluster 1 Fold change cluster 2 vs. 1 Fold change cluster 1 vs. 2

1 ZNF331 -0,1901 0,1527 0,19 5,20

2 HDHD2 0,1616 -0,1298 4,45 0,22

3 UGDH 0,0869 -0,0698 3,18 0,31

4 TNFRSF17 0,0850 -0,0682 3,93 0,25

5 FCRLA 0,0762 -0,0612 4,51 0,22

6 C11ORF73 0,0709 -0,0569 2,72 0,37

7 ZNF559 0,0496 -0,0398 3,01 0,33

8 ARID5A -0,0495 0,0398 0,36 2,81

9 TCL1A 0,0414 -0,0332 4,15 0,24

10 SERPINI1 0,0413 -0,0332 3,51 0,28

11 RP11-35G9.3 0,0404 -0,0325 2,84 0,35

12 MSH2 0,0384 -0,0309 2,86 0,35

13 ACADM 0,0379 -0,0305 3,01 0,33

14 FIG4 0,0363 -0,0291 2,90 0,34

15 C15ORF48 -0,0294 0,0236 0,19 5,36

16 HIBCH 0,0228 -0,0183 3,03 0,33

17 SLC7A5 -0,0224 0,0180 0,28 3,60

18 C17ORF62 0,0216 -0,0173 2,87 0,35

19 RNASEH2A 0,0173 -0,0139 2,41 0,42

20 ELL2 -0,0166 0,0134 0,38 2,60

21 ATG4C 0,0141 -0,0114 3,02 0,33

22 SAMD9L 0,0128 -0,0103 2,91 0,34

23 GOLPH3L 0,0104 -0,0084 2,62 0,38

24 STX7 0,0094 -0,0076 2,59 0,39

25 MTMR6 -0,0089 0,0072 0,39 2,57

26 HDDC3 0,0083 -0,0067 2,35 0,43

27 ZDHHC16 0,0077 -0,0062 2,58 0,39

28 TBCK 0,0062 -0,0050 2,73 0,37

29 CYB561A3 0,0060 -0,0049 2,45 0,41

30 CHD1 -0,0051 0,0041 0,44 2,28

31 AIM2 0,0044 -0,0035 3,15 0,32

32 ACOT13 0,0023 -0,0018 2,45 0,41

33 ACYP1 0,0011 -0,0009 2,76 0,36

34 FCGR2B 0,0011 -0,0008 2,88 0,35

Fold change from SAM

doi:10.1371/journal.pone.0137132.t003
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Microenvironment Signature Activation. Because the tumor microenvironment may
contribute to CLL pathogenesis, we searched for possible microenvironment associations in
the data. To associate the samples with a CLL microenvironment signature, we used the NTP
algorithm. We used the raw data from Herishanu et al [30] to obtain a microenvironment sig-
nature and found 86 differentially expressed genes between the LN and PB (>2-fold change,
FDR<20%) (S3 Table). Many of the genes that were overexpressed in the LN are considered
BCR target genes. Functional analysis of this microenvironment signature using Genecodis
software identified a set of BCR-related genes as the most overrepresented; the NF-κB and
NFAT pathways were also represented, both of which are activated by BCR signaling. There-
fore, the microenvironment signature obtained here indicates the activation of distinct signal-
ing pathways and tumor proliferation in the LN, as reported previously by Herishanu et al
[32].

After NTP, 88.6% of the samples were assigned to one of two possible signature classes
using FDR<0.05, and 93.4% of the samples were assigned to one of two possible signature
classes using FDR<0.2. The CLL samples were enriched for the microenvironment-related
signature, even though a relationship with specific clusters was not clearly found (Fig 5). It
was possible to find agreement between the prediction made by the method (signature class
assigned) and the two clusters in up to 56% of the cases. We also used the BCR stimulation sig-
nature previously described by Pede V et al [33] and observed a less confident prediction
(80.3% of samples using FDR<0.2 and 57.6% of samples using FDR<0.5) and a lack of clear
association with the clusters. The tested bone marrow signature also failed to show a clear rela-
tionship with a specific cluster.

The division of molecularly heterogeneous samples into two clusters can be influenced by
multiple and complex processes, including the influence of the cell microenvironment. Addi-
tionally, signatures applied in the prediction method are very particular and specific. Therefore,
it was not possible to link all the samples to the microenvironment signature tested.

Clustering and Survival Analysis
To evaluate the clinical relevance of the clustering, we assessed cluster membership in relation
to overall survival and time to treatment using the GSE22762 and GSE39671 datasets, respec-
tively. Kaplan-Meier curves showed that the cluster 2 patients had poorer outcomes compared
to the patients of cluster 1 (Fig 6). We compared the two groups using the log-rank test to eval-
uate the prognostic value of the model, and this analysis revealed a highly significant difference
between expression levels and TTT and a nearly significant difference in OS.

Fig 4. Tag cloud representing the most significant terms enriched in the list of DE genes. The sizes of the tags vary according to the number of
supporting genes found in each enriched term.

doi:10.1371/journal.pone.0137132.g004
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To evaluate the contribution of individual genes to the prognostic difference between clus-
ters, we applied Cox regressions to 230 genes (genes with the highest expression differences
between clusters, P value = 0 and median fold change>2). The analysis confirmed the results
of the Kaplan-Meier curves: the two clusters showed prognostic differences, and almost all of
the up-regulated genes in each cluster have the same relationship with survival (i.e., negative
for cluster 2 and positive for cluster 1) (S2 File).

Genes with statistically significant differences for both survival indicators (TTT and OS)
can be considered highly informative of survival and are listed in Table 4. NRIP1 andMAFB
from cluster 1 are highlighted due to their lower P values and positive relationship.

Of the 230 genes analyzed, it was found that several genes were associated with TTT and OS
(111 and 101, respectively). A total of 83 genes had a negative relationship with TTT, and 28
genes had a positive relationship with TTT, whereas 60 genes had a negative relationship with
OS and 41 had a positive relationship with OS (S2 File).

Fig 5. Heatmaps showing the association of clusters with A. microenvironment (ME) and B. BCR stimulation signatures. Both clusters showed a
degree of ME and BCR signaling activation. Nearest template prediction (NTP) using C. microenvironment and D. BCR stimulation signature.

doi:10.1371/journal.pone.0137132.g005
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Analyzing the clusters and the relationship to IGVHmutational status in the 4 independent
cohorts, we found that the segregation of the mutational status was independent of the cluster
membership; this was confirmed in all 4 independent cohorts, as seen in the heatmaps of Fig 7.
Furthermore, when examining known genes related to IGVHmutational status (genes
previously reported in the literature as expressed with a particular pattern in mutated vs. non-
mutated IGVH, e.g., LPL, ZAP70, CRY1, and ZBTB20), it was found that these markers were
not differentially expressed in the clusters.

In conclusion, the survival analysis of the two previously recognized clusters revealed a sur-
vival difference that may be attributable to gene expression. Several genes emerged as prognos-
tic markers of survival. The gene expression differences between clusters observed here could
provide new information about CLL prognosis that is independent of the IGVHmutational
status.

Discussion
In this paper, using a robust methodology and several cohorts of CLL patients reflecting a
broad spectrum of molecular events in the disease, it was possible to distinguish two different
patient subgroups and identify subgroup-specific genes. The similarity in the different cohorts,
with regard to differential expression patterns between the two identified subgroups, reflects
the robustness of the structure. The subdivisions were related with differential clinical out-
comes and genes associated with microenvironment and the MAPK and BCR signaling
pathways.

The TCL1A gene is important in the distinction between clusters due to its up-regulated
expression in one of the clusters, reproducibility between cohorts, and its role in the CLL
microenvironment and CLL pathogenesis. A high expression level of this proto-oncogene has
been associated with causal events in the development of CLL [35, 36, 37]. Sivina et al [38]
showed that TCL1A was among the top genes up-regulated in CLL cells by bone marrow stro-
mal cells (BMSCs). These authors provided evidence that the stromal microenvironment
induces TCL1A overexpression in CLL cells and represses TCL1A target molecules (AP-1

Fig 6. Clinical outcomes of the patients in the two cohorts. A. GSE39671, time to treatment (TTT) according to the cluster 1 and cluster 2. B. GSE22762,
overall survival (OS) according to the cluster 1 and cluster 2.

doi:10.1371/journal.pone.0137132.g006
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proteins of the FOS/JUN family). Particularly in lymphoid cells, AP-1 proteins can exhibit
induction of apoptosis and tumor-suppressive roles [40, 41, 42]. Therefore, these results sug-
gest that TCL1A inhibits AP-1-regulated pro-apoptotic activities that normally control B cells.

Interestingly, TCL1A and antigen receptors mediated signaling have been previously
associated [43, 44, 45]. TCL1A seems to acts as a modulator of B-cell receptor–kinase
activity, regulating the strength of BCR-mediated cellular activation. The subsequent cellular
outcome, associated with apoptosis, growth, inertia, seems primarily determined by a TCL1A-
dependent (AKT) [44]. The importance of TCL1A as a modulator of microenvironment-
derived stimuli, suggest its pharmacologic intervention as a treatment rationale for CLL.

Table 4. Genes showing common statistically significant differences for TTT and OS.

Cluster 2 Cluster 1

Gene survival outcome TTT OS Gen survival outcome TTT OS

1 FCRLA neg 4,79E-03 6,74E-04 1 SERPINB2 pos 5,90E-03 5,28E-04

5 SERPINI1 neg 2,41E-02 3,75E-02 2 DENND4B pos 5,84E-03 2,39E-04

10 CPNE5 neg 1,53E-02 4,30E-03 3 C15ORF48 pos 4,87E-02 1,02E-02

11 HIBCH neg 4,84E-03 1,29E-02 6 G0S2 pos 3,33E-03 5,01E-03

18 FCGR2B neg 1,20E-03 1,02E-03 9 MAFB pos 3,40E-03 4,49E-07

21 RP1135G93 neg 3,25E-02 9,26E-03 10 IL1B pos 1,23E-02 1,16E-03

26 NAPSB neg 1,69E-02 1,27E-03 13 NINJ1 pos 1,53E-03 5,10E-03

30 CD27 neg 2,64E-03 4,53E-04 14 NRIP1 pos 1,23E-02 1,89E-10

35 DYNLL1 neg 4,54E-03 1,09E-02 15 PFKFB3 pos 1,20E-02 1,96E-03

36 ZDHHC16 neg 2,49E-02 3,23E-02 18 IER3 pos 3,90E-03 2,03E-04

37 SPIB neg 1,21E-02 8,54E-03 19 SGK1 pos 2,91E-02 6,59E-05

38 TMEM14C neg 4,84E-03 3,69E-02 20 THBS1 pos 2,04E-03 2,14E-04

43 TMEM251 neg 4,63E-03 4,33E-02 23 IL8 pos 3,58E-03 1,94E-03

47 ACOT13 neg 1,53E-02 1,30E-02 25 C5AR1 pos 3,36E-03 2,75E-03

49 RAC2 neg 6,56E-03 9,14E-03 29 GNA15 pos 7,37E-03 1,06E-03

51 RNASEH2A neg 4,50E-03 6,34E-03 34 FOSL2 pos 3,73E-02 4,59E-03

58 HDDC3 neg 1,35E-02 3,34E-02 35 TREM1 pos 1,59E-02 3,13E-02

59 KIAA1407 neg 9,41E-03 3,59E-03 40 THBD pos 8,48E-03 6,87E-03

62 AIDA neg 6,66E-04 4,71E-02 41 UPP1 pos 8,78E-03 1,12E-04

64 VPREB3 neg 2,16E-02 3,08E-03 43 CCR1 pos 1,53E-02 7,36E-04

78 FCRLB neg 2,71E-03 3,52E-04 53 PLAUR pos 4,95E-03 3,57E-03

79 DAD1 neg 4,63E-02 2,19E-02 56 WHAMM pos 3,51E-02 7,29E-03

86 RUVBL1 neg 1,82E-03 8,55E-03 75 SMIM3 pos 1,11E-02 2,38E-04

93 ECHS1 neg 1,44E-02 9,43E-03

111 CDK2AP2 neg 7,40E-03 3,81E-02

116 MPV17 neg 2,42E-02 3,57E-04

120 RP5886K23 neg 1,96E-02 2,20E-04

121 CISD1 neg 2,44E-03 5,61E-03

126 ECI1 neg 1,19E-02 8,14E-05

138 AP2B1 neg 2,07E-02 1,47E-02

142 PRDX1 neg 7,02E-03 1,16E-02

144 SWI5 neg 3,35E-02 3,00E-03

147 BTK neg 3,92E-02 7,97E-03

positive (pos), negative (neg). Genes listed by fold change.

doi:10.1371/journal.pone.0137132.t004
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Therapeutic approaches to disrupt BMSC interactions in CLL are being developed [46, 47],
and the present study supports the division of patients based on expression of this gene prior
to administration of therapy.

These findings suggest that the microenvironment had a specific influence in patients from
cluster 2, this result may be related to the inhibitory activity of critical pro-apoptotic factors
that favor cellular survival. Although TCL1A showed no statistically significant differences
when examined individually (OS: 0,0599; TTT: 0,0626), it is possible that the influence of this

Fig 7. Heatmaps depicting the differential gene expression pattern in clusters cluster 1 and cluster 2
as well as the IGVH status. A, B, C, and D: the GSE38611, GSE2466, GSE9992 and GSE46261 cohorts,
respectively. Cluster membership was independent of IGVHmutational status.

doi:10.1371/journal.pone.0137132.g007
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gene on patient survival is indirect and is related to its target genes. The TNFRSF17 gene also
support the influence of stromal cells on cluster 2, this gene was the first up-regulated gene
identified in experiments in which CLL cells were co-cultured with different stromal cells [38],
This gene was identified as one of the most significantly differentially expressed genes between
clusters in our merged data.

On the other hand, the ZNF331 gene is of particular interest for cluster 1 due to its high
score in the prediction analysis, this gene is a Kruppel-associated-box zinc-finger protein gene
with a role in TP53 reactivation and induction of tumor cell apoptosis. Nahi et al [48] found
evidence of dose-dependent apoptosis and cytotoxicity in CLL cells and suggested that ZNF331
is a small molecule that targets TP53, which could be useful for the treatment of drug-resistant
leukemia. In addition, some evidence suggests that ZNF331 expression in CLL is associated
with a higher risk of relapse after treatment, suggesting its use a potential marker for risk [49].
Yu et al [50] recently reported that ZNF331 is a candidate tumor suppressor gene primarily
involved in gastric carcinogenesis, and Vedeld et al [51] found evidence that this gene is meth-
ylated in gastrointestinal cancers. Given the role of ZNF331 as a putative tumor suppressor and
the findings demonstrating the important tumor-suppressing functions of zinc-finger proteins
and their promising application in cancer therapy, it is worth exploring the functional role of
this gene in CLL.

Based on the modular enrichment analysis and the examination of differentially expressed
genes, it is possible to speculate that differences in the clusters are due to B-cell receptor (BCR)
activation and downstream signaling. The MAPK signaling pathway is one the pathways acti-
vated by the BCR receptor [52]. Antigen-dependent BCR activation has been shown to acceler-
ate disease progression in a mouse lymphoma model [53]. Enrichment of the MAPK signaling
pathway in CLL is consistent with recent work by Chuang et al [6]; these authors identified
gene co-expression subnetworks that were associated with disease progression. In one of these
subnetworks, genes in the MAPK signaling pathway had higher expression levels in patients at
early stages of the disease.

The groups obtained here are supported by a robust methodology. Different clustering
methods have been developed and used to search for structure in gene expression data and
extract meaningful biological information. However, each method has limitations, and there is
no consensus regarding the best method of clustering. Therefore, we applied different unsuper-
vised methodologies to confirm the structure of the two groups. We applied NMF consensus
clustering and hierarchical clustering, and for most of the samples, the class membership
results were congruent. NMF clustering appears to have some advantages over other methods,
as it is not based on distances and provides a quantitative measure with which to identify the
number of clusters. Thus, we used this algorithm for our further analysis to identify cluster
markers. NMF clustering has been successfully used in other cancer studies. For example, Col-
lisson et al [54] identified subtypes of pancreatic ductal adenocarcinoma and their differing
responses to therapy, and Sadanandam et al [55] proposed a colorectal cancer classification
scheme associated with phenotype and responses to therapy.

Without a doubt, unsupervised class discovery in cancer research has led to the identifica-
tion of subgroups with prognostic implications and generated multiple biomarkers of major
importance. However, unsupervised clustering in CLL has been poorly explored, most studies
of CLL have been focused on the analysis of known prognostic markers such as IGVH status,
cytogenetic aberrations and mutated genes recently identified by next-generation sequencing
[1–3, 5]. To our knowledge, the use of unsupervised clustering of expression data in CLL is just
beginning to be explored [56]. The present work provides additional information that aids our
understanding of this disease, including information about a range of transcriptional markers
with potential clinical implications.
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