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ABSTRACT

Conservation biological control emphasizes natural and other non-crop vegetation
as a source of natural enemies to focal crops. There is an unmet need for better
methods to identify the types of vegetation that are optimal to support specific natural
enemies that may colonize the crops. Here we explore the commonality of the spider
assemblage—considering abundance and diversity (H )—in brassica crops with that
of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based
multivariate ordination approaches, hierarchical clustering and spatial eigenvector
analysis. The small-scale mixed cropping and high disturbance frequency of southern
Chinese vegetation farming offered a setting to test the role of alternate vegetation
for spider conservation. Our findings indicate that spider families differ markedly in
occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation,
taro and sweetpotato harbour spider morphospecies and functional groups that are also
present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in
brassicas, and so may have little benefit for conservation biological control services for
brassicas. Our findings also illustrate the utility of advanced statistical approaches for
identifying spatial relationships between natural enemies and the land uses most likely
to offer alternative habitats for conservation biological control efforts that generates
testable hypotheses for future studies.

Subjects Agricultural Science, Biodiversity, Ecology, Ecosystem Science

Keywords Ecological engineering, Conservation biological control, Ecosystem service, Spatial
autocorrelation, Variance partitioning, Hierarchical clustering, Principle coordinates of neighbor
matrices (PCNM), Distance based Moran’s Eigenvector Maps (dbMEM)

INTRODUCTION

In recent decades, anthropogenic activities—such as land clearing, environmental pollution
and agricultural intensification—have led to adverse effects on the occurrence, diversity and
evenness (Bengtsson, Ahnstrom & Weibull, 2005; Benton, Vickery & Wilson, 2003; Landis,
Wratten & Gurr, 2000; Sunderland ¢~ Samu, 2000; Thies et al., 2011; Thies ¢ Tscharntke,
1999), and even the outright extinction of numerous species (Thomas et al., 2004).
Biodiversity loss due to agricultural intensification is not merely driven by increases
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in the non-judicious use of hazardous fertilizers and pesticides (Geiger et al., 2010; Roubos,
Rodriguez-Saona ¢ Isaacs, 2014), but also the landscape simplification and fragmentation,
and the loss of habitat on which many species rely. To limit the use of chemical inputs and
to fulfill the food demands of a growing worldwide population, researchers and growers
have shifted their attention to the development of effective integrated pest management
(IPM) tactics by manipulating the cultural farming practices including vegetation patterns
(Gurr et al., 2016; Gurr et al., 2017; Landis, Wratten ¢ Gurr, 2000), often specifically to
conserve biological control agents (Fiedler, Landis ¢» Wratten, 2008; Liu et al., 2014; Pedigo
¢ Rice, 2014).

Habitat management has long been used to promote beneficial arthropods in
agroecosystems for the delivery of ecosystem services, particularly biological pest control
(Gurr et al., 2017). The addition of non-crop vegetation to a crop system is effective in
enhancing local densities of predators and parasitoids but is often not readily compatible
with farming practices and may reduce yields by reducing the area sown to the crop
(Letourneau et al., 2011). An alternative approach is to manipulate the availability of nearby
donor habitat in field margins or adjacent fields and uncropped zones. This avoids the need
to reduce to the extent of the focal crop. There is a need, however, to develop approaches
that will help understand specific interactions between crops, adjacent vegetation types and
natural enemies (predators and parasitoids) (Furlong, 2015; Furlong et al., 2008; Furlong ¢
Zalucki, 2010; Szendrei et al., 2014; Tscharntke et al., 2012).

Addressing the foregoing challenge has been methodologically difficult but population
and community ecology have entered an exciting phase of pattern unification (Blanchet,
Legendre & Borcard, 2008; Legendre & Gauthier, 2014). As the importance of spatial
ecological models has become better understood (Legendre ¢ Fortin, 1989; Legendre ¢
Gauthier, 2014), it has become increasingly clear that ecologists need to incorporate these
spatial distribution patterns into their ecological models. There have been a number of
methodological developments in ecology to investigate the influence of environmental
gradients on species’ spatial distribution patterns (Legendre ¢ Gauthier, 2014), for example
incorporation of geostatistical tools to explain geographical variation of species (Peterson,
Theobald ¢ Hoef, 2007). Spatial autocorrelation analysis is more robust and forgiving of
lower sample sizes and missing data that often accompany agroecological studies, compared
with the classical geostatistical approaches (e.g., semivariograms) (Blanchet, Legendre ¢
Borcard, 2008; Legendre ¢ Gauthier, 2014). There are several reasons to measure spatial
autocorrelation in studies of this nature. First, it indexes the nature and extent to which
fundamental statistical assumptions are violated, and, in turn, indicates the degree to which
conventional statistical inferences are compromised. It also signifies the presence of and
quantifies the extent of redundant information in georeferenced data, which in turn affects
the information contribution of each georeferenced observation to statistics calculated with
a database. More fundamentally, the measurement of spatial autocorrelation describes the
overall patterns across a geographic landscape, supporting spatial prediction and allowing
detection of striking deviations (Griffith, 2013).
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Spiders (Araneae) are an invariably abundant and dominant, species-rich guild of
predators in crop fields (Marc, Canard & Ysnel, 1999; Nyffeler ¢ Sunderland, 2003; Schinidt
et al., 2003; Schmidt & Tscharntke, 2005). Characteristically, few spider taxa achieve
dominance on agricultural lands, and they have been referred to as “agrobionts” (Marc,
Canard & Ysnel, 1999; Samu ¢ Szinetdr, 2002) and can play a vital role not only as generalist
predators in suppressing the pest densities, but also as specialist predators of key pest
species. For example, Chapman et al. (2013) showed that spider species are not truly
polyphagous, but exhibit the specialized feeding habits by feeding on jumping prey items
such as Collembola or slowly-crawling prey such as aphids. The results of another study
also suggested that manipulating spider community composition to give complementary
functional groups (i.e., foliage-hunters Xysticus cristatus (Thomisidae) and the ground-
hunters Pardosa palustris (Lycosidae)), can give a better biological control compared with
conserving predator biodiversity per se which can occur without necessarily increasing
functional diversity (Birkhofer et al., 2008). Earlier work, Riechert ¢ Lawrence (1997) and
Riechert & Bishop (1990), showed that the significant effect of spiders on the suite of pests
in a mixed vegetable cropping systems was an assemblage effect, rather than the effect of
just a few dominant spider species. It can, therefore, be important to focus conservation
biological control efforts relatively broadly across multiple natural enemy functional
groups.

It is, however, not clear if spider species utilise agricultural habitat in general or
exhibit specificity to crop and non-crop habitats on farms. This has clear and important
ramifications for the extent to which spiders utilize a diversity of crop types and non-crop
vegetation as source habitat when colonizing a focal crop of interest. This study was designed
to explore the extent of the similarity between spider assemblages in brassica crops and
different types of adjacent (non-brassica) crop and non-crop vegetation, and to explore
the influence of various adjacent vegetation types on the spatial distribution of spiders.
Specifically, we hypothesized that abundance and diversity—including functional groups—
of spiders would differ among vegetation types represented in a brassica-production
landscape, that some vegetation types would have spider assemblages similar to that of
brassica crops, and that this would indicate the potential value of this vegetation as donor
habitat from which spiders could move to colonise a newly planted brassica crop or to
repopulate after a disturbance event.

MATERIALS AND METHODS

Experimental design and sampling

Spiders were sampled in brassica crops and adjacent vegetation types in three sites in
Fujian Province, China. Two sites were located in the Nantong district (25°55'13.97"N,
119°15'42.15"E & 25°55'0.25"N, 119°15'39.46"E, respectively) and a third in the Minging
district (26°10'4.72"N-118°46'18.08"E), of greater Fuzhou City. Each site comprised a focal
brassica field and the adjacent vegetation types (comprised of both crop and non-crop
habitats) within an approximate 50 x 50 m grid. Adjacent crop habitats included litchi,
pumpkin, sweetpotato and taro; whilst non-crop habitat types consisted of adjacent field
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margins and fallow fields (both containing a variety of grasses, forbs and some bare ground)
as well as non-crop vegetation with small woody perennials. The three sites were typical
of smallholder farming in southeastern China and common in other agricultural systems
globally. All of the agronomic practices—including fertilizer inputs and (frequent) pesticide
application—were carried out as per normal by the host farmers.

At each site, spiders were sampled from at least 25 and up to 29 grid points (Minqging
n =29 points, Nantong 1 n =25 points, Nantong 2 n =27 points) (at least 10 m apart)
extending across adjacent vegetation types to the brassica field. Samples were collected
on five occasions from August and December of 2015, using a motorized blower-vacuum
sampler (YAHAMA-EBV260) with a removable net bag mounted in the inlet (Lee et al.,
20145 Lin, Vasseur ¢ You, 2016; Whitehouse, Wilson ¢ Fitt, 2005). A major typhoon in
October completely flooded fields, which severely affected the population dynamics of
spiders. Two sampling events before typhoon were considered for analysis, while three
sampling occasions collected after the typhoon were not considered in the analysis, as
spider abundances were very low. Samples were collected at each grid point by running the
vacuum sampler for 2 min within an area of 2 m?. Sample bags were labeled and transferred
to an ice box to prevent predation and sample degradation, and taken to the laboratory for
sorting and identification under a stereo microscope. All of the samples were kept in 95%
ethanol (EtOH) for preservation. Adults and immatures were identified to family level and
assigned to the morphospecies using BOLD taxonomic classifications (Ratnasingham ¢
Hebert, 2007) and a morphological key (Carl, 2016). Global Positioning System (GPS) data
of xy-coordinates were recorded using GARMIN GPS device (GPSMAP® 60CSx).

Statistical analysis

To test the importance of vegetation types on spider assemblages in brassica fields and
the influence of those habitats on the spatial distribution of spider species, we applied
variance partitioning, hierarchical clustering (for community similarities or dissimilarities)
and spatial eigenvector analysis for spider abundance and diversity data. Abundance “n”
and Shannon-Wiener index “H” (Shannon et al., 1949) were calculated using the vegan
package (vegan 2.4-0) (Oksanen et al., 2016), in R statistical software (R version 3.4.0),
then the data were Hellinger transformed to obtain normality and adjust variance prior
to multivariate analysis. The Hellinger transformation has good statistical properties to
test for relationships among explanatory variables and draw biplots in constrained or
unconstrained multivariate ordination (e.g., redundancy analysis RDA) without resorting
to the Euclidean distances (Legendre ¢ Gallagher, 2001) and is also suited to data sets with
multiple zero values. We identified the response of spider abundance and diversity (H)
against different vegetation types and weighted principal coordinates of neighbor matrices
(PCNM) as explanatory variables using the “varpart” and “pcnm” functions of package
“vegan” (version 2.4-1) (Oksanen et al., 2016) in R (version 3.4.0), which allowed variance
partitioning to separate the effects of weighted PCNM and vegetation types on spider
abundance and diversity (H) (Peres-Neto et al., 2006). PCNM, also known as Moran’s
Eigenvector Maps (MEM), is a powerful approach able to detect spatial or temporal
patterns (henceforth, only spatial patterns will be discussed) of varying scale in response
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data (spider abundance and diversity) (Borcard ¢ Legendre, 2002; Borcard et al., 2004;
Dray, Legendre ¢ Peres-Neto, 2006). Essentially, spatial variables are used to determine the
distance between sites with special focus on neighbouring sites. Additionally, the “rda”
function of package “vegan” (version 2.4-1) was used to test the significance of fractions
of each spider family’s abundance and diversity (H ), and triplots were constructed to
visualize the vegetation types associated with different spider families. All analyses was
carried out separately for each of the three experimental sites because of differences in
adjacent vegetation types to the brassica field.

To measure community dissimilarities of spiders in different vegetation types,
hierarchical clustering was carried out for the abundance and diversity (H) per sampling
points at each experimental site. A quantitative version of the Serensen index, Bray-Curtis
dissimilarity was used to measure the percentage differences and to construct dissimilarity
matrices for abundance and diversity (H) of spider families in brassica and adjacent
crop and non-crop habitat types using the “vegdist” function with “method = “bray””
(Aanderud et al., 2015; Jeremy, 2013) using “vegan” (version 2.4-1) (Oksanen et al., 2016).
We visualized the S-dissimilarity matrix using heatmap for the abundance and diversity
(H) of spider families at each of the experimental sites (Aanderud et al., 2015; Jeremy, 2013;
Murtagh & Legendre, 2014) by using the “gplots” (Gregory, Warnes & Lodewijk, 2016),
“Heatplus” (Ploner, 2015), “RColorBrewer” (Neuwirth, 2014) and “ComplexHeatmap”
(Gu, Eils & Schlesner, 2016) packages in R (version 3.4.0). An assessment of the uncertainty
in the cluster delineation was done through multiscale nonparametric bootstrap resampling
tests (Shimodaira, 2002) using “pvclust” (Suzuki & Shimodaira, 2013) package in R
(version 3.4.0). This helps to determine p-values (two types: approximately unbiased
(AU) p-value and bootstrap probability (BP) value) of each cluster in the hierarchy
(Suzuki & Shimodaira, 2006).

Spatial eigenvector analysis is particularly well suited to data with low spatial or temporal
replication, when compared to classical geostatistical analysis (e.g., semivariograms)
(Peres-Neto ¢ Legendre, 2010; Perovic ¢ Gurr, 2012), which was the case in our data. We
were interested in calculating and mapping the spatial variation in the occurrence of
spiders, and analyzing its relationship with the adjacent vegetation of the focal brassica
field. Distance-based MEM (dbMEM) (Borcard et al., 2004; Legendre ¢ Gauthier, 2014)
was used to control for spatial autocorrelation in tests of abundance and diversity (H)
of spider-vegetation relationships, see Griffith ¢ Peres-Neto (2006) using the packages
“adespatial” (Stéphane et al., 2017), “ade4” (Chessel, Dufour ¢ Dray, 2009), “adegraphics”
(Stéphane ¢ Aurélie, 2017) in R (version 3.4.0). We identified a total of 11 distance based
Moran’s eigenvector maps for Minqing, seven for Nantong 1 and nine for Nantong 2.
Significant Moran’s eigenvector maps for each of the experimental sites were identified
with forward selection using double stop criterion (Blanchet, Legendre ¢ Borcard, 2008),
o= 0.05 and R? values (for abundance; R> = 0.45 in Minging, R?=0.37 in Nantong 1
and R? = 0.34 in Nantong 2, and for diversity (H); R* = 0.46 in Minging, R> = 0.34 in
Nantong 1 and R?> =0.23 in Nantong 2). We identified one significant Moran’s eigenvector
map for spider abundance out of a total of 11 in Minging and nine for Nantong 2. Whilst
for diversity (H ); we identified two significant Moran’s eigenvector maps out of a total of
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(a) X1=Vegetation Intercept X2=PCNM (b) X1=Vegetation Intercept X2=PCNM

Residuals=0.94 Residuals=0.84

(c) X1=Vegetation Intercept X2=PCNM (d) X1=Vegetation Intercept X2=PCNM
0.14 023

Residuals=0.66 Residuals=1.10

Figure 1 Venn diagram for the fractions of variation obtained by variance partitioning of a response
data set; “Y” = Hellinger transformed spider taxa (A) abundance at Minqing, (B) diversity (H) at Min-
qing, (C) diversity (H) at Nantong 1 and (D) diversity (H) at Nantong 2; against two explanatory envi-
ronmental variable matrices; “X1” = Vegetation type surrounding the brassica field and “X2” = Prin-
ciple Coordinates of Neighborhood Matrix (PCNM) and their intercept.

Full-size & DOI: 10.7717/peer;j.3795/fig-1

11 in Minqging and one out of nine for Nantong 2. Further, canonical analysis (rda) was
performed to compute the dbMEM spatial models and the “anova” function was used to
test the significance of these models. All spatial models were found to be highly significant
(p-value < 0.001). R-codes and datasets are attached as Data S1-S7.

RESULTS

A total of 919 (461-Minqing, 216-Nantong 1 and 242 at Nantong 2) individual spiders
were captured, representing 48 morphospecies across nine families. In Minging, variance
partitioning results showed that vegetation type (X1) alone explained 13% of variation in
abundance of spiders, and the total effect of X1 and PCNM (X2) was 6% (Fig. 1A). On the
other hand, 5% of variation in diversity (H) of spiders at Minqing alone was explained by
the variable X1, and 20% of variation was explained by the X1 + X2 (intercept), whilst the
total effect of both variables X1 and X2 was 16% (Fig. 1B). The 23% of variation in spider
diversity at Nantong 1 alone was explained by the X2 and 14% by the variable X1, whilst total
effect both X1 and X2 was 44% of total variation (Fig. 1C). In Nantong 1, only 2% of total
variation in spider diversity was explained by the marginal effect of variable X1 (Fig. 1D).
RDA analysis (for testing the significance of each variance fraction) revealed strong effects
of vegetation types (X1) and weighted PCNM (X2) on the abundance of different spider
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Figure 2 RDA Triplot (RDA on a covariance matrix) of the spatial correlation between Hellinger
transformed abundance of spider families and vegetation types surrounding the brassica field using
PCNM as distance matrix. The arrow length and direction correspond to the variance that can be
explained by the environmental and response variables. The direction of an arrow indicates the extent to
which the given factor is influenced by each RDA variable. The perpendicular distance between abundance
of spider families and environmental variable axes in the plot reflects their correlations. The smaller the
distance, the stronger the correlation. Numbers represents the sampling points in figure.

Full-size &al DOI: 10.7717/peerj.3795/fig-2

families in Minging (R* = 26%, adj R?> = 13%), but the overall significance of the model
was lower (p-value = 0.07). Similarly, predictors X1 and X2 also showed strong effects
for spider diversity (H) in Minqing (R* = 19%, adj R? = 14%) with lower significance of
the overall model (p-value = 0.28). In Nantong 1, rda analysis showed strong effects of
predictors X1 and X2 on the diversity (H) of spiders (R* = 18%, adj R* = 05%) with lower
significance of the overall model (p-value = 0.11). Whilst, predictors X1 and X2 had less
effects on diversity (H) of spiders in Nantong 2 (R? = 10%, adj R*> = —03%) with very low
significance of the global model (p-value = 0.57). RDA ordination showed that non-crop
vegetation strongly supports the abundance of Linyphiidae and Salticidae at Minging,
while taro had particularly high in abundance of Araneidae, Oxyopidae, Tetragnathidae,
Theridiidae and Thomisidae (Fig. 2). In Minqging, rda ordination for diversity (H)
illustrated strong association of Thomisidae and Oxyopidae with non-crop vegetation,
Salticidae and Lycosidae with fallow land, and taro, in contrast, had high diversity (H) of
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Araneidae, Tetragnathidae and Theridiidae (Fig. 3A). However, in Nantong 1, non-crop
vegetation held a greater diversity (H) of Araneidae (Fig. 3B), and Oxyopidae in Nantong 2
(Fig. 3C). Sweetpotato exhibited greater diversity of Tetragnathidae and Lycosidae at
Nantong 1 (Fig. 3B), and Araneidae at Nantong 2 (Fig. 3C). Diversity of Oxyopidae
showed strong positive association with Litchi in Nantong 1 (Fig. 3B). The field margins
of brassica fields supported high diversity of Salticidae at Nantong 1 (Fig. 3B) and of
Salticidae, Thomisidae and Lycosidae at Nantong 2 (Fig. 3C).

Community similarity/dissimilarity analyses between vegetation types, showed that
brassicas share most of the spider families with other surrounding vegetation types in
terms of abundance (Fig. 4A, Figs. STA and S2A) and diversity (H) (Fig. 5A, Figs. S1B and
S2B) (same colour in heatmap). The soil surface-associated hunting Lycosidae, however,
showed strong differences in abundance and diversity (H) between different vegetation
types in all experimental sites (Fig. 4A, Figs. S3A and S4A). Additionally, to assess the
level of uncertainty in each cluster, the p-values (AU and BP) for each of the hierarchical
clusters were calculated using bootstrap resampling techniques. Attributes of spider family
abundance and diversity (H) are examined and hierarchical clustering performed. Values
on the edges of the clustering are p-values (%). Red values are AU p-values and green
values are BP p-values. Clusters with AU p-values >95% are significantly supported by the
abundance (Fig. 4B, Figs. S1C and 52C) and diversity data of spiders (Fig. 5B, Figs. S1D
and S2D). For example, abundance of spiders in Minqing (Fig. 4B), the cluster labelled
4 in Fig. 4B the observed AU p-values are 90%, 96%, 81% and 77%, whilst, observed BP
values are 44%, 40%, 43%, and 37%, respectively, and the cluster dendrogram with 96%
AU p-value were significantly supported by the spider abundance data.

Spatial autocorrelation patterns were found to be highly significant (P < 0.001) for the
abundance of spiders in Minqing and Natong 2, and for diversity in Minqing and Nantong
1. The spatial weighting matrix maps, based on the xy-coordinates of each sampling point,
associated with the dbMEM eigenfunctions for Minqing, Nantong 1 and Nantong 2 are
shown in Fig. 6A, Figs. S3A and S4A, respectively. The significant spatial correlation model
for Minqing, indicated that brassicas, non-crop vegetation, field margins, fallow land and
taro were the vegetation types spatially associated with greater spider abundance (Fig. 6B)
and diversity (H) (Fig. 6C). Similarly, for Nantong 2 brassica, field margin, sweetpotato
and non-crop vegetation were spatially associated with greater spider abundance (Fig.
S3B). Moreover, significant spatial autocorrelation was found only for spider diversity (H)
in Nantong 1; where litchi, sweetpotato and non-crop vegetation exhibited strong positive
spatial autocorrelation with the diversity (H) of spiders (Fig. S4B).

DISCUSSION

Mixed cropping systems that include perennial crops, non-cropped and non-sprayed
zones, offer a relatively stable environment, increasing the potential for alternative
and source habitat for the conservation of natural enemies (Blitzer et al., 2012; Marc ¢
Canard, 1997; Rypstra et al., 1999; Schmidt & Tscharntke, 2005). Among predator taxa
that can be important are spiders that attack pests as diverse as Spodoptera littoralis
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RDA variable. The perpendicular distance between abundance of spider families and environmental

variable axes in the plot reflects their correlations. The smaller the distance, the stronger the correlation.
Numbers represents the sampling points in figure.
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tom). Clusters with AU > 95 are consider to be significant.
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Figure 6 (A) Map showing the 29 sampling points (~10 m apart) in Minqing computed using geo-
graphical sampling distance matrix. Bubble plot maps based on the forward selection to identify the sig-
nificant dbMEM spatial model among all dbMEM eigenfunction models of spider’s (B) abundance and
(C) Shannon diversity; showing the relative importance of spider’s abundance and diversity along with
their spatial distribution. The size of the square box represents spider’s abundance and diversity in each
eigenvector, ranging from white (largest negative value) to black (largest positive value).

Full-size Gl DOL: 10.7717/peerj.3795/fig-6

(Mansour et al., 1980) and aphids (Birkhofer et al., 2008). Tt is known that spider
assemblages rather than individual, dominant species are important for pest suppression
(Riechert ¢ Lawrence, 1997; Riechert ¢ Bishop, 1990) but—in contrast to non-spider taxa—
we currently have a poor understanding of how to manage agroecosystems to best promote
biological pest control by spiders. Moving beyond the generalization that non-crop
vegetation can potentially suppressing pest populations by promoting functionally different
groups of natural enemies (Bianchi, Booij ¢ Tscharntke, 20065 Boller, Hini ¢ Poehling,
2004; Gurr et al., 2017; Thies & Tscharntke, 1999) is a key challenge in applied ecology.
Addressing this requires empirical evidence on the effects of differing vegetation types
on associated abundance and impact in nearby focal crops but work of this type requires
labour intensive surveys with associated laboratory sorting. Such field work can also can be
stymied by unexpected events such as floods that lead to small sample sizes and data sets
that are difficult to analyze with conventional statistical approaches. Our results suggest
that more advanced statistical approaches offer the scope to deal with this dual challenge
of ecology and data analysis.

In our study, spider community structure was clearly shown to vary among vegetation
types. There was high variance observed for spider abundance among the different
vegetation types at the scale of a few meters from the brassica crops in Minqging, whilst
spider diversity (H) was mostly a function of spatial distance and its combined effect
with adjacent crop and non-crop habitats. These results suggest the patchiness of spider
distribution in brassica production systems and was much stronger for cursorial families
(Lycosidae and Thomisidae) as compared with web-builders (Araneidae, Linyphiidae,
Tetragnathidae), a finding that is broadly consistent with Blitzer et al. (2012) and Schmidt
et al. (2003). This may reflect differences among the vegetation types for bare ground
would favour movement of cursorial spiders (ground-runners), unimpeded by vegetation
structure. Whilst, vegetation type influenced spider abundance, diversity was less more
strongly influenced by weighted PCNM matrix (distance between sites with special focus
on neighbouring sites). This suggest that surrounding vegetation nearby the brassica field
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affects the spider abundance at a local-scale (up to few meters from focal crop). This may
relate to the structure and permanence of vegetation types, both of which affect the scope
for a given vegetation type to provide alternative food or shelter resources and thereby
drive the assemblage and diversity (H) of spiders (Langellotto ¢ Denno, 2004; Schmidt &
Tscharntke, 2005; Thies ¢ Tscharntke, 1999).

Whilst some spider species tend to dominate predator communities in crop fields and are
considered as “agrobionts” (Samu ¢ Szinetdr, 2002), it is not clear if these species generally
prefer crop fields over other vegetation types and to what degree they may discriminate
between crop types. Specifically, in brassica agroecosystems with high levels of disturbance
from insecticide use, planting, and harvest events, adjacent crop and non-crop vegetation
can play a vital role in the local conservation of spiders. Our results illustrate that, for most
of the spider families, abundance is strongly associated with perennial or dense, bushy
vegetation types (taro, non-crop vegetation and pumpkin) nearby the brassica fields. This
finding is in accordance with (Schmidt et al. (2003) and Schmidt ¢ Tscharntke (2005) that
adjacent perennial vegetation can strongly influence the abundance and diversity of natural
enemies. This may be because these vegetation types offer a refuge from disturbance and
in which alternative food sources are present (Halley, Thomas ¢ Jepson, 1996; Topping,
1999; Topping ¢ Sunderland, 1994). In contrast to abundance, patterns of spider diversity
(H) in our study demonstrate strong association of non-web building spiders (Lycosidae,
Salticidae, Thomisidae and Oxyopidae) with fallow land and brassica fields (e.g., Carvalho
& Cardoso, 2014; Uetz, Halaj ¢ Cady, 1999). This may be a consequence of their mode of
hunting, since such habitats have relatively large areas of bare ground for dispersal and
foraging (Schmidt ¢ Tscharntke, 2005). For web building families (Theridiidae, Araneidae,
Tetragnathidae and Linyphiidae), diversity showed a strong association with the taro,
sweetpotato and non-crop vegetation, which may be due to the availability of more
relatively complex plant structures for building webs, potentially complemented by the low
disturbance regime of the fallow land (Schmidt & Tscharntke, 2005; Thies & Tscharntke,
1999; Topping, 1999). Overall, these results suggested different habitat requirement for
these two functional groups of spiders, further driving resource differentiation. Distinct
preferences, in terms of niche requirements for particular habitat—composed of certain
plant diversity—are known for spiders, (e.g., Bonte, Baert ¢» Maelfait, 2002; Griffin et al.,
2008). Such preferences offer scope for manipulative use to promote the ecosystem services
of biological control by spider functional groups that are the able to partition the prey
resource and achieve high levels of suppression. These results provide a foundation for
future research to further unravel the underlying mechanisms for the patterns observed
here; for example, distribution and assemblage of spider species caused as a result of plant
structural diversity in various cover types or caused by various agronomic practices and
the role of broader landscape in aerial dispersion of spiders.

In terms of advancing analytical approaches for handing data sets of the type dealt
with here, hierarchical clustering is shown to be a useful for measuring community
dissimilarities. In this study, we move beyond the measuring of diversity within the sites
and we investigated the S-diversity by assessing similarity of the spider assemblages among
the sampled habitats (Aanderud et al., 2015; Warnes et al., 2016). Results of B-diversity
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analysis showed commonality in most of the spider taxa abundance and diversity between
brassica and adjacent crop and non-crop vegetation types. This suggests that certain adjacent
crops (taro, sweetpotato and pumpkin) and non-crop habitats (non-crop vegetation and
field margins) shared spider taxa with brassica fields, so these may provide especially useful
refuges and serve as donor habitat for spiders spilling over into brassica crops following a
disturbance event such as replanting, insecticide use or flood.

The statistical approaches used in the present study show utility for extracting, from data
sets of modest size, testable hypotheses that can explore underlying mechanistic phenomena
related to spill-over patterns and confirm the relative importance of difference vegetation
types as source habitat for a given focal crop type. It is becoming necessary that ecologists
incorporate spatial autocorrelation patterns into ecological models, and the analysis of
population dynamics, and species distribution (Blanchet, Legendre ¢ Borcard, 2008). Our
results detected significant spatial autocorrelation patterns between the numbers of spider
individuals at different sampling points, and revealed highly significant spatial correlations
between the abundance of the spiders with field margins, taro, non-crop vegetation and
sweetpotato. The spatial eigenvectors method proved to be sensitive for detecting spatial
patterns in the present data despite it being constrained by natural factors. Accordingly, our
study also expands the methodological foundation for agroecological studies of ecosystem
providers for future research.

During the last few decades, the loss of biodiversity and ecosystem function in modern
agroecosystems has been a major and growing concern of agroecological researchers
(Bommarco, Kleijn & Potts, 2013; Millennium Ecoysystem Assessment, 2005; IPES-Food,
20165 Potts et al., 2016). Our study illustrates the importance of non-crop plants nearby to
crop fields to promote conservation biological control strategies for spiders and generates
testable hypotheses for future studies. For example, there is a need to measure and track
actual rates of spider movement between the habitat types used in the present study, in
order to determine if the predicted habitat types really are key donors of spider colonization
and recolonization for brassica crops. In addition, patterns of spider movement need to be
studied in relation to disturbance events. More generally, future research should extend
to testing the temporal effects of farm management practices (i.e., cropping patterns,
chemical inputs) interacting with agricultural landscapes heterogeneity (compositional
and configurational) on organizational and functional levels of agroecosystem. These
are the major factors which drive the distribution, structure and composition of spider

community in agroecosystems.
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