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ABSTRACT
Objective:  The risk of gastric cancer can be predicted by gastroscopic manifestation recognition 
and the Kyoto Gastritis Score. This study aims to validate the applicability of AI approaches for 
recognizing gastroscopic manifestations according to the definition of Kyoto Gastritis Score, with 
the goal of improving early gastric cancer detection and reducing gastric cancer mortality.
Methods:  In this retrospective study, 29013 gastric endoscopy images were collected and carefully 
annotated into five categories according to the Kyoto Gastritis Score, i.e. atrophy (A), diffuse 
redness (DR), enlarged folds (H), intestinal metaplasia (IM), and nodularity (N). As a multi-label 
recognition task, we propose a deep learning approach composed of five GAM-EfficientNet 
models, each performing a multiple classification to quantify gastroscopic manifestations, i.e. no 
presentation or the severity score 0–2. This approach was compared with endoscopists of varying 
years of experience in terms of accuracy, specificity, precision, recall, and F1 score.
Results:  The approach demonstrated good performance in identifying the five manifestations of 
the Kyoto Gastritis Score, with an average accuracy, specificity, precision, recall, and F1 score of 
78.70%, 91.92%, 80.23%, 78.70%, and 0.78, respectively. The average performance of five 
experienced endoscopists was 72.63%, 90.00%, 77.68%, 72.63%, and 0.73, while that of five less 
experienced endoscopists was 66.60%, 87.44%, 70.88%, 66.60%, and 0.66, respectively. The sample 
t-test indicates that the approach’s average accuracy, specificity, precision, recall, and F1 score for 
identifying the five manifestations were significantly higher than those of less experienced 
endoscopists, experienced endoscopists, and all endoscopists on average (p < 0.05).
Conclusion:  Our study demonstrates the potential of deep learning approaches on gastric 
manifestation recognition over junior, even senior endoscopists. Thus, the deep learning approach 
holds potential as an auxiliary tool, although prospective validation is still needed to assess its 
clinical applicability.

1.  Introduction

Gastric cancer (GC) is the fifth most common cancer 
globally and the fourth leading cause of cancer-related 
deaths [1]. In China, GC is the third most prevalent 
cancer and cause of cancer death, imposing a substan-
tial social burden [2]. GC is often found in the late 
stage. Early diagnosis and treatment can greatly 
increase the five-year survival rate [3,4]. Endoscopic 
screening is crucial for early detection and treatment 
of GC [5–9]. Innovations like narrow-band imaging 
(NBI), magnifying endoscopy (ME), and chromoendos-
copy have improved detection of precancerous lesions 

linked to GC [10–14]. However, accurately diagnosing 
patients with early-stage GC and ensuring prompt, 
comprehensive treatment remains a major challenge 
in current medical practice. In China, only 20% of GC 
cases are detected early, significantly lower than 
Japan’s 75% early detection rate [15]. This discrepancy 
is attributed to the country’s vast population and lim-
ited endoscopists, hindering widespread endoscopic 
screenings. Regional healthcare discrepancies also lead 
to varied diagnostic practices among endoscopists, 
complicating consistent GC diagnoses. These chal-
lenges impede large-scale GC screenings.
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The progression of GC typically involves atrophy, 
intestinal metaplasia, dysplasia, and carcinoma with 
Helicobacter pylori (H. pylori) playing a key role in car-
cinogenesis [16,17]. Atrophy and intestinal metaplasia 
are precancerous states traditionally diagnosed through 
histopathology. Recent advancements in endoscopic 
technology now allow for the accurate identification of 
atrophic and metaplastic mucosa before histological 
confirmation. The Kyoto Global Consensus in 2013 
introduced the Kyoto Classification of Gastritis (KCG) to 
standardize endoscopic diagnostic criteria, aligning 
with histopathological findings [18,19]. KCG is now a 
valuable tool that is widely accepted in clinical set-
tings and global gastritis research [20,21]. The Kyoto 
Gastritis Score (KGS) is an extension of the KCG; it 
evaluates five manifestations related to increased risks 
of gastric cancer and H. pylori infection: atrophy, intes-
tinal metaplasia, hypertrophic gastric fold, diffuse red-
ness, and nodular gastritis [22]. Each manifestation is 
assessed for presence and severity, contributing to a 
total score that ranges from 0 to 8. A score of 0 sug-
gests non-H. pylori infection, while scores of 2 or 
higher indicates its presence. A score of 4 or above is 
linked to a higher gastric cancer risk. Studies by 
Sugimoto et  al. and Toyoshima et  al. have further val-
idated the association between the high KGS and gas-
tric cancer risk, highlighting its potential in assessing 
cancer risk and managing of H. pylori infection [23,24].

Deep learning (DL) is a prominent subset of artifi-
cial intelligence (AI), known for its exceptional perfor-
mance in image recognition, which has facilitated 
widespread exploration in the medical field. In gastro-
intestinal endoscopy, AI has been utilized for tasks 
such as blind spot monitoring, lesion detection, and 
predicting the depth of malignant infiltration. However, 
its application in assessing gastric cancer risk is not 
extensively explored [16, 25–27].

To harness the full potential of AI in computer 
vision for effective gastric cancer risk assessment, this 
study developed a DL approach based on KGS, train-
ing a model on endoscopic images annotated with 
various KGS. The results demonstrated its ability to 
accurately identify and score the five endoscopic man-
ifestations outlined in the KCG: atrophy, diffuse red-
ness, enlarged folds, intestinal metaplasia, and 
nodularity. Comparative analyses also revealed that the 
AI’s diagnostic capability surpassed that of both junior 
and senior endoscopists. Integrating AI into KCG can 
enhance the medical systems in assessing gastric can-
cer risk, addressing diagnostic variations among 
regions and endoscopists, reducing the workload of 
endoscopists, and potentially facilitating large-scale, 
targeted endoscopic screening.

2.  Materials and methods

This study evaluated the artificial intelligence deep 
learning model in correctly identifying endoscopic 
manifestations and performing KGS on the gastric 
endoscopy images from visiting patients. The Flow 
chart of the experiment design is illustrated in Figure 
1. Endoscopists assessed the images based on the KGS 
criteria and annotated the presence and severity of 
the five manifestations (Atrophy A, Diffuse Redness DR, 
Enlarged Folds H, Intestinal Metaplasia IM, and 
Nodularity N). These annotations were then reviewed 
and validated by auditing endoscopists to ensure 
accuracy and consistency.

Subsequently, the annotated images were pro-
cessed and divided into training, validation, and test-
ing sets. The training set was used to train five deep 
learning models, collectively named as DLKGS, with 
adjustments made to the model parameters based on 
the model performances on the validation set. This 
iterative process aimed to optimize DLKGS perfor-
mance and construct an effective DL approach to KGS.

Finally, DLKGS performance was evaluated using the 
testing set. The accuracy and efficiency of DLKGS in 
identifying and scoring the endoscopic manifestations 
were compared with both highly experienced (senior) 
and less experienced (junior) endoscopists. This com-
parative analysis provided insights into the capabilities 
of DLKGS and its potential as a diagnostic tool in 
assisting endoscopists in KGS for gastric cancer risk 
assessment.

2.1.  Study population

In total, we collected 29013 gastric endoscopy 
images from 2087 patients. Amongst the 2087 
patients, 1134 (54.34%) were male patients and 953 
were (45.66%) female patients, aging from 18 to 
92 years with a mean age of 60.11 ± 12.07 years. All 
patients underwent upper gastrointestinal endos-
copy examinations at the Digestive Endoscopy 
Center of the Central Hospital of Dalian University 
of Technology between July 2022 and November 
2023. The inclusion criteria were as follows: (1) age 
over 18 years old; (2) voluntary participation in the 
clinical trial; (3) signing of the informed consent 
form that permits the use of their data for research 
purposes. The exclusion criteria were as follows: (1) 
use of medications within two weeks prior to enroll-
ment that could affect the observations of this 
study, including proton pump inhibitors, H2 recep-
tor antagonists; (2) history of gastric surgery, includ-
ing surgical procedures, endoscopic submucosal 
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dissection (ESD), or endoscopic mucosal resection 
(EMR); (3) severe cardiac, hepatic, renal dysfunction, 
as well as severe neurological or psychiatric 

disorders. This study has been approved by the 
Ethics Committee of the Central Hospital of Dalian 
University of Technology (YN2022-047-06).

Figure 1. F low chart of the experiment design.
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2.2.  Collection of endoscopic image data

The eligible patients underwent upper gastrointestinal 
endoscopy examinations conducted by endoscopists, 
who performed comprehensive inspections and pho-
tography of the patients’ stomachs with Olympus 260 
and 290 (GIF-H260Z and EVIS LUCERA CV260/CLV260SL, 
GIF-H290Z and EVIS LUCERA ELITE CV290/CLV290SL). 
We obtained gastric endoscopy images from a selected 
number of patients by copying from the endoscopy 
device or the hospital’s endoscopic reporting system. 
For rare endoscopic manifestations in patients (such as 
nodular gastritis N or severe atrophic gastritis A), gas-
tric endoscopy videos were recorded using the 
Olympus endoscopy device and subsequently con-
verted into sequences of images. The collected endo-
scopic images comprised two types: white light images 
(WLI) and narrow-band imaging (NBI) images.

2.3.  Data preprocessing and annotation

We subjected the collected images to a screening pro-
cess to ensure quality control. The exclusion criteria for 
the endoscopic image were defined as follows: (1) 
extracorporeal images; (2) images of the oropharynx, 
esophagus, or duodenum; (3) unclear images; (4) 
images severely obstructed by mucus, fluid, or other 
substances; (5) incomplete gastric emptying; (6) images 
of other types of lesions.

After the image screening, endoscopists with differ-
ent experiences began the annotation process. The 
presence and severity of the five manifestations were 
annotated. It has to be noted that, NBI images were 
only scored for IM, whereas for other manifestations, 
they were annotated as ‘No presentation’. The annota-
tion does not imply overall scores of the patient, rather 
scores reflected only on single endoscopic image, 
which is given based on both presence of that mani-
festation and the location of stomach the image 
shows. Three junior endoscopists with over one year of 
experience and more than 1000 cases of endoscopic 
procedures annotated the selected images. All three 
junior endoscopists annotated each of the selected 
images. A senior endoscopist with over five years of 
experience and more than 5000 cases of endoscopic 
procedures reviewed the annotations. During the 

review process, if there was any disagreement among 
the annotations provided by the junior endoscopists, 
additional consultations were sought from two other 
senior endoscopists to avoid mistakes and ensure the 
highest standard of accuracy in the annotations. The 
annotation guidelines followed the standard set by  
the KGS system, and all endoscopists have been 
trained on KGS before commencing the annotations.

To enhance DL model’s robustness and prevent it 
from unnecessarily focusing on background informa-
tion, all irrelevant metadata such as camera settings 
were removed from the images to reduce noise. Each 
image was randomly cropped to 384 × 384 pixels and 
subjected to a random horizontal flip with a probabil-
ity of 50%, introducing variability and aiding the model 
in learning to recognize patterns independent of ori-
entation. Subsequently, the images were normalized 
by adjusting their pixel values to have a mean of 0.5 
and a standard deviation of 0.5 across all three RGB 
channels, improving model training stability and 
performance.

Table 1 presents the distribution of KGS in the 
endoscopic image datasets, i.e. the number and pro-
portions of each endoscopic manifestation of Kyoto 
Gastritis and those of their respective KGS (0, 1, 2, or 
no manifestation). It reveals the proportion of images 
with higher scores is relatively low, hinting at an imbal-
ance in the dataset.

The distribution of patients providing images for 
different scores of each endoscopic manifestation is 
shown in Table 2. The table lists the number of patients 
contributing images for each score (a total of 18 labels) 
and their proportions among all patients. As gastric 
endoscopy images can be captured from various 
angles of the same patient, images with different 
scores for the same manifestation may stem from the 
same patient. Consequently, this study divided the 
data on a per-image basis rather than on a per-patient 
basis. Table 2 highlights that the number of patients 
providing images of higher scores is relatively low.

The annotated images are partitioned as by the fol-
lowing; for each manifestation: (1) The images with the 
least occurrences were randomly split into training, 
validation, and testing sets with a 6:2:2 ratio. (2) Then, 
an equal number of images were randomly selected 
from the remaining images of different scores to match 

Table 1.  Gastric endoscopy images dataset for five gastroscopic manifestations.
No presentation Score 0 Score 1 Score 2 Sum

A 15419 (53.2%) 9722 (33.5%) 3306 (11.4%) 566 (2.0%) 29013
DR 26681 (92.0%) 529 (1.8%) 852 (2.9%) 951 (3.3%) 29013
H 25935 (89.4%) 2924 (10.1%) 154 (0.5%) — 29013
IM 6808 (23.5%) 19969 (68.8%) 1483 (5.1%) 753 (2.6%) 29013
N 19868 (68.5%) 8491 (29.3%) 654 (2.3%) — 29013
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the number of images across all score categories 
within the validation or testing sets. (3) The remaining 
images with other scores were then assigned to the 
training set. The distribution of the validation and test-
ing sets is shown in Table 3.

In the dataset of annotated images, a notable imbal-
ance existed between images with low scores and those 
with high scores, resulting in a skewed sample distribu-
tion. To mitigate this imbalance and prevent the model 
from favoring information from more prevalent catego-
ries while neglecting rarer lesion types, this study 
employed the polynom-fit-SMOTE oversampling method 
to augment images with fewer occurrences (< 2000) to 
an appropriate quantity (2000) [28].

2.4.  Model training

After evaluating popular models such as ResNet, ViT, 
and EfficientNet based on accuracy and runtime, we 
chose EfficientNet for this study due to its superior 
performance in both aspects [29–31]. We employed 
the GAM-EfficientNet [32] model to predict KGS from 
gastric endoscopy images. The GAM-EfficientNet 
model, derived from EfficientNetV2, incorporates a 
global attention mechanism (GAM) module, allowing 
the DL network to focus more on crucial information 
within the lesion area. EfficientNetV2 is well suited for 
clinical applications due to its fewer parameters and 
faster prediction speed. We trained five GAM-EfficientNet 
models specifically targeting each of the five manifes-
tations of Kyoto gastritis, which we will collectively 
refer as DLKGS.

We used the PyTorch framework. All experiments 
were conducted on NVIDIA GeForce RTX 4090 devices 
for model training and testing. Transfer learning was 
applied using models pre-trained on ImageNet, with a 
learning rate of 0.0001, a decay coefficient of 0.01, and 
training epochs set to 200.

2.5.  Model evaluation methods

We calculated common performance metrics for 
multi-class classification, i.e. average accuracy, specific-
ity, precision, recall, and F1 score, as defined in 
Equations 1–5, to evaluate the overall classification 
performance. We also employed the Receiver Operating 
Characteristic (ROC) curve and the Area Under the 
Curve (AUC). These metrics provide a comprehensive 
understanding of the approach’s performance in accu-
rately classifying different endoscopic manifestations. 
The ROC curve and AUC offer insights into the model’s 
ability to differentiate between classes, while the aver-
age accuracy, specificity, precision, recall, and F1 score 
provide a more detailed evaluation of the classification 
performance across multiple classes.

	 Accuracy TP TN TP TN FP FN= +( ) + + +( )/ 	 (1)

	 Precision TP TP FP= +( )/ 	 (2)

	 Specificity TN TN FP= +( )/ 	 (3)

	 Sensitivity TP TP FN= +( )/ 	 (4)

F1 score Precision Recall Precision Recall= ( ) +( )2 * * / 	 (5)

TP, TN, FP, FN indicates true positive, true negative, 
false positive, and false negative, respectively.

2.6.  Comparison of the diagnosis performance 
with endoscopists

In the evaluation of DLKGS with medical experts, we 
selected ten endoscopists from the Digestive 
Endoscopy Center of Central Hospital of Dalian 
University of Technology for evaluation. These endos-
copists were divided into two groups based on their 
diagnostic experience: senior endoscopists with over 
5 years of endoscopic work experience and junior 
endoscopists with over 1 year of work experience. After 
training on KGS, these endoscopists independently 
assessed the images in the testing set and assigned 

Table 2.  Patient distribution in five gastroscopic manifestations.
No presentation Score 0 Score 1 Score 2

A 1951 (93.5%) 1913 (91.7%) 967 (46.3%) 176 (0.8%)
DR 2058 (98.6%) 119 (5.7%) 294 (14.1%) 152 (0.7%)
H 2081 (99.7%) 946 (45.3%) 57 (0.3%) —
IM 1427 (68.4%) 2006 (96.1%) 316 (15.1%) 226 (10.8%)
N 2051 (98.3%) 1876 (89.9%) 12 (0.1%) —

Table 3.  The test and validation image datasets for five gas-
troscopic manifestations.

No presentation Score 0 Score 1 Score 2 Sum

A 113 113 113 113 452
DR 105 105 105 105 420
H 30 30 30 — 90
IM 150 150 150 150 600
N 139 139 139 — 417
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scores according to the KGS guideline. The assess-
ments of all endoscopists were then aggregated to 
analyze and compare their recognition abilities with 
DLKGS. To ensure an equal comparison between 
endoscopists and DLKGS, the metrics calculated were 
also the average accuracy, precision, specificity, recall, 
and F1 score for junior, senior, and all endoscopists.

To determine if there were significant differences in 
diagnostic abilities between DLKGS and senior/junior 
endoscopists, independent sample t-tests were com-
puted using R. The significance level was set to 0.05. 
This statistical analysis aimed to provide insights into 
the comparative performance of DLKGS and the endos-
copists of varying experience levels, shedding light on 
the effectiveness and reliability of the deep learning 
model in diagnosing Kyoto Gastritis manifestations.

3.  Results

3.1.  Model prediction

DLKGS demonstrates good overall classification perfor-
mance on the test set for the five manifestations of gas-
tric endoscopic images, with an average accuracy, 
specificity, precision, recall, and F1 score of 78.70%, 
91.92%, 80.23%, 78.70%, and 0.78, respectively. Notably, 
DLKGS excels at scoring nodular gastritis (N), with an 
accuracy of 93.85%. The model also demonstrates supe-
rior average specificity, precision, recall, and F1 score for 
nodular gastritis (N), compared to the other manifesta-
tions, with values of 93.85%, 96.92%, 94.03%, 93.85%, 
and 0.94, respectively. However, the limited number of 
patients providing images with nodular gastritis (N) 
poses challenges to DLKGS generalization ability 
(Table 4).

3.2.  Confusion matrix

The confusion matrix of the KGS models on the testing 
set are shown in Figure 2. Analysis of the matrix 
reveals that top-performing manifestation for DLKGS is 
nodular gastritis (N), followed by atrophic gastritis (A), 
characterized by relatively high recall rates. This implies 
that false negatives are less likely to occur in the 

identification of these two manifestations. Despite the 
strong performance, nodular gastritis (N) faces chal-
lenges related to dataset limitations, which may impact 
DLKGS generalization ability. This imbalance in the 
dataset may impact DLKGS performance when applied 
in broader, practical settings, emphasizing the impor-
tance of addressing dataset limitations for robust and 
reliable model performance.

The confusion matrix analysis highlights less accu-
rate recognition for atrophy score 2 (A2), diffuse red-
ness score 1 (DR1), enlarged folds score 1 (H1), and 
intestinal metaplasia score 2 (IM2). This may stem from 
the scarcity of images in these categories in the data-
set, leading to insufficient feature recognition by 
DLKGS. Additionally, some images may lack clear, visi-
ble features, further impacting the recognition of fea-
tures. For example, the diagnosis of diffuse redness 
score 1 (DR1) relies on the partial visibility of the sub-
epithelial capillary network upon close observation of 
the gastric mucosa. However, judging the surface con-
dition accurately from a distance can be challenging, 
potentially leading to confusion with cases exhibiting 
no diffuse redness manifestation (DR no manifestation). 
Similarly, identifying enlarged folds score 1 (H1) 
requires observing gastric body folds with adequate 
insufflation, which could be misconstrued with images 
showing inadequately spread folds. In the case of 
intestinal metaplasia score 2 (IM2), the limited field of 
view resulting from close observation of the mucosa 
may complicate determining whether the anatomical 
site is the gastric body or the gastric antrum, causing 
confusion with cases of intestinal metaplasia score 1 
(IM1) localized to the gastric antrum. These challenges 
underscore the importance of addressing dataset lim-
itations and refining image acquisition protocols to 
enhance the model’s accuracy and robustness in recog-
nizing manifestations with intricate diagnostic criteria.

3.3.  ROC and P-R curves

The performance of DLKGS was evaluated using ROC 
curves and Precision-Recall (P-R) curves. Figure 3 
depicts the ROC curves and P-R curves, showcasing 
the model’s proficiency in recognizing the five 

Table 4. D iagnostic performance of DLKGS on the test set.

manifestations Accuracy (%) Specificity (%) Precision (%) Recall (%) F1 score
Number of test set 

images

A 79.42 93.14 81.21 79.43 0.79 113
DR 75.24 91.75 76.22 75.24 0.75 105
H 76.67 88.33 78.03 76.67 0.77 30
IM 68.33 89.45 71.65 68.33 0.68 150
N 93.85 96.92 94.03 93.85 0.94 130
Overall 78.70 91.92 80.23 78.70 0.78 528
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manifestations of Kyoto gastritis on the testing set. In 
the testing set, the areas under the ROC curves for the 
recognition of A, DR, H, IM, and N manifestations were 
0.95, 0.94, 0.92, 0.90, and 0.99, respectively, with 

corresponding P-R values of 0.89, 0.85, 0.91, 0.79, and 
0.98. The model exhibited the highest recognition per-
formance for the N manifestation, followed by the A 
manifestation. The recognition abilities for DR and H 

Figure 2. C onfusion matrix of prediction in the test dataset for DLKGS.

Figure 3.  ROC and P-R curves of the five models.
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manifestations were comparable, while the recognition 
ability for IM manifestation was the lowest.

3.4.  Visual explanations of models

We perform a visualization of DLKGS with Gradient- 
weighted Class Activation Mapping (Grad-CAM) [33]. 
The evaluation results of the five different backbone 
networks combined with attention modules are sum-
marized in Figure 4. Atrophic gastritis score 1 (A1) 
includes cases where the atrophy boundary extends 
beyond the angulus but does not reach the cardia. We 
present only one case scenario for each manifestation 
across the possible scores for demonstration, except 
for IM, for which two cases, one NBI image and one 
WLI image are shown (the 4th and 5th row in Figure 4). 
The results indicate that the five models have achieved 
good performance after the addition of the attention 
module. The highlighted part (red area) in the figure is 
the area with a higher weight adopted by DLKGS 
when classifying endoscopic images. The model has 
been trained to classify and evaluate heavily based on 
the highlighted part. In contrast, the remaining 

light-colored parts (blue parts) are the areas with 
lower weights adopted. Consequently, the attention 
weight distribution of DLKGS in classifying endoscopic 
images can be understood by observing the distribu-
tion of different colors in the heat map generated by 
Grad-CAM, providing a visual interpretation of the 
model classification results.

3.5.  Assessment of endoscopist recognition 
abilities

The recognition abilities of all ten endoscopists for dif-
ferent manifestations on the testing set are presented 
in Table 5. The data indicates that both senior and 
junior endoscopists demonstrated excellent recogni-
tion abilities for nodular gastritis (N) in comparison to 
the other four manifestations. However, their profi-
ciency in recognizing intestinal metaplasia (IM) was 
notably lower, which is consistent with the model’s 
recognition abilities. Table 5. provides insights into the 
varying performance levels of the two groups of 
endoscopists across different manifestations, shedding 
light on areas where additional training or support 

Figure 4.  Representative examples of different manifestations with different scores (left) along with their feature heatmaps out-
putted by Grad-CAM for DLKGS (right). Since each image is annotated with 5 labels (each corresponding to one manifestation), 
identical images exist to represent different manifestations. For example, the image illustrating score 0 for manifestation A is also 
a representative image showing no presentation for manifestation DR. All representative images for A, DR, H, and N are WLI 
images, whereas for IM, both WLI images and NBI images are shown
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may be beneficial to enhance diagnostic accuracy and 
consistency.

3.6.  Comparison of model and endoscopist 
recognition abilities

The results depicted in Figure 5 demonstrate that the 
overall identification capability of DLKGS surpasses the 
average proficiency of all endoscopists. One-sided 
t-tests comparing the recognition abilities of DLKGS 
with both senior and junior endoscopists, as well as all 
endoscopists combined, are summarized in Table 6. 

These tests reveal that the model consistently outper-
forms junior endoscopists (p < 0.05) as well as senior 
endoscopists (p < 0.05) across all five performance met-
rics: average accuracy, specificity, precision, recall, and 
F1 score, with statistically significant differences. 
Additionally, significant disparities are observed 
between DLKGS and the entire cohort of endoscopists 
in terms of accuracy, specificity, precision, recall, and 
F1 score (p < 0.05).

To give more details, recognition ability for each 
manifestation was compared between the DLKGS and 
endoscopists separately. The results of statistical signif-
icance analysis are shown in Table 7. One-sided t-tests 
show that DLKGS outperforms junior (p < 0.05), senior 
(p < 0.05) and all endoscopists combined across all 
metrics with statistically significant differences in rec-
ognizing DR, IM and N. In contrast, regarding to A and 
H recognition, DLKGS performs significantly better 
compared to junior endoscopists, but not compared to 
senior endoscopists.

4.  Discussion

In this study, we developed a DL approach tailored for 
identifying the KCG from endoscopic images. We col-
lected and annotated a dataset consisting of 29013 gas-
tric endoscopic images from 2087 patients. Utilizing 
deep learning techniques, we trained DLKGS from these 
images specifically for KCG. The test results demon-
strated that the model achieved an average accuracy, 

Table 5.  Recognition ability of different gastroscopic manifes-
tations in senior, junior, and mixed groups (* indicates p < 0.05).

Accuracy 
(%)

Specificity 
(%)

Precision 
(%)

Recall 
(%) F1 score

senior
A 74.20 91.40 77.54 74.20 0.74
DR 64.71 88.24 70.09 64.71 0.66
H 82.00 91.00 82.70 82.00 0.82
IM 50.60 83.53 66.20 50.60 0.49
N 91.64 95.82 91.86 91.64 0.92
junior
A 65.44 88.48 68.78 65.44 0.65
DR 60.24 86.75 66.62 60.24 0.62
H 70.44 85.22 71.13 70.44 0.70
IM 50.00 83.33 60.81 50.00 0.48
N 86.87 93.44 87.04 86.87 0.87
Mixed
A 69.82 89.94 73.16 69.82 0.70
DR 62.48 87.50 68.36 62.48 0.64
H 76.22 88.11 76.92 76.22 0.76
IM 50.30 83.43 63.51 50.30 0.49
N 89.26 94.63 89.45 89.26 0.90

Figure 5. C omparison of gastroscopic manifestation recognition ability between DLKGS and endoscopists.
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specificity, precision, recall, and F1 score of 78.70%, 
91.92%, 80.23%, 78.70%, and 0.78, respectively. In com-
parison, the average performance of five senior endos-
copists was 72.63%, 90.00%, 77.68%, 72.63%, and 0.73, 
while that of five junior endoscopists was 66.60%, 
87.44%, 70.88%, 66.60%, and 0.66. Statistical analysis 
revealed that the model’s performance significantly sur-
passed both the junior and senior endoscopists, indicat-
ing a notable accuracy advantage.

There are many other globally recognized systems 
for gastric cancer risk stratification, namely the Updated 
Sydney System (USS), Operative Link on Gastritis 
Assessment (OLGA), and Operative Link on Gastric 
Intestinal Metaplasia Assessment (OLGIM) [34–37]. 
However, these methods rely on multiple biopsies, 
leading to increased bleeding risk, pathology burden, 
and procedural time. These procedures also lack 
real-time prediction of gastric cancer risk, limiting their 
suitability for large-scale endoscopic screening. In con-
trast, KCG directly evaluates gastric cancer risk from 
endoscopic findings, demonstrating good histological 
consistency and wider clinical applicability [19, 38]. 

Moreover, KCG can offer real-time gastric cancer risk 
insights to endoscopists during endoscopic proce-
dures, enhancing their alertness when examining 
high-risk patients.

Our study utilized a DL model, DLKGS, based on 
GAM-EfficientNet. In the field of digestive endoscopy, 
DLGKS has made significant breakthroughs in early 
cancer diagnosis. Tang et  al. [39] investigated the fea-
sibility of an AI model assisting in the diagnosis of 
early gastric cancer through narrow-band imaging 
endoscopy, achieving a test diagnostic accuracy of 
93.2%, significantly higher than that of both senior 
(85.4%) and junior endoscopists (79.5%). Wu et  al. [40] 
conducted a single-center, serial, randomized con-
trolled trial, demonstrating that their developed AI sys-
tem for identifying focal lesions and gastric cancer 
significantly decreased the missed diagnosis rate of 
gastric cancer, with a relative risk of 0.224. AI exhibits 
exceptional learning capabilities and advantages such 
as fatigue-free and standardized diagnosis. Integrating 
AI technology with KCG can promote the widespread 
use of KCG, improve gastric cancer risk screening 

Table 6. S tatistical significance analysis of the gastroscopic manifestation recognition 
ability between the DLKGS and endoscopists (* indicates p < 0.05).

Indicators Comparison method T-statistic P value 95%CI
Mean 

difference

Accuracy (%) DLGKS vs senior 5.198 *0.007* [–3.24, 3.24] 6.07
DLGKS vs junior 34.626 *<0.001* [–0.97, 0.97] 12.10

DLGKS vs all 7.847 *<0.001* [–2.62, 2.62] 9.09
Specificity (%) DLGKS vs senior 4.395 *0.012* [–1.21, 1.21] 1.92

DLGKS vs junior 34.617 *<0.001* [–0.36, 0.36] 4.48
DLGKS vs all 6.701 *<0.001* [–1.08, 1.08] 3.20

Precision (%) DLGKS vs senior 3.340 *0.029* [–2.12, 2.12] 2.55
DLGKS vs junior 22.853 *<0.001* [–1.14, 1.14] 9.35

DLGKS vs all 4.942 *0.001* [–2.73, 2.73] 5.95
Recall (%) DLGKS vs senior 5.198 *0.007* [–3.24, 3.24] 6.07

DLGKS vs junior 34.626 *<0.001* [–0.97, 0.97] 12.10
DLGKS vs all 7.847 *<0.001* [–2.62, 2.62] 9.09

F1 Score DLGKS vs senior 4.635 *0.010* [–0.03, 0.03] 0.06
DLGKS vs junior 47.357 *<0.001* [–0.01, 0.01] 0.12

DLGKS vs all 7.435 *<0.001* [–0.03, 0.03] 0.09

Table 7. S tatistical significance analysis of the ability in recognizing each manifestation individually 
between the DLKGS and endoscopists (* indicates p < 0.05).

Indicators Comparison method

P value

A DR H IM N

Accuracy (%) DLGKS vs senior 0.086 <0.001* 0.990 <0.001* 0.012*
DLGKS vs junior <0.001* <0.001* 0.002* <0.001* 0.001*

DLGKS vs all <0.001* <0.001* 0.356 <0.001* <0.001*
Specificity (%) DLGKS vs senior 0.098 <0.001* 0.995 <0.001* 0.017*

DLGKS vs junior <0.001* <0.001* 0.009* <0.001 <0.001*
DLGKS vs all <0.001* <0.001* 0.536 <0.001* <0.001*

Precision (%) DLGKS vs senior 0.093 0.002* 0.988 0.003* 0.020*
DLGKS vs junior <0.001* 0.001* 0.005* <0.001* 0.001*

DLGKS vs all <0.001* <0.001* 0.308 <0.001* <0.001*
Recall (%) DLGKS vs senior 0.086 <0.001* 0.990 <0.001* 0.012*

DLGKS vs junior <0.001* <0.001* 0.002* <0.001* 0.001*
DLGKS vs all <0.001* <0.001* 0.356 <0.001* <0.001*

F1 Score DLGKS vs senior 0.071 <0.001* 0.990 <0.001* 0.012*
DLGKS vs junior <0.001* <0.001* 0.002* <0.001* 0.001*

DLGKS vs all <0.001* <0.001* 0.356 <0.001* <0.001*
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efficiency, enhance diagnostic consistency across 
regions and endoscopists, and facilitate further valida-
tion studies related to the KCG.

The KCG model developed in this study yielded sat-
isfactory results in identifying and grading the five 
manifestations of Kyoto gastritis, demonstrating poten-
tial diagnostic value as a supplementary tool. However, 
there are limitations to consider: (1) a limited number 
of samples from a single source device, (2) uneven dis-
tribution of samples across multiple classifications, (3) 
inclusion of only five manifestations of the KCG, lack-
ing recognition and differentiation abilities for other 
diseases, and (4) high image quality requirements. (5) 
Lack of validation with dataset of paired endoscopic 
images and histological reading. Future research will 
aim to conduct larger studies with more diverse sam-
ples, broaden the spectrum of diseases recognizable 
by the model, improve the recognition for low-quality 
images, and comprehensively validate the model with 
paired histological findings, with the goal to further 
enhance the accuracy and applicability of the model. 
In conclusion, this study has made preliminary achieve-
ments in AI-assisted KCG, demonstrating the signifi-
cant potential of AI technology in improving the early 
diagnosis rate of gastric cancer. Despite the aforemen-
tioned limitations, we anticipate that with more data 
accumulation and ongoing model optimization, AI will 
increasingly contribute to gastric cancer risk screening 
and early diagnosis.

5.  Conclusion

In this study, we developed a KGS approach, DLKGS, 
capable of identifying five manifestations of Kyoto gas-
tritis, including atrophy, diffuse redness, enlarged folds, 
intestinal metaplasia, and nodular gastritis. DLKGS 
demonstrated superior performance compared to 
junior and senior endoscopists, and has potential to 
become a supplementary diagnostic tool for clinicians 
in gastroenterology practice.
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