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Abstract

Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysi-
ological function, and may eventually assist in individualized predictive medicine. We present a methodology for
performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology
models are often based on or inspired by Arthur Guyton’s whole-body circulatory regulation model. Despite the significance
of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model
as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters
combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes
a ‘‘virtual population’’ from which ‘‘virtual individuals’’ can be chosen, on the basis of exhibiting conditions similar to those
of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological
states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of
sensitivity results and the ‘‘virtual individuals’’ that we have generated, which are included in the supplementary material.
More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models.
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data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: srandall.thomas@gmail.com

Introduction

Global initiatives such as the IUPS Physiome project [1,2] and

the Virtual Physiological Human (VPH) project [3,4] aim to

quantitatively understand human physiology at all levels from gene

to organism through the use of mathematical modelling. Beyond a

certain degree of complexity, the combinatorial number of

interactions between the parts of a system can defy intuition and

present severe challenges [5]. Mathematical models are appropri-

ate tools for developing our understanding of human physiology,

since they can be used to represent and analyse the combinatorial

number of interactions between parameters in a rigorous and

systematic manner [6].

In short, computational models that integrate physiological data

from multiple scales (both physical and temporal) provide a

framework for understanding the maintenance of biological

entities under physiological and pathological conditions. One

significant application for such models is individualized predictive

medicine; i. e., tailoring models to the characteristics of an

individual patient and predicting the outcomes of different

treatment strategies, to help select the best strategy for that patient

[3].

Many challenges must be overcome before a truly integrative

model of human physiology can be constructed [6,7]. Gaining a

real quantitative understanding of the phenotypic variation in

humans as a function of genes and environment in a mechanistic

sense (i. e., understanding the genotype-phenotype map in both

the explanatory and predictive sense [8–10]) is a tremendous

challenge that awaits technological, conceptual and methodolog-

ical breakthroughs [11].

A number of models have already been used to develop insight

into aspects of human physiology [12–22], many of which have

their origin in the control-theory model of whole-body circulatory

regulation introduced by Guyton et al. in 1972 [23,24]. Although

it was published over 30 years ago, the Guyton model remains a

landmark achievement, and with the rise in the last 10 years of

systems physiology, it has attracted renewed attention [18,25–27]

and even generated some recent controversy [24,28–30]. It was
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the first ‘‘whole-body’’, integrated mathematical model of a

physiological system; it was particularly instrumental in identifying

and exploring the relationship between blood pressure and sodium

balance, and in demonstrating the key role of the kidney in long-

term regulation of blood pressure. It allows for the dynamic

simulation of systemic circulation, arterial pressure, and body fluid

regulation, including short- and long-term regulations.

In previous work, the Guyton models were modularized and re-

implemented in Fortran, C++ (M2SL [31]), and Simulink [14].

Furthermore, since one of the main limitations of the early Guyton

models is the low-resolution description of most of their

constituting modules, a framework was built to allow replacement

of the original sub-modules by new versions at a higher temporal

or spatial resolution [32]; e. g., a pulsatile heart was introduced to

treat systolic and diastolic blood pressures instead of only mean

blood pressure [33], and a detailed model of the renin-angiotensin-

aldosterone system (RAAS) has also been integrated [34]. That

work was also linked to efforts in the European VPH via two

Exemplar Projects, one of which used our modular reimplementa-

tion of the Guyton model as the basic set of ‘‘bricks’’ for a

collaborative core-modeling environment for multi-organ physiol-

ogy modeling [13,14], and the other uses the Guyton model as a

demonstrator for the tagging of parameters and variables with a

set of reference ontologies common to databases of high-

throughput genomic and proteomic data [35]. Collaborators in

the Physiome/VPH community have also carried out XML

markup of the individual modules of the Guyton model in CellML

(http://models.cellml.org/workspace/guyton_2008), thus provid-

ing precious documentation of its structure and content.

The analysis and results presented here arose naturally from this

body of work. Our motivation was to develop a methodology for

systematically exploring the ramified implications of multi-

parameter interactions in multi-scale physiological models. We

present such a methodology, which incorporates the elementary

effects technique introduced by Morris [36]. As a case study, we

present a sensitivity analysis of the 1992 version of the Guyton

model [24,30,37], with a focus on the multiple interactions

involved in blood pressure regulation. This version was never

published, but represents a more complete and modern under-

standing of the cardiovascular system [24,30] (e. g., the inclusion

of ANP [37]), and it is the version that members of the Guyton

group have continued to use. Indeed, such a model, grounded in

decades of hands-on experimental work and built with an

engineer’s approach to control processes, should serve as a

rigourous platform for discovery of non-intuitively obvious

relationships. However, despite the significance of the Guyton

model, the dynamics of the model have not yet been analysed in a

systematic and comprehensive study.

The results provide valuable information about the inter-

dependencies of parameter effects on the model outputs, thus

providing direction for future physiologically-applicable sensitivity

studies of the effects of changes to multiple parameters. These

results also lay the groundwork for the use of multi-parameter

models such as the Guyton model in systematic in silico exploration

of possible new drug effects, hypotheses about multiple perturba-

tions leading to disease states, and alternative treatment strategies.

An additional outcome is the production of a virtual population,

where each virtual individual is characterized by its set of parameter

values (loosely analogous to genotypes) and the associated outputs

(‘‘phenotypes’’). Note that the parameters of the Guyton model are

in fact lower-level phenotypes, but as models continue to span

larger physical and temporal scales, model parameters will

approach the genotype level [38,39]. A given real-world patient

can be associated with one or more of these virtual individuals on

the basis of clinically identifiable parameters or dynamics (e. g.,

mean arterial pressure, serum total protein, cardiac output, heart

rate). Searching an existing collection of simulations in this

manner avoids the inherent pitfalls in solving the inverse problem

of (uniquely) identifying unknown model parameters and states

from clinical observations [40]. Thus, the construction of a

comprehensive virtual population could prove a useful tool in

future efforts to provide efficient, individualized health-care.

Note that beyond the methodology itself, the results presented in

this manuscript also serve to demonstrate some of the uses to

which the complete set of elementary effects and virtual individuals

may be applied. We provide tables of all of the resulting output in

the supplementary material (Dataset S1), which we hope will be of

use in physiological, pathophysiological and clinical settings.

Methods

Elementary effects
The Guyton model comprises 219 parameters and 359 output

variables. We restricted our analysis to 96 parameters {x1 . . . x96}

and 276 output variables {y1 . . . y276} (as indicated in Equation 1,

Table 1, and documented in Tables S1 and S2), focusing on those

parameters with direct physiological relevance and ignoring

parameters with no clear physiological interpretation (such as

curve-fitting coefficients). The distribution of these 96 parameters

was: 32 cardiac, 21 renal, 16 autoregulation, 16 hormonal, 11

local circulation, and 4 thirst-related. To determine which

parameters have significant effects on each of the model outputs,

we computed the elementary effects of each parameter using a

modification of the formula defined by Morris [36], which we now

detail.

The influence dij of the parameter xi on some output yj is

defined by Equation 2. Assuming that each parameter xi is

normalized to the unit interval that ½0,1�, the region of

experimentation––the portion of the parameter space that will

be explored––is a regular n-dimensional p-level grid v, where each

Author Summary

As our understanding of the human body at all scales
increases, the construction of a ‘‘Virtual Physiological
Human’’ is becoming more feasible and will be an
important step towards individualized diagnosis and
treatment. As computational models increase in complex-
ity to reflect this growth in understanding, analysis of
these models becomes ever more complex. We present a
methodology for systematically analysing the interactions
between parameters and outputs of such complicated
models, using the Guyton model of circulatory regulation
as a case study. This model remains a landmark achieve-
ment that contributed to the development of our current
understanding of blood pressure control, and we present
the first comprehensive sensitivity analysis of this model.
Effects of varying each parameter are explored over
randomized simulations; our analysis demonstrates how
to use these results to infer relationships between model
parameters and the predicted physiological behaviour.
Understanding these relationships is of the utmost
importance for developing an optimal treatment strategy
for individual patients. These results provide new insight
into the multi-level interactions in the cardiovascular-renal
system and will be useful to researchers wishing to use the
model in pathophysiological or pharmacological settings.
This methodology is applicable to current and future
physiological models of arbitrary complexity.

Sensitivity Analysis of Blood Pressure Regulation
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parameter xi may take on values from vi (Equation 3). For each

parameter xd in turn, a perturbation D~
n

p
is chosen (Equation 4).

For positive perturbations xdzD, we restrict xd[vz
d,n (Equation 5),

and for negative perturbations xd{D, we restrict xd[v{
i,n

(Equation 6), so that (xd+D)[vd.

For any point x̂x[v (where xd[vz
d,n or xd[v{

d,n), Morris defined

the elementary effect di(x̂x) of xi as per Equation 7. In our analysis of

the Guyton model, we chose to normalize the elementary effects

with respect to yj(x̂x) (Equation 8) rather than by D, which is always

a fixed percentage of the range of xi.

Each elementary effect was calculated r times, where each of the

r simulations was performed with randomized values for all

parameters xi, in order to obtain a representative sample of the

magnitude of the effect.

Given a set of values for a single elementary effect eeij , it is

important to note that the mean and variance of this set provide

different insights into the nature of the relationship between the

parameter xi and the output yj . The mean indicates the sensitivity

of yj to xi, while the variance indicates the influence of other parameters

on this relationship or the non-linearity of the effect.

Monte Carlo simulations
For each random input vector x̂x, a simulation was started with

the default initial state (ŷy0) and progressed for four weeks of

simulation (t~T1), at which time a pseudo-steady state had either

been reached, or a new random input vector x̂x0 was chosen and

the simulation was restarted.

The parameter under investigation (xd) was then incremented

(or decremented) by D and the simulation continued for another

four weeks of simulation time, after which either a new pseudo-

steady state had been reached, or a new random input vector x̂x0

was generated and the simulation was restarted.

Throughout the simulations, a number of output variables were

monitored to ensure that they remained within physiological

bounds (i. e., that the virtual individuals remained ‘‘alive’’, see

Table 2). If these bounds were violated during a simulation, the

simulation was discarded and a new input vector x̂x was chosen.

Since the system is highly non-linear, the effects of a

perturbation in the parameter xd on the output variables ŷy vary

over time, so elementary effects were calculated at times t[TEE

(Equation 9) and the state of the model (ŷy) was recorded at times

t[TR (Equation 10). The parameters for this mass-simulation

process are given in Table 3.

This entailed r|2|k~192000 simulations to obtain 2000
estimates (1000 with positive perturbations and 1000 with negative

perturbations) of the elementary effect of each parameter on each

output. In each simulation, two distinct points in parameter space

(x̂x before and after the perturbation) resulted in two steady states.

Each input vector and steady state can be viewed as a virtual

individual; that is, a virtual human whose ‘‘genotype’’ is described

by the input vector and whose ‘‘phenotype’’ is described by the

resulting steady-state outputs. Thus, the sensitivity analysis

simulations also produced a virtual population of 384,000 virtual

individuals. We detail how this virtual population may be of use

for diagnosis and exploration of treatment strategies for real-world

patients in our discussion.

Results

The results presented here are intended as a demonstration of the

analyses that are possible with the complete set of simulation results,

which are given in the supplementary material, namely: means and

deviations of each elementary effect at each time t[TEE ; correlations

between each parameter and each variable at each time t[TEE and

at time t~4 weeks (steady-state) for both the normotensive and

hypertensive sub-populations; and correlations between each

elementary effect and each variable at all times t[TEE .

The distribution of mean arterial pressure (MAP) in the virtual

population is shown in Figure 1. Given the Common Terminology

Criteria for Adverse Events v4.03 (CTCAE) [41] definition of

Stage 1 hypertension (systolic BP 140–159 mmHg or diastolic BP

90–99 mmHg) and the formula for estimating mean arterial

pressure from systolic and diastolic pressures (MAP&
2

3
DPz

1

3
SP [42]), we define hypertensive individuals as those with

Table 1. Equations for calculating elementary effects.

ŷy = f (x̂x); ŷy:(y1, . . . , y276); x̂x:(x1, . . . , x96) (1)

dij (x̂x) = dyj

dxi

(2)

vi = f0,
1

p
, . . . ,

p{1

p
,1g (3)

D= n
p

(4)

vz
i,n = f0,

1

p
, . . . ,

p{n

p
g : xi[vz

i,n[(xizD)[vi
(5)

v{
i,n = fn

p
,
nz1

p
, . . . ,1g : xi[v{

i,n[(xi{D)[vi
(6)

di(x̂x) = f (x1’, . . . , xizD, . . . x96
0){f (x̂x)

D

(7)

eeij (x̂x) = yj ( . . . , xizD, . . . ){yj (x̂x)

yj (x̂x)
|

xi

D

(8)

doi:10.1371/journal.pcbi.1002571.t001

Table 2. The conditions on various model parameters that
were used to ensure that the virtual person remained ‘‘alive’’
during a simulation, based on definitions from the Common
Terminology Criteria for Adverse Events v4.03 (CTCAE) [41].

Parameter Minimum Maximum Unit

GFR 0.015 – L/min

CNA 120 160 mEq/L

CKE 2.5 8 mEq/L

HM 24 80 –

MAP 50 200 mmHg

HR 20 200 min{1

doi:10.1371/journal.pcbi.1002571.t002

Table 3. Parameters for building the virtual population.

TEE = fT1z1 minute, T1z1 hour, T1z1 day,

T1z1 week, T1z4 weeksg
(9)

TR = fT1g|TEE (10)

p = 50 (11)

D= 5

p
~0:1

(12)

r = 1000 (13)

k = 96 (14)

doi:10.1371/journal.pcbi.1002571.t003

Sensitivity Analysis of Blood Pressure Regulation
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MAP§106:6 mmHg. Approximately one third of the virtual

individuals were normotensive and two-thirds were hypertensive

(see Table 4; using an older definition of hypertension (160/95)

leads to 41% of virtual individuals being classified as hypertensive).

These proportions differ by less than 0:25% in the pre-

perturbation and post-perturbation steady states, and near-

identical proportions were also observed in earlier sets of

simulations (not presented here). This demonstrates that the

prevalence of hypertension in the virtual population is robust and

not dependent on the choice of random input vectors x̂x.

Also shown in Figure 1 are gamma and chi-squared distribu-

tions that have been fitted to the probability density. The chi-

square distribution is a special case of the gamma distribution

where the scale parameter is 2. While the distributions provide

reasonable fits, they both underestimate the density for

MAP[½85,100� mmHg and overestimate the density for

MAP[½106,120� mmHg.

The analysis of the 192000 simulations investigated several

aspects of the resulting data. First, we present the sensitivity analysis

of the elementary effects on key output variables. The purpose was

to determine which parameters induced consistent effects when

perturbed, and how these effects are influenced by other

parameters. Second, the correlations between parameters and key

variables were considered, to identify relationships between the

outputs and fixed parameter values. Note that while the elementary

effects are shown to vary over time, the correlations remained

essentially constant. These correlations were then compared across

the normotensive and hypertensive sub-populations, to detect any

differences in these relationships between these two populations.

Finally, several generalized linear models (GLMs) [43,44] were

evaluated for their predictive power of identifying hypertensive

individuals based on a select number of parameters.

Definitions of all model 96 parameters and 276 variables are

tabulated Tables S1 and S2. More complete results are tabulated

in Dataset S1.

Sensitivity analysis
Given our interest in the development of hypertension, we focus

the discussion here on variables directly related to blood pressure.

For example, Figure 2a shows the most significant elementary

effects (at each time t[TEE ) on three such variables: the mean

arterial pressure (MAP), the cardiac output (QAO), and the rate of

urine production (VUD).

The single largest effect on all three variables is that of HYL (the

quantity of interstitial hyaluronic acid), which affects the tissue

hydrostatic and osmotic pressures. This effect is only observed one

hour after the perturbation is made. That is, a change in hyaluronic

acid takes more than one minute to have an effect, and the effect is

no longer evident after 24 hours. The large deviations (signifi-

cantly larger than those of any other parameter) demonstrate that

the effects of HYL are highly non-linear. We will demonstrate how

to identify interesting multi-parameter effects, using HYL as an

example. To clearly depict the other elementary effects, they are

shown in Figure 2b without the effects of HYL. The largest steady-

state elementary effects at t~4 weeks are shown in Figure 3. The

complete table of elementary effects is available in the supple-

mentary material.

Effects on mean arterial pressure (MAP). Consider the

elementary effects on MAP at time t~1 minute. The only

appreciable effect is that of HSL (the basic strength of the left

ventricle). This (comparatively small) effect is not accompanied by

an effect of HSR (the basic strength of the right ventricle). The

effect of HSL at times tw1 minute were negligible.

At time t~1 hour, AARK (the basic resistance of the afferent

arteriole) has an effect on MAP, as do ANCSNS (sensitivity

controller, general angiotensin effect), ANUM (sensitivity control-

ler, angiotensin effect on arterial resistance and venous volume),

ANY (sensitivity controller, angiotensin effect on venous volume),

CPR (the critical plasma protein concentration for protein

destruction), EARK (the basic resistance of the efferent arteriole),

GFLC (glomerular filtration coefficient) and VV9 (basic venous

volume).

Some of these effects wane over time (ANCSNS, ANUM, ANY

and VV9), while the remaining effects become stronger over time

(AARK, CPR, EARK, GFLC) and exhibit the largest steady-state

elementary effects on MAP. Other parameters also exhibit

significant elementary effects over the longer timescales: HM6

(erythropoietic limiter), LPPR (rate of liver protein production),

NID (rate of sodium intake) and RNAUGN (basal renal

autoregulation feedback multiplier).

Thus, as the model approaches the steady-state following a

perturbation, the effects of hormones such as angiotensin are

reduced, whilst properties that directly affect glomerular filtration

exhibit the largest elementary effects. As one would expect, an

increase in AARK or a decrease in EARK (in isolation) results in a

permanent increase in the mean arterial pressure, due to a

decreased filtration rate. A decrease in glomerular permeability

(GFLC) produces a similar change for the same reason. The other

Figure 1. Probability density of mean arterial pressure (MAP) in
the virtual population. The vertical line marks the threshold of
hypertension (MAP§106:6 mmHg), and both gamma and chi-squared
distributions have been fitted.
doi:10.1371/journal.pcbi.1002571.g001

Table 4. Categorization of the virtual individuals into
normotensive and hypertensive populations, based on mean
arterial pressure (MAP).

Population Criteria Size Fraction

Normotensive MAPv106:6 mmHg 135,263 35%

Hypertensive MAP$106:6 mmHg 248,737 65%

doi:10.1371/journal.pcbi.1002571.t004

Sensitivity Analysis of Blood Pressure Regulation
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major long-term effects (Deeij D§0:003) are exerted by ANCSNS,

ANMAM (sensitivity of afferent arterioles to angiotensin),

ANPXAF (sensitivity of afferent arteriole resistance to ANP),

CPR, HM6 and LPPR. The first three parameters affect

vasoconstriction in general (ANCSNS) and in the afferent arteriole

(ANMAM, ANPXAF), while the latter three affect the plasma

protein concentration and hematocrit (CPR, HM6, LPPR) and

thus affect the driving pressure gradient for glomerular filtration.

Note that the elementary effects of these parameters are not

evident until 1 day or 1 week after the original perturbation. These

observations reflect the infinite gain of the kidney in long-term

regulation of arterial blood pressure [45,46], as originally proposed

by Guyton [23].

Effects on cardiac output (QAO). The only observable

effects on QAO at time t~1 minute are from HSL and RVSM

(basal systemic venous resistance multiplier). As was shown for the

elementary effects on MAP, HSL exerts a short-term elementary

effect on QAO, and there is no elementary effect from HSR.

A number of parameters exhibit significant effects at time

t~1 hour that do not persist over longer timescales: ANY, PCR

(critical capillary pressure for protein leakage), RVSM and VV9.

Other parameters begin to exhibit elementary effects on QAO at

Figure 2. The most significant elementary effects on three key output variables at each time t[TEE . A: The effects on mean arterial
pressure (MAP), cardiac output (QAO) and rate of urine production (VUD) are plotted (at t~1 minute,1 hour,1 day,1 weekand 4 weeks after the
perturbations) as m+s. B: The most significant elementary effects when HYL is ignored. The complete tables of elementary effects are included in the
supplementary material.
doi:10.1371/journal.pcbi.1002571.g002

Sensitivity Analysis of Blood Pressure Regulation
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time t~1 hour or t~1 day, which then persist in the steady-state:

AARK, ANUM, CPR, EARK, GFLC, NID, O2M (basic O2

utilization in non-muscle tissue) and OMM (basic O2 utilization in

muscle tissue, at rest). The most significant permanent effect on

QAO is exerted by HM6, the magnitude of which greatly

increases from t~1 day to t~1 week to t~4 weeks.

The major long-term effects on cardiac output (Deeij D§0:005)

govern: plasma protein concentration and hematocrit (CPR,

LPPR, HM6), the effect of angiotensin on arterial resistance and

venous volume (ANUM), glomerular filtration (AARK, EARK,

GFLC), sodium intake (NID) and O2 utilization (O2M, OMM).

The nature of the steady-state effects on QAO differ from those

on MAP. Several parameters cause permanent changes in both

QAO and MAP, but with smaller effects on QAO: AARK

(&25%), CPR (&50%) and GFLC (&67%). Conversely, pertur-

bations in EARK and NID have larger long-term effects on QAO

than on MAP (&150% and &400%, respectively). One param-

eter, HM6, exerts contrary effects on MAP and QAO; an increase

in HM6 causes an increase in arterial pressure but decreases the

cardiac output with an effect approximately 267% greater than the

effect on MAP. An increase in oxygen utilization in either muscle

or non-muscle tissue (OMM or O2M) results in a raised cardiac

output to increase the oxygen supply, but does not exert an

elementary effect on the mean arterial pressure. However, an

increase in the rate of protein production in the liver (LPPR) exerts

near-identical effects on the long-term mean arterial pressure and

the cardiac output.

Effects on urine production (VUD). The elementary effects

on VUD at time t~1 minute are from: AARK, ANCSNS, ANY,

EARK, GFLC, RNAUGN, RVSM, ANMAM, ANMEM (sensi-

tivity of efferent arterioles to angiotensin) and ANPXAF. Of these

parameters, the effects of AARK, ANCSNS, EARK, GFLC and

RNAUGN greatly diminish over time, and the effects of ANY,

RVSM, ANMAM, ANMEM and ANPXAF effectively disappear

by the time the model has reached the steady-state (t~4 weeks).

This is consistent with experimental observations that urine

production is rapidly altered in response to these perturbations

[47–49] and serves to maintain the arterial pressure [45,50], but

that the bulk of the change is transient (see Figure 3). This response

is mediated, at least in part, by activity of the renal sympathetic

nerves [51,52].

Several parameters that exhibited no elementary effect at

t~1 minute can be seen to exert an effect at t~1 hour: ANUM,

AUTOSN (sensitivity controller, overall non-muscle vascular

resistance autoregulation), CPR, NID, POR (the reference value of

capillary PO2 in non-muscle tissue) and VV9. The effects of ANUM,

AUTOSN and VV9 wane over longer timescales (VV9 exerts no

effect at all by the steady-state), but the effects of CPR, NID and

POR are persistent. Note that the initial effect of CPR is positive

(t~1 hour), but that the effect is reversed at all subsequent times.

By time t~1 day, the elementary effects of all parameters have

essentially converged to their steady-state values. The major long-

term effects on urine production (Deeij D§0:01) are exerted by

parameters that have direct control over the glomerular filtration

(AARK, EARK, GFLC), the effects of angiotensin (ANCSNS,

ANUM), plasma protein concentration (CPR), sodium and

potassium intake (KID, NID) and non-muscle capillary PO2

(POR, which affects vasoconstriction over short, intermediate and

long-term timescales).

The nature of the steady-state effects on VUD (t~4 weeks)

differ from those on both QAO and MAP. As can be seen in

Figure 3, typically the elementary effects on VUD are significantly

larger than the effects on QAO and MAP, with much larger

deviations (i. e., interactions with other parameters). The same can

be said of QAO in comparison to MAP. That is, urine production

is more sensitive to perturbations than cardiac output, which in

turn is more sensitive to perturbations than arterial pressure. This

reflects Guyton’s explanation that the kidney acts as a servo-

controller of long-term blood pressure by adjusting salt and fluid

balance [53–56].

Figure 3. The largest elementary effects on three key output variables at t~1 hour and t~4 weeks. The effects on mean arterial pressure
(MAP), cardiac output (QAO) and rate of urine production (VUD) are plotted as m+s. Elementary effects were sorted by the magnitude of their largest
effect on the three output variables. A: The elementary effects at t~1 hour (excluding HYL). B: The elementary effects at t~4 weeks.
doi:10.1371/journal.pcbi.1002571.g003
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Effects on sodium excretion (NOD). The elementary

effects on NOD (sodium excretion, not shown here) were found

to be near-identical to those on VUD (urine production) at all

times t[TEE . The only elementary effects that differed appreciably

(by w5%) were those of KID (potassium intake), which had no

effect on sodium excretion, and NID (sodium intake), which had a

67% larger elementary effect on sodium excretion than on urine

production.

Multi-parameter effects: accounting for the variance in

HYL. We now demonstrate how the results of the sensitivity

analysis can be used to determine which parameters influence an

elementary effect. These are the parameters that are most likely to

be of interest when investigating the effects of multi-parameter

perturbations. By identifying such parameters with this method,

the number of multi-parameter combinations under consideration

can be greatly reduced, somewhat mitigating the combinatorial

growth in parameters combinations as the number of model

parameters increases. This information is of particular use when

trying to regulate some physiological function (e. g., pharmaco-

logical applications).

As illustrated in Figures 2a and 2b, the parameter HYL exerts

the greatest elementary effect on MAP, QAO and VUD at time

t~1 hour. The variance of this effect is also several times larger

than that of any other elementary effect, which indicates that

many other parameters interact with HYL and influence this

elementary effect.

The correlations and partial correlations (controlling for HYL)

between the variables (MAP, QAO and VUD) and the model

parameters differ by less than 0:2% (not shown). That is,

accounting for the value of HYL does not appreciably change

the correlations between the variables and the other parameters.

However, analysing the correlations between the elementary effect of

HYL and the remaining 95 parameters (Figure 4) reveals that, for

all three elementary effects of HYL, the most significant influence

is the parameter PCR (the critical capillary pressure for protein

leakage). Other parameters that are significantly correlated with

the elementary effects include CFC (capillary filtration coefficient),

CPR and RVSM. Sodium intake (NID) is also significantly

correlated with the elementary effect of HYL on urine production.

The significant parameters that have been identified by this

correlation analysis are all related to vessel and interstitial oncotic

pressures, which explains the nature of their influence on the

elementary effect of HYL. Hyaluronic acid plays a large role in

determining the hydrostatic and oncotic pressure of the tissue gel

in the Guyton model, and this effect is a function of the amount of

hyaluronic acid (HYL) in the tissue and the interstitial fluid volume

(VTS).

This analysis also demonstrates that the Guyton model fails to

account for other physiological effects of hyaluronic acid, such as

its role in water and solute balance in the inner medulla [57–60].

Were this effect included in the Guyton model, one would have

expected a number of parameters governing renal function to be

in evidence in Figure 4.

A limitation of the sensitivity analysis presented here is that only

a single parameter was perturbed during each simulation.

However since, for each parameter, this was done with thousands

of randomized sets of values for all of the remaining parameters,

we demonstrate that the results of our analysis can inform the

selection of interesting/relevant multi-parameter perturbations,

greatly reducing the computational cost of exhaustively searching

all possible multi-parameter perturbations.

Summary of the elementary effects. Parameter interac-

tions, which are evidenced by large variances, are more prevalent

at the shortest time-scales (t~1 minute and t~1 hour) and in the

largest steady-state effects (t~4 weeks), especially for the elemen-

tary effects on urine production. The results also suggest that

perturbations typically exert larger effects on urine production

than on mean arterial pressure and cardiac output, since at all times

shown in Figure 2b the elementary effects on VUD are much

larger than the effects on MAP and QAO at any time. This has

been observed in animal experiments [46,55,61].

The parameters that demonstrated the largest elementary

effects on multiple output variables at the steady-state

(t~4 weeks) are: AARK, EARK and GLFC (renal filtration),

Figure 4. Significant correlations between model parameters and the elementary effects of HYL at t~1 hour. Correlations (pv0:01) are
shown for the elementary effect of HYL on mean arterial pressure (MAP), cardiac output (QAO) and rate of urine production (VUD).
doi:10.1371/journal.pcbi.1002571.g004
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CPR (plasma protein concentration) and HM6 (hematocrit).

Parameters that govern the effects of angiotensin (ANCSNS,

ANMAM, ANMSML, ANUM) exhibited smaller steady-state

effects. The remaining parameters with significant steady-state

effects are related to oxygen consumption (O2M, OMM), diet

(KID, NID), sensitivity of afferent arteriole resistance to ANP

(ANPXAF), general autoregulation (AUTOSN, RNAUGN),

capillary PO2 (POR) and protein production (LPPR).

A perturbation in any of these parameters changes the steady-

state variable values. The importance of these parameters reflects

the role of the kidney in long-term blood pressure autoregulation

in both the Guyton model and human physiology [45,46]. The

effects of the parameters related to angiotensin reflect the effects of

angiotensin levels on the renal function curve [54]. That the most

significant renal parameters identified here (AARK, EARK and

GFLC) are all directly related to filtration and not to tubular

secretion or reabsorption is consistent with the original predictions

of the Guyton model: ‘‘Under normal circumstances, renal factors

that determine the glomerular filtration rate at different levels of

arterial blood pressure are quantitatively more important for the

control of arterial blood pressure than are renal tubular

mechanisms’’ [53]. This also reflects an underlying limitation of

the Guyton model: the renal module is highly simplistic and

considers very few aspects of nephron function.

Correlations between parameters and variables
Correlations were calculated between each parameter and each

output variable at each time t[fT1g|TEE , using the Spearman

rank-correlation [62]. A rank-correlation method was chosen

because such methods are sensitive to any near-monotonic

relationship and do not assume that the data is normally

distributed. The correlations showed negligible variance

(v10{3) over these times, in contrast to the elementary effects

presented earlier. This is because the correlations are sensitive to

the absolute value of the parameter, while the elementary effects are

sensitive to the influence of a perturbation and not the absolute

value. Significant correlations are shown in Figure 5 for the same

three variables (MAP, QAO and VUD) whose elementary effects

were presented in Figure 2.

Consider the correlations with MAP; the most-highly correlated

parameters (DxDw0:15) are CPR, AARK, EARK, GFLC and

HM6, all of which also exhibit significant elementary effects on

MAP. As noted earlier, all of these parameters affect glomerular

filtration: AARK, EARK and GFLC are all related to physical

properties of the glomerulus, while CPR and HM6 affect the

driving pressure gradient for ultrafiltration.

In contrast, the parameters most-highly correlated with QAO

(DxDw0:15) are HM6, OMM, CPR, EARK, NID, O2M and

RTPPR (the effect of glomerular oncotic pressure on renal tissue

oncotic pressure). RTPPR was not seen to exert a significant

elementary effect on QAO, but it shows a higher correlation with

QAO than do AARK, ANUM, GFLC and LPPR, all of which

exerted significant steady-state effects on QAO. Three of these

parameters––HM6, OMM and O2M––are directly related to

oxygen supply and utilization in the body, whilst CPR and NID

affect both the plasma volume and renal filtration, EARK also

affects renal filtration, and RTPPR affects tubular reabsorption.

The parameters most-highly correlated with VUD (DxDw0:15)

are NID, CPR, RTPPR, POR, AARK and KID. As was the case

for QAO, RTPPR does not exert a significant elementary effect on

VUD, but demonstrates higher correlation with VUD than do

ANCSNS, ANUM, EARK and GFLC, all of which exhibit

significant steady-state effects on VUD. All of these parameters,

except for POR, are directly related to renal filtration and

reabsorption, while POR modulates the vasoconstrictor effect on

blood-flow autoregulation across rapid, intermediate and long-

term timescales.

One parameter, CPR, is notable for being highly correlated

with all three output variables MAP, QAO and VUD. In

particular, CPR has a correlation of 0:63 with MAP; the only

other correlation greater than 0:5 is that between HM6 and QAO

({0:50). This parameter is the critical plasma protein concentra-

Figure 5. Significant correlations between model parameters and three key output variables. Correlations are shown for mean arterial
pressure (MAP), cardiac output (QAO) and rate of urine production (VUD), where pv0:05 and DcorrDw0:05.
doi:10.1371/journal.pcbi.1002571.g005
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tion for protein destruction in the liver, which affects the colloid

oncotic pressure in the vasculature. The direct effects of this

parameter include the rate of glomerular filtration and the rate of

capillary leakage. These observations demonstrate that the Guyton

model reflects the importance of renal filtration and colloid oncotic

pressure to overall haemodynamic regulation [45,46,54,55].

Normotensive vs hypertensive sub-populations
The virtual individuals were divided into normotensive and

hypertensive sub-populations based on their mean arterial

pressure, as illustrated in Table 4. The probability densities of

each parameter and variable were compared across these

populations, as were the correlations between the model param-

eters and the output variables. The probability densities revealed

observable differences between the populations (Figure 6), both in

the model parameters (e. g., CPR) and output variables (e. g.,

AAR). Note that the two probability densities shown here for CPR

are markedly more distinct than when CPR was classified based

on the elementary effect of HYL (not shown).

However, obvious differences were observed for very few

parameters, all of which had already been highlighted in the

sensitivity and correlation analyses.

Correlations between parameters and variables were then

compared between the two populations; some results are shown

in Figure 7. The colour-coded regions of each graph represent

different relationships between the correlations: green indicates a

decreased correlation in the hypertensives; blue indicates an

increased correlation in the hypertensives; and red indicates that

the correlation has switched sign between the two populations.

The correlations with MAP in the hypertensive population are

systematically larger than those in the normotensive population

(Figure 7a), which supports the notion that arterial pressure

regulation has been reduced in the hypertensive population.

However, the correlations with QAO show no such relationship

(Figure 7b) with the sole exception of EARK. This suggests that

the regulation of cardiac output has not been reduced in the

hypertensive population, and that a change in cardiac output is

neither a cause nor symptom of the hypertension that is observed

in the virtual population, which reflects Guyton’s explanation of

arterial hypertension being fundamentally a renal pathology

[23,24,56].

When correlations with blood volume are considered (Figure 7c),

the parameters with the largest increases in correlation (ANCSNS,

ANUM, ANY) are all related to the effects of angiotensin on

arterial resistance and venous volume. Parameters with decreased

correlation in the hypertensive population include NID, VV9 and

CV (venous compliance). The logical inference is that angiotensin

is playing a more significant role in regulating the blood volume in

the hypertensive individuals than in the normotensive individuals.

Angiotensin plays a role in the activation of the RAAS [56,63,64],

which increases salt and water retention in the kidney [65–67] and

raises the ‘‘set-point’’ arterial pressure that the kidney will

maintain [50], and these effects are incorporated into the Guyton

model. More recent studies have also revealed angiotensin’s roles

in hypertension via oxidative stress [68–70] and inflammatory

vascular injury [71,72], but these phenomena are not included in

the Guyton model.

The correlations with urine production (Figure 7d) reveal

changes in only a few parameters. The decreased correlation with

RTPPR indicates that glomerular oncotic pressure has a smaller

effect on tubular reabsorption in the hypertensive population. Of

the parameters with increased correlations, AARK and POR are

directly related to blood-flow autoregulation and vasoconstriction,

and CPR affects the plasma colloid oncotic pressure, which affects

the plasma volume and the driving pressure gradient for

glomerular filtration. This leads us to conclude that the urine

production in the hypertensive population is more sensitive to

blood-flow autoregulation and plasma colloid oncotic pressure.

Identifying hypertensive virtual individuals with GLMs
The large virtual population that has been assembled here

(n~384,000) can be used not just to analyse relationships between

Figure 6. Probability densities of model variables in the normotensive and hypertensive virtual sub-populations. Probability densities
are shown for AAR (the afferent arteriolar resistance), POR (the reference value of capillary O2 pressure in non-muscle tissue) and CPR (the critical
plasma protein concentration for protein destruction).
doi:10.1371/journal.pcbi.1002571.g006
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model parameters and outputs, but also to derive and evaluate classifiers

for predicting particular phenotypes in virtual individuals. Since

hypertension places a heavy burden on health-care systems around the

world, and blood pressure regulation is the chief focus of the Guyton

model, the most obvious phenotype to predict is hypertension.

The virtual population was divided in two: a randomly-chosen

training set 1% of the population size, and the remainder of the

population served as an evaluation set. A generalized linear model

(GLM) [43,44] with a binomial distribution function was fitted to

the training set to predict whether or not each individual was

hypertensive (i. e., MAP§106:6 mmHg). A minimal GLM was

then selected by step-wise reduction of the original GLM with

Akaike’s information criterion (AIC) [73], resulting in a 30-

parameter classifier.

This classifier was then evaluated on the evaluation set (i. e., the

rest of the virtual population), shown in Figure 8a, and

demonstrated a high degree of accuracy. The sensitivity of the

classifier to each of the 30 parameters is shown in Figure 8b. This

list of parameters closely resembles those parameters most-highly

correlated with mean arterial pressure (Figure 5).

But no matter how accurately this classifier can predict

hypertension in the virtual population, one should not conclude

Figure 7. Comparison of correlations between parameters and variables in the normotensive and hypertensive virtual sub-
populations. For a given variable, the correlations with each parameter are plotted against the x-axis for the normotensive population, and against
the y-axis for the hypertensive population (only correlations c : DcDw0:1 are shown). A: Mean arterial pressure (MAP). B: Cardiac output (QAO). C:
Blood volume (VB). D: Rate of urine production (VUD).
doi:10.1371/journal.pcbi.1002571.g007
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that it will be of practical use for predicting hypertension in real-

world patients. The classifier is a function of 30 model parameters,

many of which are not physiologically derived or measurable. In

order to feasibly use such a classifier with real-world patients, the

model parameters must be restricted to those that are readily

identifiable and measurable in human beings.

Of the parameters listed in Figure 8b, we assume that CPR and

LPPR can be estimated from blood tests and that the values of the

renal filtration parameters AARK, EARK and GFLC could

possibly be estimated from whole-body glomerular filtration rate

(GFR) (or, more invasively, from a biopsy). NID can be estimated

from the person’s diet. The resulting classifier (‘‘Renal+Liver’’ in

Figure 8a, coefficients given in Table 5) predicts hypertension on

the basis of these parameters (see Table 6) and suffers from a

modest loss of predictive power in comparison to the optimal

classifier. It can correctly identify 90% of the hypertensive virtual

individuals with a 16% false-positive rate, in comparison to the

optimal false-positive rate of 9%. Further restricting the param-

eters to either solely liver-related or kidney-related (Table 6)

significantly reduces the predictive power of the classifiers.

Discussion

Validity of the Guyton model
The Guyton model was constructed and refined over many

years, and has been validated against a large amount of

experimental data [23,24]. However, many simplifications were

necessary in order to permit simulated experiments under the

computational resources that were available at the time [24], and

the model does not incorporate recent advances in our under-

standing of the cardiovascular system. Thus, our results will tend

to highlight the underlying assumptions and limitations of the

Guyton model, rather than physiological phenomena. Indeed, one

of the goals of this study was to provide sufficient data (in the

supplementary material) to allow researchers to identify whether

the Guyton model is sufficiently detailed for specific physiological

applications. More recent models have incorporated greater levels

of detail for individual organs [12,74] or for the whole body

[16,19], and a comparison between the Guyton model and these

newer models can illustrate the suitability of the Guyton model for

clinical applications. Of course, the methodology we employed can

be applied to these modern, more detailed models.

Here we present a brief comparison of the Guyton model to the

human renal/body fluid model of Uttamsingh et al. [74], which

was validated against several sets of experimental data. The result

of ingestion of either hypotonic and hypertonic fluid in the Guyton

model (shown in Figure 9) produces similar effects on the urine

flow rate to that seen in the model of Uttamsingh et al. However,

in response to the infusion of hypertonic saline (0.91 g of sodium

chloride per kg of body weight, over a period of 65 minutes for a

‘‘normal human of 70 kg’’) urine flow in the Guyton model

increases at a slower rate, plateaus at a lower rate and eventually

returns to the baseline level, while urine flow in [74] plateaus at

twice the baseline and better matches the experimental data [75].

Larger variation between the two models is observed when

aldosterone is increased four-fold, in order to simulate the

administration of deoxycorticosterone acetate (DOCA), a miner-

alocorticoid with similar effects to those of aldosterone [74]. The

model of Uttamsingh et al. demonstrates gradual increases in

extra-cellular fluid volume (1 L) and mean arterial pressure

(10 mmHg), and a rapid drop in sodium excretion in response

to the elevated aldosterone level, followed by a slow rise to match

the rate of intake. The Guyton model, as shown in Figure 10,

produces different behaviour. The extra-cellular fluid volume rises

briefly and then gradually decreases until it is 0.1 L below the

baseline (Figure 10a) and mean arterial pressure rapidly rises by

Figure 8. Evaluation of linear classifiers for identifying hypertensive virtual individuals. Each classifier (binomial GLM) was fitted to a
random 1% sample of the virtual population and then evaluated on the remaining 99%. A: ROC curves for several classifiers; the optimal (30-
parameter) classifier has an area under curve (AUC) of 0:970, demonstrating high predictive power. The 6-parameter ‘‘Renal+Liver’’ classifier performs
nearly as well (AUC = 0.948). B: The parameter sensitivity of the optimal classifier. The y-axis measures the variation in the prediction over the range of
values for each parameter.
doi:10.1371/journal.pcbi.1002571.g008
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10 mmHg and then gradually increases by a further 2 mmHg

(Figure 10b). Sodium excretion (Figure 10d) drops rapidly in the

first 2 hours, then rises rapidly and overshoots in the following

6 hours, before equilibrating after 24 hours have elapsed. The

Uttamsingh et al. model again matches the experimental data [76]

better than the Guyton model (e. g., it reproduces the ‘‘escape’’

phenomenon, where the rate of sodium excretion eventually rises

to match the increased rate of intake). However, the limited time-

resolution (at most one data point every 24 hours) makes a precise

comparison impossible. Indeed, with the exception of the extra-

cellular fluid volume, the behaviour of the Guyton model also

provides a reasonable fit to the data.

The differences highlighted here between the Guyton model

and the model of Uttamsingh et al. are certainly due in part to the

lower level of detail in the renal portion of the Guyton model, but

the Guyton model also includes a more complete cardiovascular

model, which would necessarily alter the dynamics produced in

response to a chronic increase in aldosterone load. Thus, these

observations may indicate a shortcoming in the Guyton model, but

further analysis is required before a definitive statement can be

made. These results highlight, however, the need to identify

portions of the Guyton model that must be refined to replicate

experimental data more recent than those used to originally

validate the model. We discuss refinement of the Guyton model in

the following section.

In our analysis we perturbed a single parameter in each

simulaton (although each parameter was perturbed 1000 times,

each simulation with a different set of randomly-selected

parameter values). Perturbation of multiple parameters would

yield a wealth of additional information, but without any guidance

the only recourse would be to exhaustively search every

combination of N parameters, for N perturbations. Instead, with

the results presented here one can select one parameter (Pi) for

perturbation and additionally perturb only those parameters that

are significantly correlated with the effect of Pi (as per our brief

example: ‘‘Multi-parameter effects: accounting for the variance in

HYL’’).

Application to individualized medicine
Given the population of virtual individuals that was presented

here, an obvious and desirable application is to draw comparisons

between subsets of this population and a given real-world patient.

That is, given some observations of a real-world patient, we can

select those virtual individuals who best match these observations

and see whether one can draw conclusions about the condition of

the real-world patient based on the long-term dynamics of the

selected virtual individuals.

Beyond using virtual populations merely as a reference for the

current and ongoing condition of real-world patients who receive no

intervention, ongoing refinements of the Guyton model may

ultimately support individualized health-care and individualized

medicine. The application of mathematical models to individual-

ized medicine would necessarily involve integrating detailed

models of physiology, pharmacokinetics and pharmacodynamics.

Current efforts on this front include the BIMBO project [77].

Development of chronic diseases such as cardiovascular disease

is a complex process that involves environmental and cultural

factors shared by the individuals living in the same geographical

area, as well as ageing, genetic and disease determinants. Hunter

et al. [3] have emphasized the need for diagnostic workflows on

the prediction of risk that integrates the influence of both

population and patient-specific information in support of tailored

interventions aiming at optimizing diagnosis and treatment

planning and monitoring.

Table 6. The parameters used to predict hypertension in the
reduced-parameter GLMs (‘‘Renal’’, ‘‘Liver’’ and ‘‘Renal+Liver’’).

Name Description Unit GLM

CPR plasma protein concentration for protein
destruction

g/L Liver

AARK basic afferent arteriolar resistance mmHg min/L Renal

EARK basic efferent arteriolar resistance mmHg min/L Renal

LPPR rate of liver protein production g/min Liver

GFLC glomerular filtration coefficient L/min/mmHg Renal

NID rate of sodium intake mEq/min Both

doi:10.1371/journal.pcbi.1002571.t006

Table 5. The coefficients of each classifier (GLM) presented in
Figure 8a.

Classifier

Parameter Optimal Renal+Liver Liver Renal

(intercept) 232.66 212.6066 25.3854 0.92989

A3K 1.073e-5

AARK 16.95 11.9073 4.63921

ALDMM 20.1565

AMCSNS 0.5476

AMNAM 0.2681

ANCSNS 2.312

ANMAM 2.599

ANMEM 21.069

ANMSLT 0.2056

ANPXAF 0.5081

ANUM 0.2067

AUMK1 1.836

AUTOSN 20.9326

CPR 0.3703 0.2589 0.1310

DIURET 0.1422

DTNAR 0.5744

EARK 27.800 25.7318 22.56488

GFLC 2307.4 2235.5629 2115.02363

HM6 3.451e-3

HSL 1.315

HSR 1.374

LPPR 26.90 18.9798 9.7504

NID 4.322 2.7301 20.2501 0.07619

PCR 2.188e-2

RNAUGN 21.645

RTPPR 20.1121

SR 20.3817

SRK2 3.059e-5

TENSTC 24.460

VV9 21.035

doi:10.1371/journal.pcbi.1002571.t005
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Researchers of the BIMBO project have defined a modeling

approach to estimate the public health impact, in terms of the

reduction in the number of cardiovascular deaths (CVD), of

administering blood pressure lowering drugs to a virtual popula-

tion of patients [77]. That virtual population [77] (distinct from

the virtual population presented here) reproduces the demograph-

ic composition as well as the cardiovascular risk factor profiles of a

country population, each virtual individual being characterized by

a number of features allowing estimation of CVD risk and

treatment efficacy. The individuals eligible for treatment could be

selected from their computed CVD risk over a fixed threshold and

by having blood pressure in excess of 140/90 mmHg. The authors

used a simplified approach where treatment effect was represented

by the relative risk, which was assumed to be constant over time

and among different individuals, to estimate the public health

impact of BP lowering drugs [77].

The work presented here illustrates the value of using

population information to predict the success of treatment

strategies, whilst also moving towards a more ambitious goal:

taking into account the individual genetic backgrounds and

pathophysiological profiles. This would contribute to the delivery

of individualized healthcare, by optimizing the impact of

treatments for both the individual patient and at the population

level. Future challenges include the development of more

sophisticated effect models [78], such that relative-risks and odds

ratios depend on individual characteristics which affect the

pharmacokinetic and/or pharmacodynamic parts of the model

[79]. Realization of these goals would represent a significant step

towards personalizing anti-hypertensive treatment.

The implications of pharmacogenetic parameters on drug

efficacy have been explored in the context of diuretic treatment

for blood pressure [80–82]. One candidate for the identification of

responders to thiazide diuretics is the polymorphic gene coding the

cytoskeleton protein a-adducin, whose mutant form has been

associated with an increased rate of sodium reabsorption [83,84],

elevated blood pressure [85,86], salt-sensitivity [87] and increased

risk of cardiovascular events [88]. The same associations first

documented in Caucasian populations [84,87] have not been

reported in all other populations, with contradictory evidence from

studies in Chinese, African American and Japanese populations

[89], suggesting the role of additional factors in mediating the

effects attributed to the a-adducin polymorphism. But before

rejecting the hypothesis of a pharmacogenetic effect of the a-

adducin variant, a number of epistatic interactions and environ-

mental influences contained in the virtual population character-

istics (e. g., different degrees of RAAS activation in response to salt

consumption) could be explored through physiological modeling.

With regard to the diagnosis and treatment of hypertension, a

practical model would predict the effects of the various diuretics

and other drugs that are commonly administered to ameliorate

hypertension. This would allow the model predictions to be

directly compared to clinical studies such as INDANA [90]. To

this end, refinements are being incorporated into the original

Guyton model [32] as part of the SAPHIR project [13], such as a

detailed model of the RAAS [34]. The culmination of these efforts

will result in a richly-detailed and more accurate model of renal

autoregulation being incorporated into the Guyton model,

providing a platform for pharmacological predictions that may

assist in the diagnosis and treatment of hypertension [77].

Conclusion
We have presented a sensitivity analysis of the Guyton model of

human physiology (1992 version), which examined the elementary

effects of each parameter over a range of timescales and the

correlations between model parameters and key output variables. We

also demonstrated how interesting multi-parameter combinations can

be identified, and how this can highlight shortcomings in the model.

A pool of 384,000 simulations with randomized parameters

(analagous to genetic variants) was generated for this analysis,

forming a diverse virtual population of 384,000 virtual individuals

Figure 9. The effects of ingestion of hypotonic and hypertonic solutions on urine flow. These simulations reproduced the conditions
shown in Figures 3 and 4 of Uttamsingh et al. [74], which include experimental from Baldes and Smirk [93] and Dean and McCance [75]. A: Urine flow
following ingestion of 1 L of water. B: Urine flow following ingestion of hypertonic saline (normalized wrt. the urine flow rate prior to ingestion).
doi:10.1371/journal.pcbi.1002571.g009
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from which representative subsets can be drawn to match

characteristics of individual real-world patients. The population

was divided into normotensive and hypertensive sub-populations,

and a 6-parameter linear classifier was shown to have good

predictive power for identifying hypertensive virtual individuals,

based on parameters that are feasible to estimate in vivo.

Work is currently underway on comparing these results to real-

world patient data from clinical studies of the effect of Avastin on

hypertension in cancer patients [91,92]. About half of the patients

develop hypertension in response to Avastin, and are also the most

likely to experience a remission. The analysis will aim to identify

whether any of the elementary effects or correlations presented in

this manuscript are evident in real-world patients, and to evaluate

the use of the virtual population in selecting regions of the

parameter space of the Guyton model that correspond to the

characteristics of a real-world patient. This exploratory project is

at a preliminary stage and no results can be presented at this time.

The methodology we have presented here and applied to the

Guyton model is generic in that it can be applied to any

mathematical model of sufficient complexity. As physiological

models encompass larger and larger scales, both spatially and

temporally, this methodology should prove beneficial in elucidat-

ing the subtle interactions between model parameters in these

complex models.

Figure 10. The effects of aldosterone loading on the human body. This simulation reproduced the conditions shown in Figure 5 of
Uttamsingh et al. [74], which inclues experimental data from Davis and Howell [94] and Relman and Schwartz [76]. A: Extra-cellular fluid volume. B:
Mean arterial pressure. C: Serum aldosterone (normalized). D: Sodium excretion rate.
doi:10.1371/journal.pcbi.1002571.g010
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Such an effort is required to evaluate the clinical suitability of

using the Guyton model to assist in providing individualized

predictive medicine, as per the goals of both the IUPS Physiome

and the Virtual Physiological Human projects.

Supporting Information

Dataset S1 Simulation results, elementary effects and
correlations. This dataset contains the results of each individual

simulation, the calculated elementary effects, correlations between

each parameter and variable, and correlations between elementary

effects and parameters. Dryad Digital Repository. http://dx.doi.

org/10.5061/dryad.h3s0r.
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Table S1 Descriptions of the 96 model parameters
included in the sensitivity analysis. The distribution of
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16 hormonal, 11 local circulation, and 4 thirst-related.

(PDF)

Table S2 Descriptions of the 276 output variables
included in the sensitivity analysis.

(PDF)
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21. Werner J, Böhringer D, Hexamer M (2002) Simulation and prediction of

cardiotherapeutical phenomena from a pulsatile model coupled to the Guyton

circulatory model. IEEE Trans Biomed Eng 49: 430–439.

22. White RJ, Leonard JI, Srinivasan RS, Charles JB (1991) Mathematical modeling

of acute and chronic cardiovascular changes during Extended Duration Orbiter

(EDO) flights. Acta Astronaut 23: 41–51.

23. Guyton AC, Coleman TG, Granger HJ (1972) Circulation: overall regulation.

Annu Rev Physiol 34: 13–46.

24. Montani JP, Vliet BNV (2009) Understanding the contribution of Guyton’s large

circulatory model to long-term control of arterial pressure. Exp Physiol 94: 382–

388.

25. Karaaslan F, Denizhan Y, Kayserilioglu A, Gulcur HO (2005) Long-term

mathematical model involving renal sympathetic nerve activity, arterial pressure,

and sodium excretion. Ann Biomed Eng 33: 1607–1630.

26. Malpas S (2009) Editorial comment: Montani versus osborn exchange of views.

Exp Physiol 94: 381–382.

27. Mangourova V, Ringwood J, Vliet BV (2011) Graphical simulation environ-

ments for modelling and simulation of integrative physiology. Comput Methods

Programs Biomed 102: 295–304.

28. Osborn JW, Averina VA, Fink GD (2009) Commentary on ‘Understanding the

contribution of guyton’s large circulatory model to long-term control of arterial

pressure’. Exp Physiol 94: 388–389.

29. Osborn JW, Averina VA, Fink GD (2009) Current computational models do not

reveal the importance of the nervous system in long-term control of arterial

pressure. Exp Physiol 94: 389–396.

30. Montani JP, Vliet BNV (2009) Commentary on ‘Current computational models

do not reveal the importance of the nervous system in long-term control of

arterial pressure’. Exp Physiol 94: 396–397.

31. Hernández AI, Rolle VL, Defontaine A, Carrault G (2009) A multiformalism

and multiresolution modelling environment: application to the cardiovascular

system and its regulation. Philos Transact A Math Phys Eng Sci 367: 4923–

4940.

32. Hernández AI, Rolle VL, Ojeda D, Baconnier P, Fontecave-Jallon J, et al.

(2011) Integration of detailed modules in a core model of body uid homeostasis

and blood pressure regulation. Prog Biophys Mol Biol 107: 169–182.

33. Rolle VL, Ojeda D, Madeleine R, Carrault G, Hernández AI (2010) Coupling

the Guyton model to pulsatile ventricles using a multiresolution modelling

environment. Computing in Cardiology 37: 325–328.

34. Guillaud F, Hannaert P (2010) A computational model of the circulating renin-

angiotensin system and blood pressure regulation. Acta Biotheor 58: 143–170.

35. de Bono B, Hoehndorf R, Wimalaratne S, Gkoutos G, Grenon P (2011) The

RICORDO approach to semantic interoperability for biomedical data and

models: strategy, standards and solutions. BMC Res Notes 4: 313.

36. Morris MD (1991) Factorial sampling plans for preliminary computational

experiments. Technometrics 22: 161–174.

37. Van Vliet BN, Montani JP (2005) Circulation and uid volume control. In: Walz

W, editor. Integrative Physiology in the Proteomics and Post-Genomics Age.

Humana Press. pp. 43–66.
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