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ABSTRACT

microbioTA (http://bio-annotation.cn/microbiota)
was constructed to provide a comprehensive, user-
friendly resource for the application of microbiome
data from diseased tissues, helping users improve
their general knowledge and deep understanding
of tissue-derived microbes. Various microbes have
been found to colonize cancer tissues and play
important roles in cancer diagnoses and outcomes,
with many studies focusing on developing better
cancer-related microbiome data. However, there
are currently no independent, comprehensive open
resources cataloguing cancer-related microbiome
data, which limits the exploration of the relationship
between these microbes and cancer progression.
Given this, we propose a new strategy to re-align the
existing next-generation sequencing data to facili-
tate the mining of hidden sequence data describing
the microbiome to maximize available resources. To
this end, we collected 417 publicly available datasets
from 25 human and 14 mouse tissues from the
Gene Expression Omnibus database and use these
to develop a novel pipeline to re-align microbiome
sequences facilitating in-depth analyses designed
to reveal the microbial profile of various cancer
tissues and their healthy controls. microbioTA is a
user-friendly online platform which allows users to
browse, search, visualize, and download microbial
abundance data from various tissues along with
corresponding analysis results, aimimg at providing
a reference for cancer-related microbiome research.

INTRODUCTION

Microorganisms colonize the gut, skin, oral cavity (OC),
urine, and various other environments across the host body,
interacting with their hosts in complex ways often playing
important roles in maintaining the health of the host (1–3).
This means that specific changes in the microbiome can be
closely linked to both disease progress and therapeutic re-
sponse (4). For example, gut microbiota are amongst the
most important risk factors for developing inflammatory
bowel diseases (IBD) (5–7) while several other studies have
linked their metabolites to the development and progres-
sion of various cardiovascular diseases (8–10). In addition,
our understanding of the association between specific dis-
eases and microorganisms has increased the interest in mi-
crobiome research as these interactions clearly impact both
disease and therapeutic outcomes (11,12).

With the rapid development of next-generation sequenc-
ing techniques, researchers have already been able to study
the genomic characteristics of various diseased tissue and
the microorganisms residing within these samples. Increas-
ing evidence suggests that microbes’ composition of these
tissues may impact their susceptibility to certain cancers
and influence the host’s response to therapy (13–15). Poore
et al. re-examined microbial reads from 33 types of cancer
from The Cancer Genome Atlas (TCGA) and found that
microbiomes derived from blood and other tissues could be
applied to cancer diagnosis (16). Riquelme et al. analyzed
the composition of the microbiome in patients with pancre-
atic adenocarcinoma (PDAC) according to their short-term
survival (STS) and long-term survival (LTS) state. These
evaluations revealed that the microbiome from the LTS
group had higher alpha-diversity, and an intra-tumoral sig-
nature which included Pseudoxanthomonas, Streptomyces,
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Saccharopolyspora and Bacillus clausii, with this signature
also being found to be highly predictive of long-term sur-
vivorship. This data also led these investigators to suggest
that the microbiome from PDAC tissue undertook some de-
gree of crosstalk with the gut microbiome, influencing the
host immune response and disease treatment (17).

As our understanding of microbiome has deepened, the
demand for microbial data resources has intensified. The
NIH Human Microbiome Project (HMP) (18), which has
been ongoing for over a decade, provides resources, meth-
ods and discoveries that link interactions between humans
and the microbiome to health-related outcomes, while the
Microbiome Database (MDB) (19) contains the sequenc-
ing resources and metadata from various ecological com-
munity samples to help researchers understand the varia-
tion in the gut microbiome across health and disease pop-
ulations. The expanded Human Oral Microbiome Database
(eHOMD) (20) provides comprehensive curated informa-
tion on the bacteria found in the human mouth and aerodi-
gestive tract, including the pharynx, nasal passages, sinuses,
and esophagus, providing new insights into the nostril mi-
crobiome. gutMDisorder (21), a comprehensive manually
literature-extracted resource for associations between gut
microbes and phenotypes or interventions in Homo sapiens
and Mus musculus, provides users references to help iden-
tify the functional connections between gut microorganisms
and disease. The data repository for Gut Microbiota (GM-
repo) (22,23) deposits curated data resources from consis-
tently annotated human gut metagenomes, increasing the
reusability and accessibility of human gut metagenomic
data, and enabling cross-project and phenotypic compar-
isons. The Human Microbiome Bodymap (mBodyMap) (24)
curates the collected microbial data identified via their asso-
ciations with human diseases and body sites to enable cross-
dataset integration and comparison. Microbe-phage interac-
tion database (MVP) (25) provides a comprehensive catalog
of phage-microbe interactions to assist users to find phages
that target specific microbes of interest. However, most of
these widely known microbial databases are gut-derived or
oral-derived, few are tissue-derived. Moreover, there is no
database providing a relatively comprehensive analysis and
user-friendly interactive web resource for disease-related
microbiome. Given this, we propose the development of the
microbioTA, an atlas of the microbiome from cancer tissues
of H. sapiens and M. musculus. This system is designed to be
free to access http://bio-annotation.cn/microbiota and we
hope that it will facilitate new discoveries in this developing
field.

DATA COLLECTION AND DATABASE CONTENT

Collection of RNA-sequencing data from human and mouse
tissue samples

An overview of microbioTA database is presented in Fig-
ure 1. We collected 417 publicly available datasets from
the GEO database (26), comprising 302 datasets across 25
human tissues and 115 datasets across 14 mouse tissues.
We then downloaded the Sequence Read Archive (SRA)
(27) data and collected the corresponding metadata of the
datasets allowing us to annotate each including source

name, tissue, age, and gender of the host organism. We per-
formed filtration on the metadata in advance because there
was some loss of information and all the datasets were col-
lected before March 2022.

Processing of raw sequencing data

We firstly decompressed the SRA data to fastq data using
SRA-Tools (https://github.com/ncbi/sra-tools), then per-
formed quality control and pre-processed the data using
fastp software (28). Samples with lower quality were re-
moved according to the following criteria: (i) samples with-
out complete metadata; (ii) samples with very low sequence
counts.

Alignment and abundance calculations and result filtration

Kraken2 (29,30) was used to complete the taxonomic
classification of the sequencing data, and the align-
ment results were accurate to the species level. We used
Bracken (31) to compute the abundance of microbes at
the species level using the reads collected in Kraken2 and
then used KrakenTools (https://github.com/jenniferlu717/
KrakenTools/) to convert the microbiome abundance re-
sults from the kraken2 report into the MetaPhlAn (32) re-
port format. We then combined all samples from the same
dataset into one matrix and then used these to develop a
set of filter criterion designed to guarantee the quality of
the alignment result and minimize the noise of any contam-
inating sequences. Finally, any taxa whose abundances were
<4 in over 80 samples from any individual dataset were re-
moved.

Microorganism characterization

R package, vegan (v2.6–2) (https://github.com/vegandevs/
vegan) was used to calculate microbial alpha diversity, in-
cluding the observed, chao1 (33), Shannon (34) and Simp-
son (35) diversity indices. While python package, scikit-bio
(v0.5.7) (https://github.com/biocore/scikit-bio) was used to
calculate the various microbial beta diversity distance val-
ues, such as Euclidean, Jaccard, Bray Curtis and Jensen
Shannon distance, before using these data to create the beta
diversity distance matrix using principal coordinate analysis
(PCoA) or non-metric multidimensional scaling (NMDS).
Linear discriminant analysis of effect Size (LEfSe) (36) was
used to identify the characteristic microorganisms from
cancer and control samples, which in turn might help
deepen our understanding of the relationship between cer-
tain microbes and cancers.

Database construction

microbioTA is freely accessible to the user community at
http://bio-annotation.cn/microbiota and requires no regis-
tration or login. microbioTA was constructed using Vue
(v3.3.37) and tested in Mozilla Firefox, Google Chrome,
and Microsoft Edge browsers and part of the data was
stored and queried using MySQL (v5.7.24), while the other
data were stored locally in Microsoft Excel format. The in-
teractive access form is implemented using the Python flask
web framework and is visible via Apache ECharts and in-
house R scripts.
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Figure 1. Overview of microbioTA. Raw RNA sequencing data were collected from the GEO database and then used to create a novel microbiome alignment
pipeline to help re-align this RNA-Seq data with microbiome abundance information. We then used this to analyze the microbial characteristics of various
microbiomes from different perspectives including the microbiome diversity and compositional difference analysis. The microbioTA interface was then
constructed the microbioTA to visualize and store the analysis result of the microbiome resource.

DATABASE STATISTICS

As of July 2022, microbioTA includes the data from the 16
534 samples forming part of the 302 projects of H. sapi-
ens projects identified in this study and 3973 samples from
the 115 M. musculus projects (Figure 2A). These samples
were taken from 69 cancer types across 25 H. sapiens tis-
sues and 35 cancer types across 14 M. musculus tissues. De-
tailed statistics on the distribution of projects and samples
among the different tissues are shown in Figure 2B. Finally,
our evaluations identified a total of 6499 species across all
projects, 6,468 from the H. sapiens samples and 6213 from
M. musculus samples, respectively. Statistical analysis of the
species distribution across different tissues is shown in Fig-
ure 2C.

USER INTERFACE

We created a user-friendly web platform for visualizing the
microbiome features of various publicly available datasets.
Users can browse these datasets by clicking the icons for
different tissues and the hyperlinks for specific diseases un-
der the tissue on the left portion of the ‘Home’ page or by
clicking the hyperlinks of different tissues listed on the right
portion of the ‘Home’ page (Figure 3A). These actions will
then redirect the browser to the ‘Organism’ section of the

‘Browse’ page (Figure 3B) and once users select a dataset
from this page, detailed information will be provided in ta-
ble or picture format, including:

• Detailed description. The basic description of each of the
datasets (Figure 4A) include the accession number (ID)
and bio-project number (ID) from the GEO database,
publication information, organism, tissue, disease, sam-
ple number, and species number of the selected dataset.
We also provide hyperlinks to external public data re-
sources and publication information.

• Metadata. The statistical information from the meta-
data category is shown using a pie plot (Figure 4B) and
all metadata were manually filtered to remove unnec-
essary or ambiguous information. Users can select one
metadata group to understand the distribution of the
samples.

• Relative abundance data. Stack bar plots for microbial
abundance are shown at different taxonomic levels as
grouped by the metadata (Figure 4C) and users can
choose the taxonomic level from phylum to species and
select any one of the metadata categories to group the
samples as well as the number of the top taxa they want to
display. Each bar represents a sample, and different col-
ors represent different taxa.
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Figure 2. Statistics describing the data in microbioTA. (A) Total numbers of projects and samples collected from Homo sapiens and Mus musculus. (B)
Numbers of projects (above) and samples (below) from different Homo sapiens and Mus musculus tissues. (C) Numbers of species detected in different
Homo sapiens and Mus musculus tissues.

• Phylogenetic tree. A phylogenetic tree for each of the sam-
ples within the selected dataset is shown in Figure 4D.
Users can choose one sample to plot the correspond-
ing phylogenetic tree of the microbiome colonized in this
sample. Branches of each phylum in the tree are high-
lighted in different colors.

• Alpha diversity comparisons. The microbial alpha diver-
sity index at different taxonomic levels was compared
among metadata groups and is presented as a boxplot
(Figure 4E) with our platform providing four kinds of
alpha diversity indices: observed, chao1, Shannon, and

Simpson indices. The taxonomy level, metadata grouping
category, and diversity indices are all optional, and users
can choose the appropriate option according to their
needs to compare the microbial alpha diversity among
different groups of the dataset. The samples are grouped
by metadata, and the scatters are colored by group. Statis-
tical evaluations are also provided under the picture with
a P-value less than 0.05 was considered significant.

• Beta diversity comparisons. Microbial beta diversity at
different taxonomic levels were compared between meta-
data groups and are reported using the scatter plot
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Figure 3. Home and browse pages from microbioTA. (A) Home page of microbioTA. (B) Browse page of microbioTA.

(Figure 4F). Here, we report four types of distance eval-
uations, including Bray-Curtis, Euclidean, Jaccard, and
Jensen-Shannon, for comparison. In addition, we pro-
vide two ordination methods, principal coordinate anal-
ysis (PCoA) and non-metric multidimensional scaling
(NMDS), to visualize the beta diversity differences and
these values are all evaluated using a PERMANOVA
function.

• Core microbiome. The prevalence of the microbes of inter-
est in each of the selected metadata groups can be plotted

using a clustering heatmap (Figure 4G), users can select
the taxonomic level and the number of the top microbes
with the highest mean abundance they want to display.
The colors of the cells in the heatmap represent the preva-
lence of the microbe within each group.

• Heatmap clustering. The abundance of each of the mi-
crobes of interest in each of the samples with metadata
at different taxonomic levels can be visualized using a
heatmap (Figure 4H) and users can select both the tax-
onomic level and set the number of microbes with the
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Figure 4. Detailed information of microbioTA. (A) Detailed description of the selected dataset. (B) Pie plot describing the relevant Metadata categories.
Each part represents a group of samples. (C) Stack bar plot of microbiome abundance (Relative abundance). (D) Phylogenetic tree for queried samples.
Different colors represent differences in the cladogenesis of various phylum. (E) Box plot of the microbial alpha diversity index, each box represents one
metadata group, and each node represents a sample. The result of the statistical difference analysis is provided in the left bottom corner of the image, with
only P values <0.05 reported in this format. (F) Scatter plots of the microbial beta diversity. Samples are colored according to their group and statistical
differences between different groups are recorded in the subtitle. (G) Heatmap clustering plot of microbiome prevalence showing the core microbiome of
interest group in any dataset, the colors of the cells represent the prevalence of any microbiome under the threshold. (H) Heatmap clustering of microbiome
abundance for each taxon of interest, the colors of the cells represent the normalized abundance of the microbiome. (I) The characteristic microbiome
identified via LEfSe analysis comparing cancer and control samples. Clicking the ‘>’ bottom under the ‘View’ column brings up a detailed comparison
of the species distribution in the cancer and control groups with any statistically significant differences highlighted within the picture. (J) Cladogram plot
describing the microbiome biomarkers identified in the LEfSe results. Moving from the outside to the inside, the circles represent the group to which each
of the biomarkers belong, the LDA score, and the mean abundances of the biomarkers in any two groups, respectively. The phylogenetic tree in the insider
of the circles is colored based on phylum.

highest mean abundance within the dataset they want to
evaluate. Samples are then clustered using metadata on
the x-axis and taxa on the y-axis.

• Characteristic microorganisms. LEfSe analysis can be
performed allowing users to compare the disease and
control groups (Figure 4I). This is then output as a table
which contains the statistically significant microbiome
biomarkers of the specific group in the dataset. The ‘de-
tails’ section then provides the boxplots for each of the
characteristic microorganisms in each of the different
groups.

• Cladogram analysis. This platform also provides a clado-
gram plot function allowing users to visualize the micro-
bial biomarkers from their LEfSe evaluations (Figure 4J).
The insider branches of these trees are colored accord-
ing to phylum and as the rings moved from the outside
to the inside, they represent the group of biomarkers be-
longing to the LDA score and the mean abundance of the
biomarkers in the two groups, respectively.

In addition to the ‘Organism’ section on the ‘Browse’
page, microbioTA also provides detailed information on
the species recorded in our database under the ‘Taxon-
omy’ section (http://bio-annotation.cn/microbiota/browse/
taxonomy). Users can obtain taxon classification informa-
tion from the phylum to species level, mean prevalence, and
mean abundance among projects in both H. sapiens and M.
musculus tissues. We also provide hyperlinks to descriptions
of the taxa on the NCBI taxonomy web page.

We provide a ‘Search’ page (http://bio-annotation.cn/
microbiota/search) for users to obtain the information of
interest as quickly as possible via the summation of a simple
search request via the ‘Search projects by tissues or diseases’
section. This function provides the summary information
of the tissue and disease they want to learn about in table
format and various hyperlinks also allow users to reach to
the detailed information page for each of the projects. Users
who follow the ‘Search species in all projects’ section can
obtain a summary table for their taxon of interest at any

http://bio-annotation.cn/microbiota/browse/taxonomy
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taxonomy level with hyperlinks to the detailed information
for each the species.

Moreover, all the images and tables can be downloaded
by clicking on the download icon, and all the microbial
abundance matrix data is also available via the ‘Download’
page.

SUMMARY AND FUTURE PERSPECTIVES

Associations between diseased tissue microbiomes and dis-
ease progression are coming, increasingly, under evaluation,
creating a new niche for microbial-related research. Multi-
ple studies have found that specific microbial metabolites
participate in the pathogenetic process, with many microbes
acting as potential biomarkers for cancer diagnosis. Most of
the existing databases collect information on gut and oral
microbiomes, but there remains a lack of public databases
focused on curating data around cancer tissue microbiomes.
Therefore, we developed this novel analysis pipeline and
constructed a web database platform to store and help an-
alyze the tissue-derived microbiome data. The current ver-
sion of microbioTA includes 417 publicly available datasets
describing the microbiome in 25 human and 14 mouse tis-
sues. This database includes 6468 and 6213 unique micro-
bial species from human and mouse samples, respectively
and all datasets contain the relevant detailed information
to compile a useful set of relative analysis results.

microbioTA is a user-friendly, interactive database that
will be of particular interest and use to the general re-
searchers and the broader life science community, providing
a reference for cancer microbiome research. The future up-
dated versions will include additional extensions focused on
addressing some of the tool’s current limitations. First, we
will include the microbiome data from various chronic dis-
eases and continue to collect the latest public datasets. Sec-
ond, we will create useful online tools for users to analyze
this extended data and third, we will continue to optimize
our database to provide users with a better experience.
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