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ABSTRACT: Recent years have seen significant developments in
the study of strong light−matter coupling including the control of
chemical reactions by altering the vibrational normal modes of
molecules. In the vibrational strong coupling regime, the normal
modes of the system become hybrid modes which mix nuclear,
electronic, and photonic degrees of freedom. First-principles
methods capable of treating light and matter degrees of freedom
on the same level of theory are an important tool in understanding
such systems. In this work, we develop and apply a generalized force
constant matrix approach to the study of mixed vibration-photon
(vibro-polariton) states of molecules based on the cavity Born−
Oppenheimer approximation and quantum-electrodynamical den-
sity-functional theory. With this method, vibro-polariton modes and
infrared spectra can be computed via linear-response techniques analogous to those widely used for conventional vibrations and
phonons. We also develop an accurate model that highlights the consistent treatment of cavity-coupled electrons in the vibrational
strong coupling regime. These electronic effects appear as new terms previously disregarded by simpler models. This effective model
also allows for an accurate extrapolation of single and two molecule calculations to the collective strong coupling limit of hundreds of
molecules. We benchmark these approaches for single and many CO2 molecules coupled to a single photon mode and the iron
pentacarbonyl Fe(CO)5 molecule coupled to a few photon modes. Our results are the first ab initio results for collective vibrational
strong coupling effects. This framework for efficient computations of vibro-polaritons paves the way to a systematic description and
improved understanding of the behavior of chemical systems in vibrational strong coupling.

1. INTRODUCTION
Recent experimental progress in the field of polaritonic
chemistry has demonstrated the possibilities of altering chemical
and material properties with the strong coupling of electro-
magnetic fields and vibrational degrees of freedom. In this
vibrational strong coupling regime, light and matter degrees of
freedom hybridize forming vibro-polaritons.1 It has been
demonstrated that in this regime coupled cavity photons can
be tuned to influence chemical reactivity,2 vibrational energy
redistribution,3 optical spectra,4,5 Raman spectra,6 two-dimen-
sional spectroscopy,7 relaxation dynamics,8 ultrafast thermal
modification,9 and even superconductivity,10 among others.
These experimental works have been complemented by various
theoretical efforts,11−19 one development, in particular, to
describe these experiments is the introduction of effective vibro-
polariton Hamiltonians4,5,20,21 that include the vibrational
degree of freedom via normal modes (vibrations in molecular
or phonons in solid-state systems). These normal modes can be
obtained, for example, experimentally from infrared spectros-
copy4,5 or numerically from first principles using electronic
structure theory methods.22,23 Although conventional electronic
structuremethods are not directly applicable to the light−matter
strong coupling regime due to their negligence of the quantum

electromagnetic field, here they can be used to calculate the
vibrational normal modes of the matter system based on the
force constant matrix. These vibrational normal modes are then
coupled to the photon modes of the electromagnetic field. Such
Hamiltonians have been applied successfully to describe various
experimental findings.4,5,21 One limitation of these vibro-
polariton Hamiltonians that only include vibrational modes
and photon modes explicitly is that self-consistent effects of the
electron−photon interaction are neglected. In addition, this
description usually aims at including only the relevant degrees of
freedom of the system explicitly. While for simpler systems the
relevant degrees of freedom can be known beforehand, in
general, and for more complex situations, these variables are not
always known.
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An alternative route to simulate vibrational strong coupling is
offered by first-principles methods that treat the full matter−
photon Hamiltonian explicitly. Examples include the general-
ization of Hartree−Fock,24,25 QED coupled-cluster (QED-CC)
theory,25−27 and quantum-electrodynamical density-functional
theory (QEDFT).28,29 In the QEDFT framework, vibrational
strong coupling has been simulated in the time domain
capturing the dynamics of the system to analyze optical
spectra30 or chemical reactivity,31 but the full framework to
describe vibrational strong light−matter coupling within linear-
response theory has not yet been developed. While explicit
calculations in the time domain have their advantages for
simulating complex and anharmonic dynamics, information
about vibro-polaritonic modes can be obtained from linear-
response calculations more efficiently. One limitation of these
first-principles methods is their relatively high computational
cost, which effectively limits calculations to the single or few
molecule limit, which is the opposite limit of experiments in the
collective strong coupling regime.
In this work, we introduce an efficient framework to calculate

properties of systems under vibrational strong coupling from
first principles. We introduce the generalized force constant
matrix, where eigenvectors and eigenvalues give rise to vibro-
polaritonic normal modes of the correlated matter−photon
system and the frequencies of the vibro-polaritons. In addition,
we develop an accurate effective model that includes light−
matter feedback terms that have been previously disregarded.
We show that this effective model allows for extrapolation of
first-principles calculations to the collective strong coupling
regime. We exemplify these methods by calculating optical
spectra for single and many CO2 molecules in optical cavities, as
well as for the iron pentacarbonyl Fe(CO)5 coupled to a
multiphoton mode setup.

2. THEORY OF VIBRO-POLARITONS
In the following section, we develop the framework to describe
vibro-polaritons in the linear-response regime from first
principles. We start by discussing the Hamiltonian for light−
matter coupled systems in the length gauge and in the dipole
approximation.30,32,33 For the vibrational strong coupling
regime, it has been shown that the cavity Born−Oppenheimer
approximation (CBOA) can yield an accurate description of the
system.11,13,14,16,33 This method is based on the adiabatic
approximation that allows separation of the electronic degrees of
freedom from the nuclear and photonic degrees of freedom. As a
consequence, the photonic degrees of freedom are described as
analogous to the nuclear degrees of freedom in the conventional
Born−Oppenheimer approximation.34 With this framework, the
nuclear−photon dynamics of a set of Nnuc nuclei with
coordinates = κR R R R R R( , , , ... ...)x y z x I1 1 1 2 and pt photon
modes with photon displacement coordinates q= (q1, q2, ... qα ...)
are obtained by solving

̂ + ̂ + Φ = ϵ ΦR R RT T E q q q( ( , )) ( , ) ( , )j j jnuc pt (1)

with nuclear and photonic kinetic energies T̂nuc and T̂pt,
respectively, and E denotes the cavity Born−Oppenheimer
(CBO) potential-energy surface for the lowest energy electronic
state of the system. We emphasize here that the nuclear and
photonic degrees of freedom in eq 1 are still treated fully
quantum mechanically, thus capable of describing nonclassical
states of light, for example, Fock or squeezed states. In practice,
we can obtain the CBO potential-energy surfaces by diagonal-

izing the electronic Hamiltonian of Ne electrons that now
parametrically depends on the nuclear and the photonic
coordinates with

̂ Ψ = ΨR r R R r RH q q E q q( , ) ( , , ) ( , ) ( , , )i i i (2)

where

̂ = ̂ + ̂ + ̂ + ̂
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− − −
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V q
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Here, T̂e describes the electronic kinetic energy, V̂e−e the
electron−electron interaction, V̂e−nuc the electron−nuclear
interaction, and V̂nuc−nuc the nuclear−nuclear interactions,
respectively. In eq 3, we include the matter−photon coupling as
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where the α runs over photon modes. The photon displacement
coordinate qα couples to the electronic and nuclear dipole
moment operator, which is given by μ = ∑ − ∑ ̂̂ R reZ eI I I i i,
where r ̂ is the electronic position operator, and e describes the
elementary charge and ZI the charge of the Ith nucleus. The
frequencyωα and the coupling strength λα define the parameters
of the individual photon modes. Here, the coupling strength λα
is related to the amplitude of the electric field at the center of
charge of the molecule for the cavity photon mode α via

λ =α ω αℏ α
E2 . In general, strong coupling is defined to occur

when the coupling strength is larger than decoherence rates in
the system.35 Since our simulations are of isolated systems, then
as long as λ is nonzero, the system is technically in the strong
coupling regime, and values where the coupling becomes
“strong” depend on the decoherence rates in a given experiment.
In this work we treat the μ̂2 term in the electronic potential

using a mean field approximation as described in the mean field
electronic potential section of the Supporting Information.
Having setup the Hamiltonian of the matter−photon system,

we can proceed to determine the vibro-polaritonic normal
modes. In the first step, we define the effective nuclear and
photonic forces and calculate the equilibrium configuration of
the system. To derive the forces acting on nuclear and photonic
degrees of freedom in the presence of matter−photon coupling,
we apply the Hellman−Feynman theorem. The forces on
nucleus I along the κ direction are given by

∑ λ λ μω

= −
∂

∂
= ̂ − ̂

+ − ·⟨ ̂⟩
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=
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1 (5)

where E is the ground-state CBO energy of the system governed
by the Hamiltonian in eq 3, and RIκ indicates the κ direction
component of the position of nucleus I and ⟨..⟩ an expectation
value evaluated using the electronic states at particular values of
R and q. There is also an effective force on the photon
displacement coordinate, which is given by

λ μω ω= −
∂

∂
= − + ·⟨ ̂⟩

α
α α α αα

R
F

E q

q
q

( , )
q

2

(6)
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The equilibrium position with the ground-state energy E0 with
respect to R and q is now defined by minimization of energy, as
defined by eq 2, and thus vanishing forces, i.e., = =

κ α
F F 0R qI

with the electronic Hamiltonian in eq 3.
Derivatives of the forces in eqs 5 and 6 provide sufficient

information on the electronic energy surface to construct the
effective Hamiltonian for the nuclei and photons of eq 1. The
CBO energy of the coupled light−matter system with small
perturbations around the equilibrium configuration can be
expressed as
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where ΔRIκ are displacements of atom I along direction κ and
Δqα perturbations of photon displacement qα; E0 is the energy of
the equilibrium configuration. We have defined the matrices
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The vibro-polariton eigendisplacements ηm of the light−matter
coupled system and the vibro-polariton eigenfrequenciesωm can
be obtained by solving the generalized eigenvalue problem

i

k

jjjjjjj
y

{

zzzzzzz

i

k

jjjjjjjjj

y

{

zzzzzzzzz
i
k
jjjj

y
{
zzzz

i

k

jjjjjjjjj

y

{

zzzzzzzzz

η

η
ω

η

η
=

C C

C C

M( ) 0
0

RR qR T

qR qq

m
R

m
q m

m
R

m
q

( ) ( )

( ) ( )

( )

( )

2
( )

( )
(11)

whereMIκ,Jκ′ =MIδIJδκκ′, andMI is the mass of nucleus I and a
×pt pt identity matrix.a The matrices C and M̃ as well as

generalized eigendisplacements ηm can be used to rewrite eq 11
in a more compact form

η ω η= ∼C Mm m m
2

(12)

where now C acts as a generalized force constant matrix which
includes both nuclear and photon degrees of freedom. The
analogous generalized dynamical matrix can then be defined as

= ∼ ∼D C M M/( )ij ij ii jj
1/2

(13)

with eigenvaluesωm
2 and vibro-polariton eigenvectorsUm. For a

normalized set of Um, the eigendisplacements are related by ηm,i
=Um,i/(M̃ii)

1/2, where the eigendisplacements are normalized to
obey ηm

TM̃ηm = 1. The eigenvalues of this generalized dynamical
matrix give the frequencies ωm of eq 12 which in the harmonic
limit are equivalent to the energies ϵj of eq 1.

Analyzing the structure of the force constant matrix, we find a
2 × 2 block structure of C (left side of eq 11) reminiscent of the
electron−photon linear-response polaritonic Casida equation.36
We find the matter block C(RR) and photon block C(qq) on the
diagonal coupled by an off-diagonal block C(qR), which
introduces the matter−photon coupling. For the case of λ = 0,
the off-diagonal blocks vanish, and the matter block reduces the
standard force constant matrix.23 We further note that while in
the polaritonic Casida equation the photon block is strictly
diagonal, since there is no explicit photon−photon interaction
present, the same is not true for the generalized force constant
matrix here. In this case, the photon block C(qq) is not diagonal
due to an effective photon−photon interaction between
individual photon modes that originates from the electron−
photon interaction. Themanifestations of this effective photon−
photon interaction is discussed in Section 4.3. A schematic
representation for a single vibrational mode coupled to a single
photon mode is given in Figure 1.

We can now obtain the infrared spectrum from the
eigenvectors and eigenfrequencies of the generalized dynamical
matrix and the vibro-polariton mode effective charges. Both
quantities are defined analogously to the case of conventional
linear-response theory of vibrations/phonons.22 The mode
effective charge of vibro-polariton normal mode m along
direction κ is given by

∑ ∑ ∑μ
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Using these effective charges, the corresponding infrared
spectrum I can be constructed as

∑ ω δΩ = | *| ΩZI L( ) ( ; , )
m

m m
2

(15)

where the peaks at the frequencies ωm with amplitudes Zm are
broadened by the Lorentzian L(Ω, ωm, δ)

37

ω δ δ
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2 2

(16)

Figure 1. Schematic representation of vibro-polaritonic excitations in
an optical cavity. On the left, an infrared-active vibrational excitation of
CO2 is depicted at a particular energy level. On the right, a particular
photon mode of the cavity is depicted as an excitation of photon
displacement coordinate qα within a harmonic potential. Under strong
coupling, these vibration and photon modes hybridize leading to upper
and lower polaritons as depicted by the two states in the center. Note
that the eigenvectors of these hybrid states have opposite signed qα
components as depicted with the blue arrows.
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This definition of the infrared spectra corresponds to the
electric dipole autocorrelation function, or the Fourier transform
of the dipole moment as a function of time, and is typically used
in standard first-principles calculations.38 In an optical cavity,
this IR spectrum corresponds to a situation where the IR
spectrum is measured perpendicular to the cavity axis.39 Note
that in the definition presented here we have included the
electronic response of the dipole to photon coordinate qα at fixed
ionic positions (the second term in eq 14), a term often
disregarded in other first-principles works. We note that that in
the context of optical cavities other spectra are also measured,
such as reflection and transmission spectra through the mirror,
which can be defined in terms of a photonic autocorrelation
function.40

3. MODEL FOR VIBRO-POLARITONS
To elucidate the various microscopic contributions to the results
of the full first-principles theory, we now develop an equivalent
vibro-polaritonic model. We first rewrite eq 7 with the matter
degrees of freedom rotated into a basis of uncoupled vibrational
normal modes. The nuclear displacements from the equilibrium
configuration can be expressed in terms of vibrational mode
amplitudes NI which specify the change of ionic positions. For a
general ionic displacement given by a set of ΔRIκ, the
c o r r e s p o n d i n g s e t o f N I a r e g i v e n b y

η= ∑ | Δκ κ λ κ=N R( )I J m J
R

J,
( )

0
T where η |κ λ=m J

R
,

( )
0 are the normal

vibrational mode eigendisplacements of the uncoupled problem
at λ = 0. Force constant matrix elements can be written in terms
ofNI and qα by expanding the expectation values present in eqs 5
and 6 to linear order. Then, the dipole expectation value reads

∑ ∑μ μ μ⟨ ̂⟩ ≈ ∂⟨ ̂⟩
∂

+ ∂⟨ ̂⟩
∂α α

αN
N

q
q

I I
I

(17)

We express the first force contribution on the left side of eq 5 in
terms mixed second derivatives given by matrices Θ and Ξ,
defined explicitly in the model derivation section of the
Supporting Information. With the above expansions and change
of basis, we can define the following harmonic model
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where T includes the kinetic energy of the vibrational modes
(NI) and the photon modes (qα). ZIκ is the ionic contribution to
the uncoupled vibrational mode effective charge of eq 14 and

given explicitly by η= ∑ |κ κ λ=Z e ZI J J I J
R
,

( )
0. Additional details on

the derivation of the model can be found in the Supporting
Information.
We find that the matter−photon coupling strength, i.e., the

term proportional to NIqα, depends on the quantity μ∂⟨ ̂⟩
∂NI

. As

discussed before, the dipole moment of the system consists of
two contributions, a nuclear one and an electronic one. As a

consequence, the term μ∂⟨ ̂⟩
∂NI

also includes two contributions: the

nuclear dipole moment, as well as the change of the electric
dipole moment due to a change in nuclear configuration.

Analogously, the term μ∂⟨ ̂⟩
∂ αq

describes the change of the electric

dipole moment due to a change in photon coordinate qα. We
note that while photon modes are not explicitly coupled in eq 3,

i.e., there is no photon−photon coupling term, the μ∂⟨ ̂⟩
∂ αq

term

introduces effective photon−photon coupling in the vibro-
polariton model. Since the model describes a set of interacting
quantum harmonic oscillators, it can also be solved analyti-
cally.41

For a detailed illustration, we now consider themodel of eq 18
for a single photon mode coupled to a single vibration mode
with the relevant vibration only influencing the dipole moment
along the direction of photon polarization. With these
simplifications, we can drop the mode indices, label the
vibration mode frequency with subscript N and the photon
mode with subscript q, and treat the dipole moment μ and
coupling strength vector λ as scalars. Then, eq 18 reduces to

ω ω λ̂ = ̂ + ∼ + ∼ + ∼H T N q Nq
1
2

1
2SM N q

2 2 2 2
(19)

Here, we find two effective frequencies: (i) the effective
frequency of the vibrational normal mode that is given by

ω ω λ
μ∼ = + Ξ + ⟨ ⟩̂

e Z
d
dNN N

2 2 2
(20)

and (ii) the effective frequency of the photon mode that is given
by

ω ω λω
μ∼ = − ⟨ ⟩̂d

dqq q q
2 2

(21)

In addition, we have the effective interaction strength that is
given by

λ λω
μ∼ = − ⟨ ⟩̂d

dNq (22)

The resulting eigenvalues are then the upper and lower
polaritons with frequencies
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We find that the photon frequencyωq at which resonance occurs
is then not that of the bare phonon mode (ωN), instead
resonance occurs when ω̃q = ω̃N. The model of vibro-polaritons
in eq 18 contains three parameters which have a dependence on
the coupling strength λ. These are the derivatives of the dipole
with respect to photon displacement d⟨μ̂⟩/dq and nuclear
positions d⟨μ̂⟩/dN, as well as derivatives of the Coulomb forces
on nuclei expressed asΞ, where derivatives with respect to nuclei
positions are in a basis of uncoupled vibrational normal modes.
For an uncoupled system (λ = 0), both Ξ and d⟨μ̂⟩/dq are zero.
The λ dependence of all three of these parameters is a result of
coupling strength and q dependence of the electronic state.
Changes in the electronic state with λ and q change the force
terms written as expectation values (i.e., within ⟨..⟩) in eqs 5 and
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6. This effect is then captured by these λ-dependent parameters
of the model, written in the basis of vibrational normal modes of
the uncoupled system.
An alternative approach for treating vibro-polaritons from first

principles is to use a model which couples the cavity photon
mode to matter vibrations. The parameters, which characterize
the matter vibrations, are then obtained from standard first-
principles methods.4,5,20,21 In such an approach, the modifica-
tion of the electronic potential energy due to the cavity is not
taken to account consistently. Such models correspond to
neglecting the coupling strength-dependent terms in eq 18.

Setting ΞIJ and
μ∂⟨ ̂⟩

∂ αq
equal to zero and setting μ∂⟨ ̂⟩

∂NI
equal to its λ =

0 value recovers such a model which can be constructed without
cavity modification of the electronic potential energy. We refer
to this approximation as the “μ2 model” as it still contains
quadratic dipole terms from eq 4. If one further neglects this
term in the NINJ coupling that is of order λ2, one arrives at a
system of bilinearly coupled vibrational and photon oscillators
similar to the Hopfield model.42 In this simplified model, the
single vibration−single photon effective frequencies are simply
the bare vibrational and cavity normal modes, and any λ

dependence of μ⟨ ̂⟩d
dN

is neglected in the effective coupling strength

term.

4. RESULTS AND DISCUSSION

In this section, we illustrate the developed approach on single
and many CO2 molecules, as well as the iron pentacarbonyl
Fe(CO5). We list the numerical details for these calculations in
the numerical details section of the Supporting Information. We
start by discussing the case of CO2 molecule(s).
4.1. Single CO2 in an Optical Cavity. Figure 2 shows the

computed vibro-polariton normal mode frequencies (vertical
lines) and Lorentzian broadened infrared spectra (black curves)
at various values of the coupling strength λ. The color of the
vertical lines corresponds to the absolute value of the photon
component of the corresponding vibro-polariton normal mode
eigenvector. In this calculation, one photon mode is included
with frequency ωα = 2430 cm−1 chosen to be near resonance
with the 2436 cm−1 asymmetric stretching vibration mode of the
uncoupled system. We choose this slight detuning to be
consistent with the calculation in ref 30. The direction of the λα
vector, which sets the photon mode polarization direction, was
chosen to be aligned with the oscillating dipole moment along
the C−O bonds as indicated by the blue arrow in the inset of the
bottom plot in Figure 2. A Lorentzian broadening of δ = 25 cm−1

was used. By increasing the coupling strength from λ = 0 to λ =
0.1, we observe the Rabi splitting of the vibrational mode at 2436
cm−1 between the upper and lower vibro-polariton branches.We
note that the observed values are in quantitative agreement with
the fully time-dependent results of ref 30. As expected, neither
the noninfrared (IR)-active symmetric stretching mode at 1363
cm−1 or the degenerate bending modes at 607 cm−1 couple to
the cavity. The latter of which is only IR active along directions
orthogonal to the cavity polarization. The eigenvectors of the
two polariton modes are linear combinations of the asymmetric
stretching mode and the photon displacement. The lower
polariton has a photon displacement aligned with the vibration
mode dipole and a larger photon component. While for the
upper polariton eigenvector, the photon displacement is
antialigned with the vibration mode dipole, and the photon
component is smaller. Definitions of ultrastrong and deep strong

coupling are given in terms of Rabi model parameter g in eq 1of

ref 35. The closest analog of g in this work would be = λ μg d
dN2
. If

μd
dN

is taken to be the value from the zero coupling case, then the

onset of ultrastrong coupling would be λ > 0.125 au, and deep
strong coupling would be λ > 1.25 au for the case of the CO2

molecule. However, our calculations include both changes in μd
dN

with λ as well as μd
dq
. Both of these quantities influence the level of

splitting and make direct comparison with definitions of
ultrastrong and deep strong coupling in terms of the Rabi
model parameters not straightforward. An alternative quantity to
measure the strength of the light−matter coupling can be
obtained in terms of the ratio of the Rabi splitting and the cavity
frequency, where we find 8.5% in the case of λ = 0.05 au and over
18% for λ = 0.1 au.
Notable in the results is the asymmetry in the Rabi splitting,

especially in the strong coupling regime. The lower polariton is
seen to have a more intense IR peak and a larger frequency shift
with respect to the frequency of the bare photon mode than the
upper polariton. This behavior is despite the finding that the
lower polariton has a smaller matter and larger photon
contribution than the upper polariton as indicated by the peak
color. We find that the IR amplitudes here are dominated by the
change in the electronic contribution to the dipole moment due

Figure 2. CO2 IR spectra (black curve) for different λ (in atomic units)
values for cavity frequency ωα = 2430 cm−1 and eigenvalues (vertical
lines) colored by photonic character. The inset in the λ = 0 plot shows
the CO2 molecule with the blue arrow indicating the polarization of the
photon mode.
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to the change in photon displacement q, i.e., the term
μ

α
∂⟨ ⟩
∂

κ

α
q

q
in

eq 14. While the derivative of the dipole moment with respect to
q is smaller in magnitude than the corresponding matter
contribution (the Born effective charges), the photon
component of the eigendisplacements can be much larger than
the matter components as the photon components are not
reduced by a factor relating to their mass (from M̃ of eqs 11 and
12). Reference 20 found for the IR spectra of chemical systems
under vibrational strong coupling in resonant setups that the
lower polariton also has a smaller matter contribution than the
upper polariton. This is identified as the source of the smaller IR
peak of the lower polariton which is also observed in ref 43.
However, in both of these works, changes in (electronic) dipole
moment due to the cavity mode displacement (at fixed nuclei
postions) are not accounted for. When this effect is included, the
IR peak of the lower polariton increases, especially at large
coupling strengths where the effect is larger and the mode has
more photon character. Interestingly, in the case of strong
coupling to an electronic excitation, refs 36 and 44 also show
larger amplitude absorptions for peaks with more photon
characters.
The asymmetry in the frequency splitting for the upper and

lower polaritons can be understood by examining the two mode
model presented in eqs 19−22. The λ-dependent parameters Ξ,

μ⟨ ⟩d
dN

, and μ⟨ ⟩d
dq

enter in a manner which shifts the effective

frequencies of both the vibrational and photon modes. Then,
even when the cavity mode is tuned to the frequency of the
vibration mode, these effective frequencies differ, and thus,
splitting is not symmetric around the original vibration
frequency. The λ dependence of each of these terms is a result
of the electronic response to the cavity potential.
In the next step, we compare different effective models to the

discussed first-principles results and analyze the individual terms
in eq 19 in more detail. Figure 3A compares the upper and lower
polariton frequencies at different levels of modeling as a function
of coupling strength. The results of the generalized dynamical
matrix approach using the first-principles theory described in
Section 2 (shown in black) are seen to be in near perfect
agreement with the full two mode model (shown in blue) of eq
19. In addition, we compare to two additional approximate
models, which show significant differences from the full model in
the ultrastrong coupling regime. The first model, shown in green
dotted lines, which we term the μ2 model, corresponds to results
where all of the λ dependence of the model parameters in eq 19
have been neglected so that Ξ = d⟨μ⟩/dq = 0 and d⟨μ⟩/dN are
taken as the values from the uncoupled case. The second model,
shown in the orange dotted line corresponds to a Hopfield type
model where in addition to the approximations made for the μ
model the λ2 term from eq 20 is also set to zero (equivalent to
dropping the μ2 term in Vpt−μ). For a cavity mode precisely in
resonance to a vibration mode, the Hopfield model maintains
perfect symmetric splitting up to the extremely strong coupling
regime. While the inclusion of the μ2 term does permit some
asymmetry in the splitting, it is seen that when parametrized by
first-principles results from the λ = 0 limit this asymmetry is
relatively minimal, and results do not differ much from the
Hopfield model. While some asymmetry is also present due to
the small detuning of photon and vibration mode in our
calculations, it is only when coupling-dependent model
parameters obtained from QEDFT are included that the more
dramatic asymmetric splitting is recovered. Figure 3B shows

how various terms in the model vary with coupling strength λ.
The largest λ-dependent contribution is seen to come from the
d⟨μ⟩/dq term. This change in electronic dipole moment due to
the photon displacement shifts the effective cavity mode
frequency away from resonance with the phonon mode.

4.2. Collective Strong Coupling Limit with Many CO2
Molecules. 4.2.1. First-Principles Results. Rigorous first-
principles approaches in the treatment of strong light−matter
coupling have largely been applied to the problem of a single
molecule strongly coupled to cavity photon modes. However,
experimentally strong coupling is typically achieved via
“collective coupling” where coupling strength is enhanced by
increasing the number of emitters in the cavity.45 The increased
computational efficiency of the linear-response method
presented in Section 2 enables some aspects of the collective
coupling regime to be accessible within QEDFT. We have
simulated chains of CO2 molecules aligned along their C−O
bond directions coupled to a cavity mode polarized along this
same direction.Molecules are chosen to be spaced 20 Bohr apart
to simulate the dilute gas limit. Figure 4 shows comparisons
between QEDFT results for a single molecule, Nmol molecules,
and the results of themanymolecule model presented in Section
4.2.2. A Lorentzian broadening of δ = 10 cm−1 was used. In each
of these plots, one can see the lower and upper polaritons similar
to those observed in the single molecule case but also Nmol − 1
dark modes near 2436 cm−1 with no IR amplitude. The Rabi
splitting and IR spectra in the very strongly coupled single
molecule case and more weakly coupled Nmol case are nearly
identical with only some differences in the lower polariton
frequencies at a very large number of molecules/very strong
coupling.

Figure 3. (A) CO2 mode splitting at various levels of modeling, see
main text for definitions with cavity frequency ωα = 2430 cm−1. (B)
Change of the different model parameters with coupling strength λ (in
atomic units). The signs of N and q have been chosen such that all
curves are positive everywhere.
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Similar to the case of a single coupled molecule, the lower
(upper) polariton eigendisplacements consist of the original
asymmetric stretching mode aligned (antialigned) with the
photon displacement. However, now in the multimode case, the
collective upper and lower polaritons consist of every molecule
experiencing this asymmetric stretching in phase. The multi-
molecule setup also results in a number of dark modes which
correspond to combinations of the original asymmetric
stretching modes on each molecule but in such a way that the
overall dipole moment when freezing has one of these collective
dark modes as zero.
4.2.2. Modeling Larger Numbers of Molecules. The

similarity between the results of a single strongly coupled
molecule with multiple, more weakly coupled molecules
suggests that within the level of theory applied in this work
the microscopic description of one or twomolecules can capture
the relevant physics for many molecules coupled to the cavity in
the dilute limit. To this end, we construct a model of the form
presented in eq 18withNmol CO2molecules coupled to the same
cavity mode as in previous sections at a coupling strength of
λ(Nmol). Nearly all parameters in this model can be obtained from
first-principles calculations of a single molecule with coupling

strength λ λ= N N(1)
mol

( )mol except for certain elements of the

Ξ matrix which we obtain from first-principles calculations for

two molecules with coupling strength of λ λ= N /2 N(2)
mol

( )mol

.b The Nmol model consists of the same photon modes as single
molecule case soωα

(Nmol) =ωα
(1) andNmol copies of the vibration

modes from a single uncoupled molecule. To simplify the
notation for mapping model parameters of the Nmol system to
the parameters of corresponding one or two model parameters,
we have introduced the superscript indicating the number of
molecules in the model a particular parameter corresponds to.
Since we include copies of the original, single molecule, and
vibrational modes as our starting basis, it is convenient to write
our nuclear degrees of freedom with two indices: a molecular
index  and vibrational mode index I which corresponds to a
normal mode of the uncoupled single molecule system.
Together the pair of indices I( ) corresponds to an atomic
displacement on molecule  according to the eigendisplace-

ment of the single molecule vibrational mode given by ηI
R( ). So

for Nions ions in each molecule in three dimensions

ω ω=I
N

I( )
( ) (1)mol , =Z ZI

N
I( )

( ) (1)mol , and =μ μ⟨ ⟩ ⟨ ⟩


( ) ( )d

dN

N
d
dN

( ) (1)

I I( )

mol

.

Within the dipole approximation, a change in qα will result in a
change in dipole moment for all molecules in the system, so the
suscept ib i l i ty must be sca led for the model as

i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz=μ μ⟨ ⟩ ⟨ ⟩

α α
Nd

dq

N
d
dq

( )

mol

(1)mol

. For the choice of basis consistent

with the above definitions, Ξ has a block structure where on-
diagonal blocks correspond to coupling between vibration
modes on the same molecule, and off-diagonal blocks
correspond to coupling between vibration modes of different
molecules. While the on-diagonal blocks can be obtained via ab
initio calculations on a single molecule, the latter requires ab
initio treatment of two molecules. The details of this
construction are presented in the multimolecule delta matrix
section of the Supporting Information. Since the molecules are
sufficiently separated and since the long-range μ2 term is in
practice handled with the mean field approximation (eq 1 in the
Supporting Information), the impact of any one molecule on
another is nearly independent of their distance. The impact of
two molecules on a third is equivalent to a single molecule
contributing the same change in dipole moment. So to harmonic
order, the case of two molecules captures nearly all relevant
interactions to describeNmol molecules within the level of theory
used in this work.
It is seen that within the dipole approximation there is almost

no difference in the IR spectrum between a single molecule
strongly coupled and a collection of molecules more weakly
coupled aside from the appearance of dark modes. However, the
coupling used in eq 4 when applied to the many molecule case
assumes equal coupling to all molecules in the system as there is
no spatial dependence of λα. A more realistic simulation of
collective coupling would facilitate better understanding of the
similarities and differences between local and collective strong
coupling and will be the subject of subsequent work.

4.3. Fe(CO5) in Multiple Photon Mode Setup. In the
previous section, a single cavity mode was coupled to numerous
degenerate vibration modes each on different molecules. In this
section, we investigate a cavity coupled to multiple degenerate
and nondegenerate vibration modes of a single iron
pentacarbonyl molecule. Experimental data of a similar system
setup have been published in ref 4.

Figure 4. Comparisons between full QEDFT results for NmolCO2
molecules at λ = 0.05 (in orange) with results for single CO2 molecules
at λ = N0.05 mol (in blue). (λ is in atomic units) Also shown (in
green) are results for a model of the form in eq 18 for the Nmol case but
constructed using parameters from QEDFT calculations with only two
CO2 molecules. Vertical lines are used to indicate frequencies of the
normal modes, while curves show broadened IR spectra. To facilitate
comparison, the IR amplitudes have been scaled by Nmol

1/2.
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Our system is studied with a cavity mode in resonance with
several IR-active vibrations as well as with two additional photon
modes to simulate additional harmonics of the cavity. As shown
in the inset of the bottom panel of Figure 5, the coupled cavity

polarization is set to be along an axis 45° from the axis of the 3-
fold rotational symmetry. This setup leads to a coupling to both
the vibrational mode at 2013 cm−1 which involves polar
distortions along the 3-fold axis and the two degenerate
vibrational modes at 1995 cm−1 which involve distortions
perpendicular to the 3-fold axis. A cavity mode at 1995 cm−1 is
set to couple most strongly while additional “harmonics” at
frequency ratios of 3/4 (1496 cm−1) and 5/4 (2494 cm−1) are
set to have a coupling strength 0.3 times that of the central mode.
There are also two non-IR-active vibrational modes nearby in
energy at 2016 and 2097 cm−1 which do not couple to any cavity
modes. Figure 5 depicts the normal modes of the system as
vertical lines colored by photon character as well as the
Lorentzian broadened IR spectra at several coupling strength
magnitudes. A Lorentzian broadening of δ = 7 cm−1 was used.
At coupling strengths with |λ| ≤ 0.02, the two outer cavity

modes at 1496 and 2494 cm−1 are approximately uncoupled

from the vibrational modes of the system and the central photon
mode at 1995 cm−1. The IR amplitudes for the outer modes in
the regime are dominated by the effect the cavity mode has on
the electronic system (through the dμ/dq term). The central
cavity photon mode interacts the three IR-active vibrational
modes nearby in energy: the polar along the 3-fold axis (z)mode
at 2013 cm−1 and the two degenerate polar modes within the
plane perpendicular to the 3-fold axis (xy) modes at 1995 cm−1.
The result of this cavity-induced coupling is four nondegenerate
modes: a dark state which is a linear combination of the two xy
modes and three polaritons which are linear combinations of the
cavity photonmode, xymodes, and zmode. The dark state is still
IR active but not along the cavity mode polarization direction.
Similar to the case with CO2 as coupling strength is increased,
the frequencies of the upper (lower) most polariton continue to
grow larger (smaller), respectively, while the photon character of
the polariton mode decreases (increases). The middle polariton
rapidly converges to a frequency of 2006 cm−1. As coupling
strength increases, the photon character of this mode decreases
until there is no photon character, and the mode is made up of a
linear combination of the polar z and xy vibrations. The cavity
has induced a coupling between these polar vibration modes
changing the eigenstate even in a regime where this eigenstate
has no photon character.
At extremely strong coupling strengths with |λ| ≥ 0.05, the

outer cavity mode harmonics begin to interact with other modes
of the system. In the top two panels of Figure 5, it can be seen
that even the lower frequency IR-active modes below 700 cm−1

begin to pick up some small photon character. Furthermore, as
coupling strength increases to this very strong regime, the lower
polariton begins to mix with this lower frequency cavity mode.
The two normal modes between 1200 and 1600 cm−1 become a
linear combination of vibrations, both the lowest harmonic
cavity photon as well as the central cavity photon. At |λ| = 0.1, we
observe that this effective photon−photon interaction has
grown so strong that the photon mode components of these two
modes essentially swap so that the eigenvector of the mode at
1226 cm−1 has a larger component coming from the cavity
photon mode at 1995 cm−1, and the mode at 1587 cm−1 has a
larger component from the cavity mode at 1496 cm−1.

5. SUMMARY AND CONCLUSION
In this work, we have introduced a first-principles framework to
calculate the vibro-polaritonic normal modes of systems when
light and matter are strongly coupled. Employing the cavity
Born−Oppenheimer approximation to separate electronic from
nuclear and photonic degrees of freedom and constructing
dynamical matrices that include the photonic degree of freedom
enables us to characterize these vibro-polariton states. Our
approach is based onQEDFT, whichmakes it applicable to large
system sizes while including effects of the cavity on electronic
states. We demonstrate the framework on calculations for single
and many CO2 molecules and iron pentacarbonyl Fe(CO5). In
addition, we derive and compare to a first-principles-based
model that allows for the extrapolation of first-principles
calculations of few molecules to the collective strong coupling
limit of molecular ensembles.
Our work opens many different avenues to explore. The

techniques used here can be extended to other properties related
to the system normal modes such as the low frequency Raman
spectra. The vibro-polaritonic normal modes computed using
the methods developed could be used as an efficient basis for
exploring anharmonic couplings including interactions between

Figure 5. Fe(CO)5 IR spectra for different λ values (black curve) and
eigenvalues (vertical lines) colored by photon character. Here, three
photon modes are present, corresponding to third, fourth, and fifth
harmonics of the optical cavity. The λ values indicated in each plot are
in atomic units and correspond to coupling strength of the fourth
harmonic (at 1995 cm−1); the other two harmonics have been set to
have one/third the coupling strength of the fourth harmonic. The inset
of the λ = 0 plot shows the Fe(CO)5 molecule, with the blue vector
indicating the direction of the photon mode polarization. Annotations
give the values of the projections of the vibro-polariton eigenvectors to
the third and fourth harmonic uncoupled photon states.
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polaritonic excitations.46 The collective setup employed in this
work assumes the same coupling strength for all molecules. A
more realistic description where different molecular positions
imply different coupling strengths due to the profile of the cavity
mode could provide insight to potential differences between the
collective coupling limit and small numbers of very strong
coupled molecules. Such techniques can also be used to explore
other related questions such as the engineering of strong
coupling on single atoms47 and local modifications of impurities
due to collective coupling.48 We have utilized the cavity Born−
Oppenheimer approximation and treated the electronic portion
of the two-body operator μ̂2 via a mean field potential. More
sophisticated treatment of exchange-correlation effects both of
electron−photon interactions and how the presence of the
cavity can modify electron−electron interactions are of interest.
Such more advanced treatments will be especially important
when energy surfaces are sufficiently close together, and the
validity of the CBOA should be carefully tested. Utilizing the
methods developed in this work, potentially along with these
extensions, experimentally relevant molecules can be studied to
gain new insights on cavity modification of chemical reactivity.
Also of interest is the extension of QEDFT approaches,
including the linear-response technique presented here, to
solid-state systems treated with periodic boundary conditions to
study the effects of optical cavities on phonons and phonon-
polaritons.49
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■ ADDITIONAL NOTES
aIn an effort to treat light and matter degrees of freedom on
equal footing in the notation in this definition, we have implicitly
treated CIκ,Jκ′

(RR) as a 3Nnuc × 3Nnuc matrix with only two indices
so that CIκ,Jκ′

(RR) → C3I+κ,3J+κ′
(RR) with indexing starting at zero.

Similarly, we treat C(qR) as the Nphoton × 3Nnuc matrix Cα,Iκ
(qR) →

Cα,3I+κ
(qR) andM as the 3Nnuc × 3Nnuc matrixMIκ,Jκ′→M3I+κ,3J+κ′.

bIn practice, there is no need to run separate one and two
molecule calculations. All parameters presented as coming from
a single molecule calculation can equivalently be extracted from
the two molecule calculation.
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