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Abstract: Cancer is a serious problem in modern medicine, mainly due to the insufficient effectiveness
of currently available therapies. There is a particular interest in compounds of natural origin, which
can be used in the prophylaxis, as well as in the treatment and support of cancer treatment. One
such compound is jasmonic acid (3-oxo-2-(pent-2’-enyl)cyclopentane acetic acid; isolated active form:
trans-(-)-(3R,7R)- and cis-(+)-(3R,7S)-jasmonic acid) and its derivatives, which, due to their wide
range of biological activities, are also proposed as potential therapeutic agents. Therefore, a review
of literature data on the biological activity of jasmonates was prepared, with particular emphasis
on the mechanisms of jasmonate action in neoplastic diseases. The anti-tumor activity of jasmonate
compounds is based on altered cellular ATP levels; induction of re-differentiation through the action
of Mitogen Activated Protein Kinases (MAPKs); the induction of the apoptosis by reactive oxygen
species. Jasmonates can be used in anti-cancer therapy in combination with other known drugs,
such as cisplatin, paclitaxel or doxorubicin, showing a synergistic effect. The structure–activity
relationship of novel jasmonate derivatives with anti-tumor, anti-inflammatory and anti-aging effects
is also shown.

Keywords: jasmonic acid; anti-cancer drugs; structure–activity relationship; novel drug

1. Introduction

Neoplastic diseases constitute a major problem in modern medicine, mainly due to the
insufficient effectiveness of currently available methods of anti-cancer therapy. Therefore,
when analyzing the basic mechanisms regulating the development of neoplasms, new
therapeutic solutions look for mechanisms that would prevent or extinguish the neoplastic
process [1]. Particular attention is focused on compounds of natural origin that can be used
both for the prevention and treatment of cancer. The National Cancer Institute has screened
about 35,000 plant species that have potential anticancer activity, of which 3000 species
have fully confirmed such activity [2]. Jasmonic acid and its derivatives are also among
such compounds and show anti-cancer properties. However, while this action is not always
effective enough for the needs of effective therapies, attempts are also made to combine
jasmonic acid or its derivatives with other anti-cancer agents or radiotherapy, as well as
chemically modifying the structure of these compounds in order to create derivatives with
effective anti-cancer properties [3].

2. Jasmonic Acid and Its Derivatives Occurring in Plants

Jasmon compounds, called jasmonates, occur in almost all tissues of higher plants, i.e.,
flower plants, bryophytes and ferns, where they play the role of endogenous regulators of
growth and development [4]. They are present in, among others, stems, roots, tubers, leaves,
flowers, fruits and pollen. Jasmonic acid, the main representative of jasmon compounds,
was first detected in the fungi Lasiodiplodia theobromae, and its methyl ester was isolated from
the essential oils of the Jasminum grandiflorum olive family (now obtained commercially by
synthesis) [5,6]. Jasmonians are found in over 160 plant families.
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Jasmonic acid occurs in the green parts of plants in the form of conjugates with amino
acids; in flowers, it is found with phenylalanine, tryptophan and tyrosine, in leaves with
isoleucine or valine, and in fruits with isoleucine [7]. Moreover, jasmonic acid methyl ester
is a component of essential oils and gives fragrance to many flowers (e.g., jasmine) and
fruit (e.g., apple). Because of its fragrance properties, it is used by the perfume industry.

The content of jasmonates in plants is very diverse and ranges from 10 to 100 ng/g of
fresh weight [5,8], depending on the type, species and age of the plant. It has been shown
that there are more of these compounds in the generative parts of plants (pericarp, fruit and
seeds) than in the vegetative parts (stems and leaves). Higher concentrations are also found
in young plants as, with age, the jasmonates level decreases [5]. The increase in the content
of jasmonates in the plant is also influenced by biological factors (insects and pathogens)
and physicochemical factors (osmotic stress, drought, UV radiation, cooling and increased
temperature, ozone) as well as mechanical damage (herbivores, mechanical stress) [8,9].
In plants, jasmonic acid has been found to be more frequently present than its methyl
ester [2]. However, in the case of, for example, Malus sylvestris fruit, both compounds
occur simultaneously. In recent years, these compounds have also been detected in lower
plants (e.g., algae—Chorella) and fungi (Gibberella fujikuroi and Botryodiplodia theobromae).
Unfortunately, previous studies have not shown in which specific parts of the plant they
are synthesized.

3. Chemical Structure of Jasmonates

The basis of the structure of jasmonates is a cyclopentane ring with three different
substituents in the C-3, C-6 and C-7 position, showing optical activity (Figure 1) [10].
The parent compound belonging to the jasmonate group is jasmonic acid 3-oxo-2-(pent-
2’-enyl)cyclopentane acetic acid (IUPAC name), synthesized from linolenic acid found
in the chloroplast membrane. The metabolites of jasmonic acid include various com-
pounds obtained as a result of conjugation with isoleucine to obtain jasmonylisoleucine
(JA-Ile) [9,11,12]; methylation to methyl jasmonate (MJ) (MJ) [9]; ester formation with glu-
cose to 12-glucosyljasmonic acid [13]; decarboxylation to cis-jasmon [14] and hydroxylation
to 12-hydroxyasmonic acid.

Figure 1. The structure of trans-(-)-(3R,7R)-jasmonic acid.

There are four known stereoisomers of jasmonic acid: trans-(−)-(3R,7R), abbreviated
as (−)-JA; trans-(+)-(3S,7S) abbreviated as (+)-JA; cis-(−)-(3S,7R) abbreviated as (−)-epi-JA;
cis-(+)-(3R,7S) abbreviated as (+)-epi-JA [15]. The naturally occurring jasmonic acid in plants
is (−)-JA and (+)-epi-JA. Due to the fact that the cis stereoisomers are thermodynamically
less stable, they epimerize at the C-7 atom to the stable trans form, which at the same time
shows a higher biological activity. The biological activity of jasmonic acid has been found
to be dependent on the presence of a carboxyl group at the C-1 position, a keto or hydroxyl
group at the C-6 position, and a pentenyl side chain at the C-7 position [16–18]. Because of
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this structure, jasmonates inhibit, induce and/or stimulate changes that occur in plants at
the morphological, physiological, cellular and molecular levels.

4. Pharmacological Activity of Jasmonates

The jasmonate family mainly consists of jasmonic acid, cis-jasmonate and methyl
jasmonate (MJ), which are structurally similar to prostaglandins, especially those with
anti-inflammatory action: prostaglandin D2 (PGD2) and 15-Deoxy-∆12,14-prostaglandin
J2 (15d -PGJ2) [19]. For this reason, many studies have been conducted to assess their
effect on mammalian cells, which showed that jasmonates have a cytotoxic effect on
neoplastic cells, while having no effect on healthy cells [20]. Jasmonates have been found
to possess properties characteristic of anticancer drugs. Their action is characterized by
high selectivity in relation to neoplastic cells, as well as effectiveness against neoplastic
cells resistant to antineoplastic drugs. A cytotoxic effect of jasmonates was demonstrated
in lymphoblastic leukemia cells (MOL-4) for the first time [21]. Further studies have
also shown susceptibility to jasmonate in breast cancer cells (MCF-7), human melanoma
cells (SK-28), androgen-responsive human prostate adenocarcinoma (LNCaP), cervix and
murine lymphoma cells (EL-4) [19,22,23]. The greatest sensitivity to JA (increasing with
increasing concentration, 0.5–3 mM) showed MOLT-4 cells, while SK-28, LNCaP and MCF-
7 cells showed less sensitivity. MJ was more cytotoxic than jasmine acid. MJ induced
87.5% cytotoxicity in Molt-4 cells at a concentration of 0.5 mM. The same cytotoxicity was
induced by JA at the highest used concentration [21]. The cytotoxic effect of MJ on cervical
cancer cells was evaluated using a selected range of cervical carcinoma derived cell lines,
including SiHa and CaSki (contain HPV16 DNA), HeLa (contain HPV18 DNA) and C33A
(not containing HPV DNA). Cells were treated with 1–5 mM MJ for 24 h. C33A and CaSki
cells were more sensitive to the MJ compared to HeLa and SiHa. The IC50 values were
1.7 mM for CaSki, 2.2 mM for C33A, 3 mM for HeLa and 3.3 mM for SiHa [24].

The antitumor activity of methyl jasmonate (MJ) was found to be higher than other
jasmonates; therefore, MJ and its synthetic derivatives have recently been studied more
intensively as promising compounds for the treatment of cancer [25]. MJ has been shown
to prolong the survival of mice with EL-4 lymphoma and mice vaccinated with multiple
myeloma cells (MM.1S) [21,26]. Survival rates were significantly higher in the group of
lymphoma (EL-4) in mice treated with MJ (236 mg/kg) compared to untreated mice. Forty-
five percent of the treated mice still live more than 5 months after the inoculation of the
tumor cells [21]. In the case of murine multiple myeloma (MM) cell lines, MJ (0.5–2.5 mM
by 24 h) significantly increased the survival rate. IC50 values for MJ were observed to be
less than or equal to 1.5 mM for 15 of 16 (94%) cell lines. At the highest concentration
tested, MJ caused more than a 90% reduction in the viability of all MM cell lines [26]. The
cytotoxic effect of MJ (0.2–2000 µM) was also selective for MDA-MB-361 and T-47D human
breast cancer cells [25]. The highest inhibition of the growth of T-47D and MDA-MB-361
cells was observed at 2 mM MJ (cell survival was 47% and 78%, respectively).

The preventive effect of MJ is primarily due to the ability to direct neoplastic cells
to the path of apoptosis or necrosis. It is associated with the overproduction of reactive
oxygen species (ROS) and the influence on the expression of proteins, such as p53, p21,
and proteins from Bcl-2 and Bax families [24,27]. Western blot analyses indicated that MJ
(2 mM, 5 and 24h incubation) induced a significant increase in p53 and decrease in p53
levels in CaSki cells. In HeLa and SiHa cells, a reduction in p53 and p21 levels was observed
after 24 h of treatment [24]. In human non-small cell lung cancer cells (A549), jasmonate
causes an increase in the expression of pro-apoptotic proteins from the Bcl-2 and Bax
families [28,29]. MJ (2 mM) inhibits Bcl-2 protein expression in vitro in the case of prostate
cancer cells (PC-3) [30]. The induction of apoptosis by methyl jasmonate is associated with
decreased fluidity of tumor cell membranes and increased expression of tumor necrosis
factor (TNFα) and its receptor 1 (TNFR1) in breast cancer cells (MDA-MB-435 and MCF7).
The IC50 value of MJ for MDA-MB-435 cells was 1.9 mM and 2.0 mM for MCF-7 cells.
The consequence of this action of jasmonate is the activation of caspase-8 in the external
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pro-apoptotic pathway. MDA-MB-435 and MCF-7 cells showed 35.0% and 37.2% apoptosis
upon treatment MJ, respectively [31]. In contrast, MJ in human neuroblastoma cell lines
caused decreased expression of XIAP protein and surwinin and MJ IC50 value for SK-N-SH
and BE (2)-C cells were 1.39 and 1.35 mmol/L, respectively [32]. These results suggest that
MJ may induce apoptosis through the activation of different signaling pathways in cervical
cancer cells.

5. Antitumor Mechanisms of Action of Jasmonates Compounds

Methyl jasmonate induces defense-related mechanisms in plants. Some aspects of the
biosynthesis and function of jasmonate in plants resemble, in many respects, synthesis and
function prostaglandins and leukotrienes in mammals (Figure 2). Because there is a certain
balance between transforming healthy cells into cancerous cells and the inflammatory
processes [33], the molecules structurally similar to natural anti-inflammatory compounds,
especially low molecular weight molecules, such as jasmonates are considered as potential
chemo-therapy agents. MJ has been shown to be active against cancer cells both in vitro
and in vivo, without affecting normal cells. MJ may act as a chemosensitizer to some
chemo-therapics, helping to overcome drug resistant.

Figure 2. Antitumor mechanism of action of jasmonates. HK—hexokinases; VDAC—Voltage-dependent anion-selective
channel 1; ROS—reactive oxygen species; MAPK—Mitogen Activated Protein Kinases; JNK—c-Jun N-terminal kinases; p38
protein; ERK—extracellular signal-regulated kinases; Hsp72—heat shock protein 72; Bax/Bcl-2—protein family.

5.1. Bioenergetic Interactions

Mitochondria, which provide cells with energy necessary for metabolic activities in
the form of ATP, are extremely important for the functioning of eukaryotic cells. The
action of cancer cell mitochondria differs from normal cells. They show a higher mem-
brane potential, an increased rate of ATP production through glycolysis, and increased
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expression of proteins forming mitochondrial channels. Channel-forming proteins include
VDAC proteins (voltage-dependent anion-selective channel 1) enabling the diffusion of
ATP from the mitochondria into the cytoplasm [34]. Related to VDAC are the mitochon-
drial hexokinases (HK1 and HK2) responsible for the first step of glycolysis in the ATP
production chain. Prolonged opening of VDAC channels by disconnecting the HK from
VDAC causes a change in the permeability of the mitochondrial membrane, dispersion of
membrane potential, an increase in osmotic edema and the release of pro-inflammatory
factors, including cytochrome c, leading to cell death [22,27,35]. Because HK levels are up
to 200 times higher in malignant tumor cells than in normal cells [36], this enzyme is an
excellent molecular target for potential anticancer agents.

Methyl jasmonate, as a result of its interaction with hexakinase-2, reduces the binding
of the enzyme to VDAC, which causes the disconnection of HK-2 from the mitochondrial
membrane. The specific binding of jasmonate to HK2 was confirmed in an immunochemical
test, using surface plasmon resonance and the study of VDAC activity of lipid bilayers
without inhibiting kinase activity [37]. MJ has been shown to cleave HK1 and HK2
from VDAC in a dose-dependent manner in the mitochondrial fraction of CT-36 mouse
colon carcinoma cells, MOLT-4 human leukemia, BCL1 mouse leukemia, B16 mouse
melanoma and HCC hepatocellular carcinoma (LM3, BEL-7402, Hep3B, SMMC-7721).
It was found that in the case of the action of MJ on cancer cells of neuroblastoma (SH-SY5Y)
(IC50 = 1.65 mM after 24 h), lymphoma B cells (MJ; at 1 or 3 mM), and liver cancer cells
(Hep3B) (IC50 = 2 mM after 24 h) the efficiency of glycolysis decreases and the level of
cellular ATP is lower [38–40]. It has been observed that oligomycin (a mitochondrial
ATP synthase inhibitor) does not increase the ATP depletion caused by MJ, whereas 2-
deoxyglucose does [22,27,35].

5.2. Induction of Re-Differentiation

In healthy tissue, there is a balance between the proliferation, differentiation and
death of cells. In cancer cells where proliferation is superior to death, differentiation is
inhibited, resulting in the formation of poorly differentiated tissue [41]. Factors responsible
for the regulation of cell proliferation and differentiation include cascading MAPKs: ERK
(extracellular signal-regulated kinases), JNK (c-Jun N-terminal kinases), and p38 protein.

Methyl jasmonate has the ability to induce the MAPK pathway which determines
the re-differentiation of neoplastic cells. Two independent processes were observed in
MOLT-4 leukemic cells and A549 lung carcinoma treated with MJ (0.5 mM and 4.937 mM
for 24 h, respectively): apoptotic cell death and the release of JNK and p38 proteins, causing
activation of the transcription factor AP-1. Although AP-1 is a protein involved in both
apoptosis and differentiation, no effect of AP-1 on the apoptotic pathway was found in
MOLT-4 and A549 cells. In MCF-7 and MDA-MB-435 breast cancer cells (both receptor-
dependent and receptor-independent), methyl jasmonates (2 mM for MCF-7 and 1.9 mM
for MDA-MB-435) caused apoptosis in both cell types, but activated the p38 and ERK
pathways through MAPK only in the receptor-independent cells [28,31].

MJ (0.4 mM for 24 h) activated the MAPK pathway in the human myelocytic leukemia
cell line HL-60, which resulted in the differentiation of cells into monocyte-like granulocytes
instead of apoptosis [42]. The differentiation effect was inhibited by PD98059, a MEK/ERK
inhibitor, confirming the involvement of MJ in the activation of the MAPK/ERK dependent
pathway [43]. In the same way, MJ also acts on U937 histiocytic lymphoma cells and THP-1
acute monocytic leukemia cells, which are model cells for studying monocyte behavior and
differentiation [35].

Acute myeloid leukemia (AML) is one of the most severe forms of leukemia because
it is largely resistant to chemotherapy. It has been shown that MJ stops the growth of
leukemic blasts and stimulates their differentiation into normal cells, as confirmed by the
expression of differentiation markers, such as reduction in NBT nitro-tetrazolium blue
(for myelomonocytes differentiation), morphological differentiation into granulocytes and
the expression of antigens of cell differentiation CD14 (specific for monocytes) and CD15
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(specific for granulocytes) (IC50 = 347 µM) [41]. MJ (0.4 mM for 24 h) also induced the
expression of the calcium-binding protein S100P in the AGE/RAGE glycation pathway,
leading to an increase in MAPK activity [44].

Moreover, MJ (IC50 = 347 µM) induces the transcription of the C/EBP protein bind-
ing the regulatory DNA sequences of CCAAT, which may contribute to the initiation of
granulocyte differentiation in human myeloid leukemia cells [35,41].

5.3. Induction of Apoptosis by ROS

Excessive production of ROS in cancer cells can lead to the oxidative modification
of DNA and lipids, which in turn causes damage to cell membranes. Both jasmonic acid
and its methyl ester cause a significant increase in ROS levels in glioblastoma cells (C6),
non-small cell lung cancer cells (A549 and H520) and in uterine cancer cell lines (HeLa and
CaSki) [28,45–48].

In human non-small lung cancer cells (A549), MJ (A549—5 Mm; PC-3—2 mM) in-
creases the expression of pro-apoptotic proteins from the Bcl-2, Bcl-Bax and Xs families [28],
and in PC-3 prostate cancer cells, an increase the expression of the anti-apoptotic protein
Bcl-2 [30]. This results in cell cycle arrest in the G2-M phase and activation of executor
caspase, followed by directing cells to apoptosis. The suppression of MJ-induced apoptosis
by antioxidants, such as N-acetylcysteine and catalase (specific H2O2 inhibitors), but not
by inhibitors of hydroxyl radicals and superoxide ions, suggests that hydrogen peroxide is
one of the important factors associated with MJ-induced anti-cancer effects [22,48,49]. In-
tracellular H2O2 and O2−, and mitochondrial ROS were prominently increased in response
to 5 mM MeJA in C6 cells [47].

In addition, methyl jasmonate has been shown to reduce the levels of survivin, a
protein involved in the inhibition of apoptosis, in uterine cancer cell lines (HeLa and CaSki)
and to induce heat shock protein 72 (Hsp72) in C6 glioma cells [22,48]. MJ also leads
to an increase in the sensitivity of cells to ionizing radiation [50]. On the other hand, in
esophageal squamous cell carcinoma (KY170R) cells, MJ (200 µM for 24 h) increases the
level of ROS and inhibits the activity of 11-ketoprostaglandin reductase (by roughly 30%),
which dramatically increases cell death in response to X-rays [46].

6. Therapeutic Benefits of Combining Jasmonates with Anti-Cancer Drugs

In addition to the fact that jasmonates induce apoptosis in tumor cells, they can also
be combined with other anti-tumor agents to achieve synergistic anti-tumor effects. In
fact, many modern chemotherapy procedures use multicomponent combinations of drugs
that allow for lower doses to be administered, can reduce undesirable side effects and
even overcome drug resistance [20]. Therefore, studies have been carried out to evaluate
the combination of the effects of MJ and various other anticancer agents [51] that are
routinely used in clinical practice: BCNU (carmustine), cisplatin, paclitaxel (taxol) [52] and
doxorubicin (adriamycin) or 3-bromopyruvate (3-BrP) (Table 1).

The interactions of these combination drugs have been observed in many cell lines
of malignant tumors such as: breast, lung, prostate and pancreatic cancer as well as
leukemia [53], where MJ drastically reduced the IC50 values of the used chemotherapeutic
drugs, while reducing of side effects of these drugs. The combination of MJ (0.1 nM)
and BCNU (carmustine) therapy (1, 10 and 25 µg/mL—PaCa-2 cell; 2.5 and 5 µg/mL—
BCL1 cell) had an adverse effect on pancreatic cancer cells (PaCa-2; BCL1) causing their
apoptosis, which was not observed with BCNU alone. It follows that the influence of BCNU
on mitochondria [54] makes them hypersensitive to MJ, resulting in over-additive cytotoxic
effects. Another study also showed a positive effect of MJ together with perillyl alcohol
(POH), which increased the cytotoxicity of cisplatin in breast cancer cells (MDA-MB-231,
MDA-MB-435, MCF7) [55].

The combination of MJ (0.5–3 mM) and 2DG (2-deoxyglucose, glycolysis inhibitor) (1
and 2 mM) also resulted in a synergistic cytotoxic effect on tumor cells (sarcoma SaOS-2;
MCA-105), possibly due to the interaction of both MJ-induced oxidative phosphorylation
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of ATP biosynthesis and 2DG-induced ATP glycolysis [22,56]. Most importantly, in vivo
experiments have shown that the combination of MJ and doxorubicin has a synergistic
effect on mouse leukemia (BCL1) [22]. Moreover, pre-incubation with MJ (0.5 mM), at
non-cytotoxic concentrations, may sensitize colorectal cancer (CRC) cells to ligand-induced
apoptosis, inducing TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)
(100–200 ng/mL), resulting in synergistic cell death through enhanced caspase activ-
ity [57,58].

TRAIL receptors are highly expressed in primary tumors and various tumor cell
lines [59], which makes this pathway of cytotoxicity very specific for neoplastic cells
while sparing most of the normal cells. Therefore, TRAIL-induced cell apoptosis is a very
attractive potential target of anti-cancer therapy [57]. TRAIL, induced by MJ, mediates the
reduction in survivin, a member of the Inhibitors of Apoptosis Proteins family (IAP). This
study also shows that MJ, by inhibiting transcription, influenced the signal transduction
pathways, resulting in a reduction in survivin mRNA [20]. Nevertheless, many tumor cells
are intrinsically resistant to TRAIL-induced apoptosis. Therefore, the results of synergistic
cell death achieved by the combination of MJ and TRAIL, through bypassing the TRAIL
resistance barrier, have great potential in tumor therapy as both agents are highly selective
for tumor cells.

Moreover, studies on prostate (PC-3) and breast cancer cell lines (MDA-MB-435)
showed that treatment with jasmonates resulted in increased expression of TNFR1 and
caspase-8 and caspase-3 activation [22], showing that jasmonates can act directly on the
extrinsic apoptotic pathway in addition to intrinsic mitochondrial apoptotic pathway. Ad-
ditionally, the IAP antagonist, an N-terminal peptide consisting of seven Smac residues
(SmacN7), synergistically significantly increased MJ-induced cytotoxicity in human cancer
cells, but not in normal epithelial cells, and acted simultaneously through caspase-9 de-
pendent and independent pathways [60,61]. These findings suggest that inhibition of IAP
may facilitate MJ-induced cytotoxicity and may be of advantageous value for the further
development of jasmonate-based chemotherapy.

Table 1. Effect of MJ combined with other anticancer agents.

Jasmonates/Drug Cancer Concentration Range Action/Effects References

MJ + BCNU
(in vitro)

MJ + taxol
(in vitro)

Pancreatic cell:
PaCa-2
BCL1

MCF-7
DA-3
D-122

MJ: 0.1 mM
BCNU: 1, 10, 25 µg/mL-PaCa-2

2.5, 5 µg/mL-BCL1
taxol: 1, 2.5, 5, 10 µg/ml

mitochondriotoxic synergic
cytotoxicity

IC50 ↓
[54]

MJ + POH
or

MJ + cisplatin
or

MJ + cisplatin + POH
(in vitro)

Breast cancer cell lines:
MDA-MB-231
MDA-MB-435

MCF7

IC2O (POH)
MDA-MB-231: 0.76 mM
MDA-MB-435: 0.6 mM

MCF7: 0.8 mM

MJ + POH:
cytotoxicity ↑
apoptosis ↑

TNFR1 ↑
MJ + POH:
apoptosis ↑

[55]

MJ + 2DG
2-deoxyglucose

(in vitro)

Sarcoma:
SaOS-2

MCA-105

MJ: 0.5–3 mM
2DG: 1 and 2 mM

synergic cytotoxicity ↑
ATP glycolysis ↑ [56]

MJ + TRAIL
(in vitro)

CRC cell lines:
SW480, HT29, LS180, HCT116

MJ: 0.5 mM
TRAIL: 100–200 ng/ml

IAP (survivin) ↓
caspase activity ↑

TRAIL-induced apoptosis ↑
[58]

MJ + Smac7N
(in vitro)

prostate carcinoma cells:
DU145, PC-3

proximal tubular epithelial
cells:
HK-2

MJ: 0.5–2 mM

Smac7N:
MJ-induced cytotoxicity ↑

ran caspase-9 dependent and
independent pathways

[60]
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Table 1. Cont.

Jasmonates/Drug Cancer Concentration Range Action/Effects References

MJ + 3-BrP
(in vitro)

Mice breast carcinoma cell line:
4 T1

MJ: 0.5–3 mM
3-BrP: 12.5, 25, 50, 100, 200, 400 µM

ALT ↑ AST ↑
tumor growth ↓

antitumor activity ↑
[53]

MJ + cisplatin
MJ + X-rays
MJ + α-rays

Cervical cancer cells:
SiHa,
CaSki,
HeLa
C33A

MJ: 0.1–1 mM
Cisplatin: 0.1–0.5 µM

X-rays: 0 25–3 Gy

cell survival ↓
IC50 radiation dose ↓

cell viability ↓
[62]

3-BrP—3-bromopyruvate; BCNU—1.3-bis-(2-chloroethyl)-1-nitrosourea; 2DG—2-deoxy-D-glucose; IAP—inhibitors of apoptosis; MJ—
methyl Jasmonate; POH—perillyl alcohol; Smac7N—a peptide that contains the N-terminal seven residues of smac; TNFR1—tumor-necrosis
factor receptor-1; TRAIL—tumor necrosis factor- (TNF-)related apoptosis-inducing ligand.

MJ (0.5–3 mM) also increased the effectiveness of therapy with the use of 3-BrP (12.5;
25; 50; 100; 200; 400 µM; IC50 value was 70 µM). This polytherapy was more effective than
monotherapy with 3-BrP, MJ, and also surprisingly with cyclophosphamide as a routine
treatment for breast cancer in tumor bearing mice, as observed by reducing tumor volume
and increasing the percent inhibition of tumor growth. Moreover, the applied therapy had
no appreciable side effects on the kidneys, liver, immune system and body weight [53].

Recently, MJ has also been shown to be effective in cooperating with cisplatin and
radiotherapy in the treatment of cervical cancer cells by significantly reducing the doses of
radiation and cisplatin required to inhibit these cells’ survival [22]. This study showed, for
the first time, that alpha radiation selectively reduces cell viability and cervical cancer cell
survival, and that alpha radiation also works with MJ in reducing cell viability, as shown in
some of the cervical cancer cell lines used (SiHa, CaSki, HeLa and C33A) [62]. In addition,
MJ can be administered along with conventional X-ray (0.25–3 Gy) and cisplatin therapies,
increasing their cytotoxic efficacy while lowering the dose, avoiding possible side effects.

7. New Synthetic Derivatives of Jasmonates

One of the main problems with the use of natural jasmine compounds, such as methyl
jasmonate as drugs, is the need to use high doses in millimolar concentrations, regardless
of whether they relate to solutions in organic solvents or water. The necessity to use
high concentrations results from the hydrophobic properties of jasmonate molecules and
their low availability in the culture medium (in vitro) or in physiological fluids (in vivo).
Therefore, there is growing interest in the use of novel jasmonic acid derivatives that reduce
solubility limitations while having improved properties as potential therapeutics in relation
to parent molecule (Tables 2 and 3).

The basic modification changing the activity of jasmonates is the introduction of a dou-
ble bond in the cyclopentyl ring in molecules of jasmonate. Chemically, α,β-unsaturated
carbonyl compounds (enone) are electrophilic centers that are highly susceptible to addi-
tion reactions with nucleophiles, such as free sulfhydryl groups of reduced glutathione
or cysteine residues in proteins. Prostaglandins PGA1, PGA2, PGJ2 and their metabo-
lites 15-deoxy-12,14-PGJ2 (15d-PGJ2), D12-PGJ2 and D7-PGA1 are compounds in which
cyclopentenone is a pharmacophore responsible for the biological activity of these com-
pounds [63].

Therefore, the introduction of unsaturation bonds into the methyl jasmonate (MJ)
molecule to give methyl 4,5-didehydrojasmonate (DHJM) resulted in the formation of a
compound exhibiting a much lower concentration of antitumor activity similar to that of
the naturally occurring MJ (Tables 2 and 3). DHJM was effective in inhibiting the growth of
HL-60 human myeloid leukemia cells (IC50 = 12 µM for DHJM vs. 347 µM for MJ, Table 1)
and induced concentration-dependent MAPK activity (in the concentration 0.03–0.3 mM
of DHJM vs. 0.3–1 mM of MJ for 3 h of the incubation) [41]. DHJM showed significant
anti-inflammatory properties by dramatically suppressed of nitric oxide (NO), interleukin-6
(IL-6) and TNF-α in murine activated macrophages (RAW264.7) [64]. These actions have
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been shown to mediate the NF-κB pathway, by inhibition of the nuclear translocation of
phospho-p65 protein and cytoplasmic degradation of IκB-α, resulting in decreased NF-κB
transactivation and the reduction in miR-155 expression.

Other derivatives were obtained by introducing two atoms of bromine, chlorine
or iodine in the side chain and two in the cyclopentane ring, of which the 5,7,9,10-
tetrabromo derivative showed significant cytotoxicity against the following cell lines: B16-
F10 melanoma (IC50 0.042 mM), MOLT-4 human lymphoblastic leukemia (IC50 0.009 mM),
MCF7 human breast cancer (IC50 0.015 mM), human pancreatic cancer MIA PaCa-2 (IC50
0.09 mM) and D122 murine lung cancer (IC50 0.25 mM), and effectively prevented B16-F10
cell adhesion and inhibited lung metastasis at a much lower dose than MJ (Table 2) [65].
Tetrabromoderivative MJ was the most spatially molecule of the five tested molecules in the
paper. The authors suggest that large bromo groups with spatial hindrance induced steric
effects giving a better match of the molecule to the putative binding site to the potential
molecular target.

Further modifications to the jasmonate molecule included the introduction of var-
ious halogens into the α-cyclopentenone position while maintaining the double bond
in the ring, and/or introduction of an amide residue instead of an ester (Table 3) [66].
The authors concluded that the presence of the cyclopentenone fragment is necessary to
maintain the anti-inflammatory activity. The presence of halogens increases this activity
even in the presence of saturated bonds in the side chain. The compounds showed no
cytotoxicity but showed higher anti-inflammatory activity than natural prostaglandins
in lipopolysaccharide-activated inflammation in RAW264.7 cells. The inhibitory activity
of methyl 5-chloro-4,5-didehydrodihydro-jasmonate was assessed by their effect on the
production of pro-inflammatory mediators (NO, IL-6, and TNF-a).

In 2012, Dang et al. synthesized a series of methyl jasmonate derivatives, tested their
resistance to hydrolysis and converted them into derivatives with a chlorine atom in the α

position of cyclopentenone (Table 2) [67]. The anti-inflammatory activity of a number of
aryl, hydroxyalkyl, methoxyalkyl and branched alkyl esters was tested to examine their
lipo/hydrophilicity and steric effect on activity. The most active analogs in this series
were t-butyl (Tabel 3) and hydroxyethyl esters. It was confirmed that chain branching and
increased hydrophilicity in relation to the methyl moiety in MJ affects biological activity.

Table 2. New jasmonate derivatives with anti-cancer activity.

Name and Structure of the Synthetic
Derivatives of MJ

Tumor Cells
IC50

References
MJ Derivative

methyl 4,5-didehydrojasmonate DHJM
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The replacement of 1,2,4-oxodiazole in place of the methyl ester fragment of jasmonate
(Table 2) and the reduction in the ketone in cyclopentanone to the hydroxyl group resulted
in an active inhibitor of hexokinase II, enzyme present in excess in neoplastic cells (IC50
0.29 µM), as well as demonstrated cytotoxicity to human cell lines: lung cancer A549 and
SKOV-3 ovarian carcinoma (Table 2) [68].

During synthesis, the activities of the intermediate products were also investigated,
but the focus was only on those that showed enzyme inhibitory activity only at values lower
than 1 µM. So far, similar jasmonate compounds have not been described, and the idea was
based on a moderate analogy to lonidamine (derivative of benzodiazole), a hexokinase II
inhibitor, a candidate for clinical trials as an anti-cancer drug. Nevertheless, currently in
therapy there are a few commercially available drugs containing 1,2,4-oxodiazole discussed
fragment (Oxolamine, Prenoxdiazine, cough suppressant; Butalamine, vasodilator; Fasiplon,
nonbenzodiazepine anxiolytic drug; Pleconaril, antiviral drug and other) [69].

Jasmonate derivatives (a methyl group in place of methylcarboxylic residue) con-
taining heteroatoms in the cyclopentyl ring (N, O) in place of some carbon atoms have
been tested for their odor properties (Table 3). The unsaturated cis double bond, present
in the alkyl side chain at position 2 in natural cis-jasmine, plays a very important role in
the fragrance properties, and the introduction of the double bond into the heterocyclic
jasmine analogs, both cis and trans, leads to an increase in odor intensity in comparison
to their saturated hetero-analogs [70]. These derivatives were also tested as potentially
antimicrobial compounds (activity against bacteria and fungi Staphylococcus aureus MRSA,
Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, Salmonella enteritidis, Pseudomonas
aeruginosa, Candida albicans, Aspergillus flavus, Microsporum gypseum), but unfortunately all
of them showed lower activity than the parent jasmon [71].

Due to the amphiphilicity of the molecule, very good bioavailability through the skin
was shown by tetrahydrojasmonic acid—jasmonic acid without double bonds. It is the
only jasmonate derivative that is commercially available and used as a cosmetic agent in
creams that corrects the appearance of the skin, reduces the appearance of wrinkles and
uneven skin tone. In this case, an increase in the expression of hyaluronan synthase 2 and
hyaluronan synthase 3 was observed, alongside an increase in hyaluronic acid deposits
in the basal and suprabasal layers of the epidermis, stimulation of laminin-5 deposition,
collagen IV and fibrillin near the dermal-epidermal junctions (Table 3) [72,73]. The N-
terminal conjugate of jasmonic acid with the YPFF-NH2 peptide (Table 3) may also have a
potentially cosmetic application, but apart from the synthesis, no biological research is yet
available [74]. Commercially available acetyl-YPFF tetrapeptide, when applied to the skin,
weakens the stimulation of nerve endings, resulting in a reduction in skin hypersensitivity,
while jasmonic acid stimulates epidermal renewal. The authors suggest that the peptide
derivative of jasmonic acid may reduce the visible effects of aging.
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Table 3. Synthetic derivatives of jasmonates with biological properties.

Synthetic Derivatives of MJ Biological Activity References

DHJM
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8. Conclusions

Jasmonic acid is a natural hormone found in plants. It plays the important role of
endogenous regulators of growth and development in plants. The interest in jasmonates
and its derivatives occures due to its structural similarity to prostaglandins and shows
chance for the potential use of this compound as a therapeutic agent not only in neo-plastic,
but also in other diseases. Jasmonates and their derivatives inhibit the proliferation of
cancer cells in vitro, such as breast, prostate, melanoma, cervix, colon, colorectal, gastric,
hepatoma, lung, myeloid leukemia, neuroblastoma, sarcoma, lymphoblastic leukemia
and lymphoma cells. The mechanisms explaining the anti-cancer activity of jasmon com-
pounds proposed so far are based on changes in the ATP level in the cell; induction of
re-differentiation through the actions of MAPKs; induction of the apoptosis process via
ROS. The development and synthesis of selective jasmonate derivatives have already
yielded promising results indicating these compounds in the pharmaceutical products,
cosmetic, food industries, and in agriculture.

Author Contributions: I.J.-K. and A.M. writing—review and editing; I.J.-K. supervision. All authors
have read and agreed to the published version of the manuscript.
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