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Abstract: Due to their physical and chemical characteristics, anthocyanins are amongst the most
versatile groups of natural compounds. Such unique signature makes these compounds a focus in
several different areas of research. Anthocyanins have well been reported as bioactive compounds in a
myriad of health disorders such as cardiovascular diseases, cancer, and obesity, among others, due to
their anti-inflammatory, antioxidant, anti-diabetic, anti-bacterial, and anti-proliferative capacities.
Such a vast number of action mechanisms may be also due to the number of structurally different
anthocyanins plus their related derivatives. In this review, we highlight the recent advances on the
potential use of anthocyanins in biological systems with particular focus on their photoprotective
properties. Topics such as skin aging and eye degenerative diseases, highly influenced by light,
and the action of anthocyanins against such damages will be discussed. Photodynamic Therapy and
the potential role of anthocyanins as novel photosensitizers will be also a central theme of this review.
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1. Introduction

Anthocyanins are one of the most intriguing class of polyphenols. These compounds are usually
referred as one of the largest groups of water-soluble natural phenolic compounds, which come
from their glycosylated form [1]. Anthocyanins are present in a wide variety of plants and fruits,
being responsible for their colors, ranging from red to blue. Their structure is based on the core skeleton
of flavonoids [2] and thus, chemically, anthocyanins are 2-phenylbenzopyryliums, consisting of an
aromatic ring (A) bonded to a heterocyclic pyran (C) that is in turn bonded to an aromatic ring
(B) bonded by a carbon–carbon connection. The aromatic ring B can have different hydroxylation
and methoxylation patterns, while hydroxyl groups present at C3, C5, and C7 carbons of the core
structure can be glycosylated by different sugars [3]. Only the glycosylated structures are known
as anthocyanins, while the non-glycosylated are the anthocyanidins and considered precursors of
anthocyanins. From simple monoglucosides to complex structures involving multiple glycosylation
and acylation patterns, anthocyanins have a wide variety of structural features, and up to date more
than 700 have been described [3]. They are derived from six common anthocyanidins present in nature:
pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and malvidin. Depending on the source,
these glycosylated products of anthocyanidins present different substitution patterns. In fruits such
as berries or grapes, their structures are usually monoglucosides that can be esterified with different
acids. In vegetables and plants, anthocyanins tend to have structures with a high molecular weight
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involving multiple glycosylation sites and glycosyl acylations. Figure 1 shows anthocyanins from
different sources based on their structural complexity.
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main anthocyanin from Red Wine and grapes from Vitis vinifera [4]. Peonidin-3-O-(6’-
hydroxybenzoyl)-sophoroside-5-O-glucoside and Peonidin-3-O-(6’-hydroxybenzoyl-6’’-caffeoyl)-
sophoroside-5-O-glucoside are normally found in vegetables such as Purple Sweet Potato [5]. HBA 
acylated anthocyanin—a 3-O-(2-O-(6-O-(trans-3-O-(β-D-glucopyranosyl)-caffeoyl)-β-D-
glucopyranosyl)-6-O-(trans-4-O-(6-O-(trans-3-O-(β-D-glucopyranosyl)-caffeoyl)-β-D-
glucopyranosyl)-caffeoyl)-β-D-glucopyranosyl)-5-O-(β-D-glucopyranosyl)-Peonidin—is typically 
found in Heavenly Blue Morning Glory Ipomoea tricolor flowers [6]. 

Anthocyanins have been reported as potential health bioactives, revealing several biological 
properties. They present anti-inflammatory effects, modulation of tumor growth, anti-diabetic 
properties, and also cardiovascular and neurological protective activities [3,7–9]. They have also been 
reported as antimicrobial modulators [10]. Such properties are usually attributed to their antioxidant 

Figure 1. Anthocyanins structure from different sources. Cyanidin-3-O-glucoside is the most abundant
anthocyanin in nature and can be found in several fruits. Malvidin-3-O-glucoside is the main anthocyanin from
Red Wine and grapes from Vitis vinifera [4]. Peonidin-3-O-(6’-hydroxybenzoyl)-sophoroside-5-O-glucoside
and Peonidin-3-O-(6’-hydroxybenzoyl-6”-caffeoyl)-sophoroside-5-O-glucoside are normally found in
vegetables such as Purple Sweet Potato [5]. HBA acylated anthocyanin—a 3-O-(2-O-(6-O-(trans-3-O-
(β-D-glucopyranosyl)-caffeoyl)-β-D-glucopyranosyl)-6-O-(trans-4-O-(6-O-(trans-3-O-(β-D-
glucopyranosyl)-caffeoyl)-β-D-glucopyranosyl)-caffeoyl)-β-D-glucopyranosyl)-5-O-(β-D-
glucopyranosyl)-Peonidin—is typically found in Heavenly Blue Morning Glory Ipomoea
tricolor flowers [6].



Int. J. Mol. Sci. 2020, 21, 7464 3 of 31

Anthocyanins have been reported as potential health bioactives, revealing several biological
properties. They present anti-inflammatory effects, modulation of tumor growth, anti-diabetic
properties, and also cardiovascular and neurological protective activities [3,7–9]. They have also been
reported as antimicrobial modulators [10]. Such properties are usually attributed to their antioxidant
activity [3,11]. Due to such reasons, the exploitation of other biological properties has been the
focus of several research works over the last few years. Good examples of this, are the anti-aging
actions of anthocyanins in skin and their health benefits to the eye. Anthocyanins have presented UV
photoprotective effects in human dermal fibro and protection effect against light-induced damage in
human retinal cells [12–15]. Anthocyanins are the only class of polyphenols able to absorb light in the
UV (280–400 nm) and blue light region (360–500 nm) [16]. Altogether these properties may account for
anthocyanins and potential on photoprotection.

Therefore, in this review, we highlight the photo and chemical properties of these compounds,
and the recent findings and perspectives on the potential use of anthocyanins for photoprotective
applications either in preventive or therapeutic approaches.

2. Chemical Equilibria and Stability of Anthocyanins

Anthocyanin’s structure is pH-dependent, meaning that they can adapt to different environments,
translating not only in different forms but also in different visible colors [6,17]. Such a fact attracted
the scientific community to study how these phenomena happen, and nowadays the chemical pH
dependence of anthocyanin’s structure is well understood [18–23]. They are generally represented by
their flavylium cation form (Figure 1). However, this is only predominant at very acidic pH values.
Anthocyanins rather exist in an equilibrium network between different structural forms depending on
the pH environment (Figure 2).

At pH 1, anthocyanins are in their most stable form, the flavylium cation. With the increase of pH
values, the structure of anthocyanins is delocalized to a proton-transfer where the flavylium cation
donates a proton to give origin to a neutral quinoidal base with a bluish color. Concomitantly, a slower
hydration process occurs in which a hydroxyl group from water is delivered to the cationic structure to
originate a neutral hemiketal pseudo-base. This structure establishes a ring-opening equilibrium in a
period of sub-seconds, tautomerizing to originate a cis-chalcone structure. After this and in a much
slower pace, the cis-chalcone will eventually isomerize to originate trans-chalcone. This is of particular
importance to understand the biological properties reported for these compounds, once in vivo,
anthocyanins are subjected to different pH environments. It is also important to notice that the exact
pH at which one structure or the other will be predominant will highly depend on the substitution
patterns of the flavanic core, which will influence the kinetic and thermodynamics parameters [17].

The stability of these compounds is also influenced by other factors rather than pH, namely temperature,
concentration, light, oxygen, solvents, presence of enzymes, metals or other ions [24].

Recently, anthocyanins from blueberries, were found to degrade rapidly to 25% of the initial
amount at 60 ◦C [25], while the half-time degradation of anthocyanins from Purple Sweet Potato
was reported to be 111.6 h at the same temperature [26]. In blueberries, the anthocyanins are mainly
monoglucosides with different sugar moieties, while in purple sweet potato, anthocyanins are usually
glycosyl-acylated derived from peonidin and cyanidin with multiple sugar moieties, thus with a much
higher degree of complexity. Furthermore, in fact, this type of anthocyanin was reported to have an
overall enhanced resistance [27]. Light is also an important factor for their stability. While it is important
for the biosynthesis of these compounds in plants, it can also accelerate their degradation in vitro, in
biological tissues, and in different foodstuffs [28,29]. In addition, oxygen deleterious action can be
as big as the influence of pH on anthocyanins and occurs either by direct action or by the formation
of radicals [30]. There are also strategies to enhance anthocyanins chromatic stability such as the
formation of aggregates at higher concentrations and their complexation with non-colored compounds
such as caffeine [31], hydroxycinnamic acids, flavonols, and some metal ions [32,33]. Both of these
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strategies appear to potentiate the color yield of these compounds in solution, prompting a higher
stability of their quinoidal structures.
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For anthocyanin derivatives, the role of these factors can also represent an important parameter
for their overall stability. However, due to their structural features, they tend be more stable than the
parent compounds when subjected to the same conditions [34–36].

3. Photochemical Properties of Anthocyanins

The impact of light on the multistate equilibrium of anthocyanins has been reported by several
authors. Any photo-chemical study concerning anthocyanins, in aqueous solution, must consider their
extremely rich and interesting ground- and excited-state chemistry [19,20,22,37–39]. In the ground
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state, as discussed before, natural anthocyanins can exist in acidic aqueous solution (pH < 7) in
at least five different forms that are coupled to each other via pH-dependent equilibria [38,40,41],
while in basic solution this number can increase due to additional deprotonation equilibria [42].
Besides this, as previously mentioned, anthocyanins in nature are present as mixtures of the different
basic structures in different degrees and types of glycosylation, and in the presence or absence of
additional acyl groups attached to the sugars, which represents a barrier to systematic studies of
the chemistry and photochemistry of natural anthocyanins. Chemistry and photochemistry features
of naturally-occurring anthocyanins are usually mimicked by using synthetic 7-hydroxyflavylium
cations [39], which correspond to the basic chromophore of anthocyanins. Upon absorption of light in
aqueous solution, anthocyanins and 7-hydroxyflavylium cations in the first excited singlet state behave
as superphotoacids (pKa* < 0) [43] and the lifetimes of the excited acid form (AH+*) are extremely short,
in about 5–20 ps [44–48] due to ultrafast adiabatic proton transfer to water to form the corresponding
excited base (A*) [49] (Figure 3). The excited-state lifetimes of the conjugate bases (A*) are also quite
short, in the order of 200 ps, resulting in rapid decay to its ground state [44–48]. Thus, excited-state
proton transfer (ESPT) serves as a very efficient pathway for the ultra-rapid conversion of the absorbed
light energy into heat, with subsequent return to ground state, (A), which then reprotonates to (AH+),
at a rate dependent on the pH of the solution. Such a process may be at the origin of anthocyanin’s
photoprotective role in plant tissues when submitted to excessive solar radiation.
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Figure 3. Ground- and excited-state proton transfer process of anthocyanins. Absorption of light (hν)
by the ground state cation form (AH+) produces the first excited singlet state of the cation (AH+*),
which transfers a proton to water to form the excited singlet state of the conjugate base A*. The excited
base form (A*) lives about 200 ps before transforming the excitation energy into heat and returning to
the ground state of the base (A), which then reprotonates back to AH+ with no net chemistry. R1 = H,
OH or OCH3; R2 = H, OH or OCH3; R4 = OH or sugar moiety; R5 = sugar moiety. The sugar moiety of
anthocyanins can be composed by different attached molecules. The ESPT (acid dissociation constant
in the excited state, Ka*) occurs on the picosecond time-scale and ground-state proton transfer (acid
dissociation constant in the ground state, Ka) on the micro- to nanosecond time-scale.

In the ground state, anthocyanins can also form complexes with colorless electron-rich
“copigments” molecules such as hydroxybenzoic or hydroxycinnamic acids and others; and on
the other hand, acyl anthocyanins with one or more copigment molecules covalently attached to
the sugar residues can result in intramolecular copigmentation complexes. The charge–transfer
interactions involved in these copigmentation complexes increase the stability of the flavylium cation
form, which increases the value of the pKh and opens up a new charge–transfer mediated channel for
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direct conversion of the absorbed light energy into heat that is even faster (1 ps) than excited state proton
transfer [50]. As previously reported, the isomerization process of anthocyanins and other flavylium
compounds can occur thermally or photochemically. The irradiation of trans-chalcone yields to the
formation of a cis isomer, which can back again to trans-chalcone or originate flavylium cation/quinoidal
base via tautomerization and dehydration. Moreover, flavylium compounds are interesting examples
of multistate/multifunctional systems that, usually, combining two different stimuli—pH and light,
can be used in information processing, like in optical memories models capable of write-read-erase [51].
The presence of a thermal barrier between cis-trans isomers is one of the necessary conditions of these
system, because otherwise the signal auto-erases. However, it is not easy to achieve that since the
photochemical reaction leads to the formation of a metastable state, which tends to revert back to
the initial and thermodynamically stable trans isomer [39]. Anthocyanins exhibit a high cis-trans
isomerization barrier and are poor photochromic systems due to the presence of a negligible amount of
trans-chalcone at equilibrium. The best photochromic systems that have been described for synthetic
flavylium are 4′-hydroxyflavylium, 4′-methoxyflavylium, 4′,7-dihydroxyflavylium, and others [52].

4. Photo-Oxidative Damage and the Role of Anthocyanins

4.1. Skin Aging

Skin aging is a complex biological process that leads to progressive deterioration of cutaneous
structures and functions over time [53]. Intrinsic skin aging is determined by an individual’s
physiological predisposition and develops from the combination of genetic factors and hormonal
and metabolic variations, that typically manifest in the form of fine wrinkling and thinning of the
skin [54,55]. Exposure to extrinsic harmful factors is also a major contributor to the alterations on
skin structure and function. Chronical sun exposure, the main source of ultraviolet radiation (UVR),
is the predominant cause of oxidative stress in the skin and one of the most extensively studied factors
contributing to the aging process.

The more prominent structural changes occur within the dermis, the layer that gives the skin its
strength, elasticity, and firmness, mainly consisting of an extracellular matrix (ECM) made of collagen
and elastin and to a lesser extent, proteoglycans and glycosaminoglycans, which provide hydration to
the skin due to their great water retention capacity [56]. Matrix metalloproteinases (MMPs), a family
of ubiquitous endopeptidases, play a vital role in the molecular mechanisms underlying ECM protein
degradation as their expression has shown to be considerably elevated during the aging process,
particularly in photodamaged skin [57]. Reactive oxygen species (ROS) constitute the major driving
force behind the increase of MMP levels [58].

Briefly, UVR incidence induces ROS production within keratinocytes and dermal fibroblasts,
promoting the activation of specific signaling pathways which results in upregulated expression of two
key transcription factors: activator protein 1 (AP-1) and nuclear factor-κB (NF-κB). Increased activity
of both enhances the expression of several MMPs involved in collagen degradation, including MMP-1
(interstitial collagenase), MMP- 3 (stromelysin), and MMP-9 (gelatinase), resulting in accumulation
of fragmented and irregularly distributed collagen fibrils and compromising the structural integrity
of the dermal ECM [56,57,59,60]. AP-1 has also been demonstrated to reduce the production of
procollagens by inhibiting transcription of genes encoding procollagen I and III in fibroblasts [61].
Simultaneous increased collagen degradation and reduced synthesis hinders the mechanical interaction
between fibroblasts and the ECM, leading to a reduction in the size and elongation of fibroblasts and
collapsed morphology. Aged fibroblasts produce a greater amount of ROS that further stimulate
the above-mentioned molecular mechanisms, creating a feedback loop that accelerates the aging
process [56,62]. The elastic fiber system also suffers significant structural changes as a result of MMPs
upregulated expression. MMP-12 (macrophage elastase) plays a crucial role in elastin degradation and
development of solar elastosis, a hallmark of photoaging, that consists of an abnormal accumulation of
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coarsen, disorganized and nonfunctional elastic fibers [59,63]. Overall, these mechanisms typically
emerge in the form of deep wrinkling, laxity, severe atrophy, and leathery appearance [64].

Skin is endowed with efficient antioxidant molecules with the ability to respond to UVR-triggered
generation of ROS, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase
(GSH-Px) [65]. However, when the abnormal increase of ROS overwhelms this defense capacity,
the skin is unable to prevent oxidative damage of cellular membranes, genomic DNA (which can
eventually cause mutations on oncogenes and tumor suppressor genes that prompt inappropriate
survival and proliferation of skin cells, a step towards initiation and progression of skin carcinogenesis),
intracellular proteins, and lipids [66,67]. The network of antioxidants of the skin is damaged as well,
accentuating the disparity between the production and elimination of ROS. Moreover, UVR stimulates
the production and secretion of certain proinflammatory mediators in fibroblasts and particularly in
keratinocytes, including prostaglandin E2 (PGE2), tumor necrosis factor (TNF-α), and interleukin-1
(IL-1). These mediators consequently trigger molecular pathways that result in decreased synthesis of
collagen and increased MMPs activity and they can further amplify the inflammatory response by
binding to their specific receptors on neighboring skin cells or on the cells where they were originally
produced, intensifying the skin damages [58,68–70].

Another relevant feature and cosmetic concern associated with photoaging is the manifestation
of skin hyperpigmentation. Melanin is synthesized in epidermal melanocytes, within specialized
organelles termed melanosomes, and subsequently transferred to neighboring keratinocytes where
it accumulates and shields the nuclear DNA by absorbing and scattering UVR [71,72]. A complex
network of keratinocyte and fibroblast-secreted factors such as endothelin-1, alpha stimulating hormone
(α-MSH), and stem cell factor (SCF) are described as modulators of the function of melanocytes [73,74].
Increased synthesis of these factors upon continuous exposure to UVR is associated with increased
melanogenesis, melanocyte density, and transfer of melanosomes to keratinocytes, resulting in
pigmentation disorders such as melasma and solar lentigines [75,76].

This is the mechanistic basis that explains the boosting capacity of UVR in skin aging and the
reason why people, even at a relatively young age, often exhibit noticeable skin damages.

Natural bioactives have been drawing attention do to their photoprotective and antiaging
capacities, including anthocyanins. Due to their previously stated physical-chemical characteristics,
these compounds constitute a potential source of anti-aging modulators. In fact, several studies mostly
using cellular and animal skin models have revealed promising and elucidating results about the
pharmacological mechanisms by which anthocyanins prevent UV-induced skin damage [77].

In a study conducted by F Afaq et al. pretreatment of HaCaT human keratinocytes with
delphinidin reduced the extent of UVB-induced formation of apoptotic cells from 25.72% to 7.69%.
Similarly, microscopical analysis of SKH-1 hairless mouse skin biopsies revealed that topical application
of delphinidin inhibited the formation of apoptotic cells and the formation of 8-hydroxydeoxyguanosine
(8-OHdG), an important biochemical marker of UVR-induced oxidative damage in DNA [78].
Furthermore, delphinidin prevented UVB-induced MMP-1 expression evidencing its capacity to
counteract the collagen breakdown and consequent formation of wrinkles. It is suggested that
delphinidin directly inhibits an endogenous generator of ROS, NADPH oxidase, whose activity is known
to be increased by UVR skin exposure and is associated with MMP-1 upregulated gene expression [79].
In another study, the same anthocyanidin was found to inhibit UVB-induced cyclooxygenase-2 (COX-2)
expression and a consequent production of its primary product, PGE2, both in murine epidermal cells
and mouse skin [80]. Cyanidin has been demonstrated to suppress the same inflammatory mechanism,
both in murine and human keratinocytes [81,82].

As mentioned earlier, overproduction of PGE2 is known to significantly damage and age skin and
also plays a well-recognized role in the development of premalignant lesions and skin cancer [83].

An innovative system based on a topical formulation containing deformable liposomes loaded
with blueberry anthocyanins (nanoberries) was proposed as a strategy to enhance the penetration
of the stratum corneum and provide in situ skin photoprotection. Nanoberries were successfully
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incorporated into HaCaT keratinocytes and protected the cells from UVR exposure, while exhibiting
minimal cytotoxicity [84]. This concept could also provide a more efficient delivery of anthocyanins
into the deeper layers of the skin. Although UVB is reported to be particularly damaging to the
epidermis, it is also known as a key contributor to dermis photoaging by activating MMPs and
blueberry anthocyanins have been demonstrated to inhibit UVB-induced damage in human fibroblasts,
meaning this nano-strategy could possibly enhance their dermis protective capacity [85].

A very recent study reported the in vivo protective effects of anthocyanin extracts from
purple fleshed sweet potato (PSP-AE) in a murine model after UVB irradiation for eight weeks.
PSP-AE treatment effectively reduced the UVB-induced epidermal hyperplasia, improved the skin
hydration, and inhibited collagen fibers network degradation. Interestingly, it was shown that the
attenuated MMP-1 protein expression was concomitant with the inhibition of MAPK and NF-κB
signaling pathways [86]. Purple sweet potato anthocyanins have particular properties regarding pH
and heat resistance, photosensitivity, and overall stability due to the acylation with phenolic acids such
as caffeic acid, p-coumaric acid, and ferulic acid, which could be advantageous to preserve their natural
colors and desired effects in a broad range of applications, including the cosmeceutical industry [87].
Besides, it has been reported that the presence of these aromatic organic acids in the structure of
anthocyanins enhances their natural UV absorption capacity, thus representing a more efficient mean of
photoprotection [88,89]. In fact, there has been a growing interest in exploring the use of anthocyanins
in UV-blocking formulations, especially due to raising awareness of the safety and toxicity issues
associated with the synthetic compounds conventionally used in sunscreens.

Chan et al. demonstrated in a preliminary in vitro chemical study that the addition of anthocyanin
extracts of purple sweet potato to a cosmetic formulation improved its UV absorption ability, indicating
the potential topical use of anthocyanins as natural sunscreens [90]. In another study, blackberry and
raspberry extracts of anthocyanins were tested for the same purpose and the in vitro solar protection
factor (SPF) was found to be 54.57 for blackberry and 37.32 for raspberry, promising values for new
sun filters development. Overall, the formulations containing the extracts exhibited pH and density
stability, pink color, and creamy aspect, although indirect light and stove conditions resulted in a slight
color change, suggesting they should be kept under refrigeration and in opaque package to ensure
stability [91]. Additionally, the photoprotective effects of strawberry-based formulations enriched
with Coenzyme Q10 (CoQ10) were tested in UV exposed human dermal fibroblasts. Cells treated
with the formulations with higher concentrations of strawberry extract, containing pelargonidin and
cyanidin glycosides as the most representative anthocyanin components, were able to protect the cells
from UV radiation harmful effects, restoring the cellular viability to similar values of those observed
in non-irradiated cells, demonstrating that the topical use of strawberry extract may provide good
photoprotection [92].

Furthermore, the application of anthocyanins has also been explored as a skin whitening agent to
reduce hyperpigmentation, a common evidence of photoaged skin. Tyrosinase is a major rate-limiting
enzyme of melanin biosynthesis, therefore tyrosinase inhibitors have been extensively explored for
the treatment of dermatological issues, such as solar lentigines and melasma. Multiple studies
have reported the anti-tyrosinase in vitro activity of anthocyanins [93–95]. A recent research using
anthocyanins from the Hibiscus syriacus L., the Korean national flower, evidenced their capacity to
decrease melanin production both in α-MSH stimulated B16F10 murine melanocytes and zebrafish
larvae. Curiously, the mechanism behind inhibition of melanogenesis was described as being the
anthocyanin-induced phosphorylation and consequent degradation of Microphthalmia-Associated
Transcription Factor (MITF), a cell-specific factor responsible for the transcriptional activation of
tyrosinase gene and not through direct inhibition of tyrosinase activity [96,97].

Taken together, these results strongly support the role of anthocyanins as photoprotective agents,
either by absorbing UV radiation or by attenuating events exacerbated by cumulative UVR exposure.
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4.2. Eye Degenerative Disease

4.2.1. Light-Induced Damage to the Retina

Retinal degenerative diseases are multifactorial diseases with a complex pathophysiology,
in which excessive production of ROS and oxidative stress play a crucial role in the onset and
progression of this disease [98]. Crosstalk between oxidative stress-related and inflammatory
pathways is likely to be important in inducing blood retinal barrier (BRB) breakdown and pathological
neovascularization. A better understanding of this dysfunction and the elucidation of the complex
crosstalk between nutrition and the initial stages of disease progression may facilitate the development
of novel personalized diets with significant clinical benefit in comparison with existing therapies.
Simultaneous, chronic interventions addressing multiple metabolic and signaling pathways may
be beneficial to attenuate oxidative stress and inflammation and ameliorate the retinal injury.
Considerable research has focused on the role of diet and light exposure. Retinal cells are susceptible
to photooxidative damage, during which high amounts of reactive oxygen species are generated and
these oxidative damages contribute to the progression of retinal cell degeneration [99].

Photochemical damage is the most common form of retinal damage caused by exposure to direct
sunlight and several artificial light sources. Photochemical damage occurs when light is absorbed
by a chromophore and leads to the formation of an electronically excited state of that molecule,
which then undergoes either chemical transformation itself and/or interacts with other molecules
leading to chemical changes of both interacting molecules or to a transfer of the excitation energy to
the other molecules.

The retina contains a number of endogenous photosensitizers which can be excited by
visible/infrared light reaching the retina. The outer retina (photoreceptors and retinal pigment
epithelium (RPE)), is immediately adjacent to the choroidal blood supply and thus highly oxygenated.
Therefore, these are potentially favorable conditions for photodynamic damage to occur at the
photoreceptors at irradiations with short wavelength light (320–440 nm) and to the pigment epithelium
at longer wavelengths, the blue light damage (>440 nm) [100].

Furthermore, this type of damage appears to be oxygen-dependent, since elevated blood oxygen
has been reported to increase retinal photosensitivity [100]. Protective effects of antioxidants and
lowering oxygen tension suggest that this type of light damage is due to photodynamic damage in the
retina [100].

4.2.2. Endogenous Photosensitizers

Not all retinal cells are typically susceptible to damage from light. Inner retinal cells such as
ganglion cells, Müller cells, amacrine cells, and bipolar cells, are not known to be directly involved in
phototoxicity. Instead, rods and cones, which require photopigments to absorb photons as the first step
in seeing, are much more likely to be damaged by excess amounts of visible light. Similarly, the RPE
cells contain light absorbers such as melanin, lipofuscin, and retinoids, which make them susceptible
to photochemical damage. Although the exact mechanism is still unknow, it is believed that there
are two possible mechanisms for photochemical retinal damage [101]. Class I damage has an action
spectrum that suggests the involvement of photoreceptor photopigments. Class II or “blue-light”
damage, has a damage threshold action spectrum that increases with wavelength and may be linked to
chemical changes in lipofuscin.

All visual pigments in vertebrates are formed by a transmembrane protein, opsin, which binds
via a Schiff base linkage of its lysine residue to 11-cis-retinal. The visual pigment of rods is named for
its color rhodopsin. There are three types of cones in human retina, the blue cone (419 nm), the green
cone (531 nm), and the red cone (558 nm).

The 11-cis-retinal, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light.
Free all-trans-retinal is not only toxic as a reactive aldehyde and, in the presence of redox active metal
ions, a source of free radicals in dark, but it is also a potent photosensitizer photoactivated by UV-A
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and blue light [101]. Photoexcitation of all-trans-retinal with UV-A or blue light is followed by an
efficient intersystem crossing from an excited singlet state and formation of an excited triplet state.
The energy of retinal triplet state is high enough to enable an efficient energy transfer to molecular
oxygen and, as a result, a singlet oxygen is produced. Unless effective antioxidants and repair enzymes
counteract it, ROS induce oxidative damage to lipids and proteins, which may affect their structures
and functions.

Lipofuscin accumulates with age in the lysosomes of the RPE as a by-product of the visual cycle
and phagocytosis [101]. These autofluorescent yellow-brown pigments granules appear to be the
product of the oxidation of unsaturated fatty acids and may be symptomatic of membrane damage,
or damage to mitochondria and lysosomes. Lipofuscin is highly susceptible to photochemical changes
that may lead to irreparable cellular damage and may be the photosensitizer for class II.

4.2.3. Anthocyanins as Retinal Chromophores

Anthocyanins are the only class of polyphenols able to absorb light in the UV (280–400 nm) and
blue light region (360–500 nm) [16], which may account for anthocyanin’s protection effect against
light-induced damage in human retinal cells [12–14]. In fact, the benefits on vision and eye health of
anthocyanins was one of the 1st reported properties of anthocyanins that kept attracting the interest of
consumers and the scientific community [102]. More attention has been paid to anthocyanins effect on
vision after the hypothesis of improved night vision of British Royal Air Force aviators in World War II
in association with their regular ingestion of bilberry jam at breakfast [102].

Up till then, several in vitro and in vivo studies have reported antioxidant and protective effects
at the eye level for anthocyanins. For example, anthocyanins from blackcurrant and blueberry extracts
have demonstrated antioxidant effects at the level of RPE cells by inhibiting the photooxidation
of the A2E molecule and neutralizing oxygen free radicals [103,104]. In vitro studies on Maqui
berry extract have shown that it can protect the retinal cells against light-induced photoreceptor
degeneration due to its content of anthocyanins [105]. Malvidin and its glycosides increase SOD and
catalase in high glucose-induced human retinal capillary endothelial cells, protecting these cells from
oxidative stress-induced damage, and by anti-inflammatory properties due to inhibition of ICAM-1
and NF-κβ [106].

Other studies performed on rats have shown that anthocyanins from blueberry extract can
inhibit diabetes-induced retinal abnormalities [107,108]. Moreover, anthocyanins extracted from
black soybean seeds have shown their protective effects on rat retinal neurons damage induced by
N-methyl-N-nitrosourea [109].

Besides all the proposed mechanisms for in vitro protective effects of anthocyanins on eye health,
some clinical studies focused on the use of anthocyanins to improve night vision have retrieved
negative outcomes [110]. However, the role of anthocyanins in vision health is still controversial.
The conflicting conclusions and results are due to the disparity between in vitro and in vivo studies,
generally limited to acute studies relevant only to pharmaceutical research. Further studies will be
needed to establish the pleiotropic mechanisms of anthocyanins and to show how they can practically
interfere in different visual processes [111].

Furthermore, there is a mis-consideration of anthocyanins unique physical-chemical properties
that clearly affect their behavior in vivo. As already referred to, anthocyanins may occur under different
equilibrium structures that may have a different biological influence depending on the surrounding
pH [16]. Moreover, they are also very unstable at neutral pH and physiological temperature and can
interact with proteins or carbohydrates [112]. In addition, the bioavailable forms of anthocyanins
in vivo are not exclusively the same that occur in food, since they are also largely metabolized yielding
several types of metabolites [113]. These include anthocyanins phase II metabolites (glucuronide,
methylated, and sulfate) or simpler phenolics, that include phenylpropionic, phenylacetic, benzoic acids,
and m-hydroxyphenylpropionic acids, intact or their phase II metabolites, which can be absorbed by
enterohepatic recirculation [114–116]. Total concentration of anthocyanins in several ocular tissues
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is higher than that measured in plasma, a finding that suggests that anthocyanins can concentrate
in ocular tissues [117]. In an experimental study by Jang et al., the accumulation of anthocyanins
in the eye tissues of animals (after 4 weeks of dietary supplementation with blueberries) exhibited
ocular protective effects and reversal of oxidative effects [118]. Significantly high concentrations
of anthocyanins in some ocular tissues are measured when anthocyanins are administered either
intravenously or intraperitoneally [117], which reinforces the importance of metabolites and catabolites
in ocular disease prevention. Systemically, metabolites have limited diffusion into the eye due to the
presence of various ocular barriers. The retinal endothelium acts as a selective barrier (inner Blood
Retinal Barrier) between the blood circulation and the neural retina. The intact forms of anthocyanins,
with a sugar moiety are not likely to cross cell barriers by diffusion. However, and similar to plasma
glucose, anthocyanins may be transported across the cell membrane through facilitative glucose
transporters, namely the constitutive isoform GLUT1 or other isoforms, which may provide a route for
a higher bioavailability of anthocyanins phase II metabolites in the BRB [119]. Glucuronidation is the
major route for metabolization of anthocyanins after ingestion in human intervention studies [120];
these metabolites are also able to be transported by GLUTs [121]. Table 1 shows a summary of the
photoprotective effects of anthocyanins in different models.
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Table 1. Summary of the photoprotective effects of anthocyanins in different models.

Sources Anthocyanin Components Study Models Biological Effects Reference

— Delphinidin-3-O-glucoside

HaCat human keratinocytes;
SKH1-hairless mouse skin;
Human dermal fibroblasts;

JB6 P+ mouse keratinocytes

↓ UVB-mediated oxidative stress and
DNA damage;

↓ UVB-induced MMP-1 expression;
↓ UVB-induced COX-2 expression (via

MAPKK4 and PI-3K targeting) and
PGE2 production

[78–80]

— Cyanidin-3-O-glucoside JB6 P+ mouse keratinocytes
↓ UVB-induced COX-2 expression (via
MKK4, MEK1, and Raf-1 targeting) and

PGE2 production
[81]

— Cyanidin-3-O-glucoside Human keratinocytes

↓ UVB-induced cellular morphology
change and toxicity

↓ UVB-induced ROS generation
↓ UVB-induced COX-2 expression

[82]

Topical formulation with blueberry
extract (Vaccinium myrtillus) n.s.

HaCat human keratinocytes;
Zebrafish;

Human skin explants

↑ penetration of the stratum corneum
(liposomal formulation)

↓ UVC and UVA-mediated cytotoxicity
↑wound repair

[84]

Bog blueberry extract (Vaccinium
uliginosum L.)

Cyanidin, Petunidin,
Malvidin and

Delphinidin-3-O-glucosides;
Delphinidin-3-O-arabinose

Human dermal fibroblasts
(HFF-1)

↓ UVB-induced MMP-1, MMP-8,
and MMP-13;

↓ UVB-induced production of
pro-inflammatory cytokines TNF- α, IL-8,

IL-6, and IL-1β

[85]

Purple-fleshed sweet potato extract

Cyanidin and
Peonidin-3-(p-hydroxybenzoyl)-O

-sophoroside-5-O-glucosides;
Cyanidin and Peonidin

3-(caffeoyl)-O-sophoroside-
5-O-glucosides; Cyanidin

and Peonidin
3-(feruloyl)-O-sophoroside-

5-O-glucosides

BALB/c-nu mouse skin

↓ UVB-induced oxidative stress
Prevention of UVB-induced water loss,

collagen degradation, epidermal
hyperplasia and wrinkle formation;
↓ UVB-induced production and

pro-inflammatory cytokines TNF-α
and IL-6;

[86]
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Table 1. Cont.

Sources Anthocyanin Components Study Models Biological Effects Reference

Topical formulation with strawberry
extract enriched with coenzyme Q10

Pelargonidin and
Cyanidin-3-O-glucosides;
Pelargonidin-3-(malonyl)-

O-glucoside;
Pelargonidin-3-O-rutinoside

Human dermal fibroblasts
(HuDe) ↓ UVA-mediated cytotoxicity [92]

Seed coat of black soya bean extract Cyanidin, Peonidin and
Delphinidin-3-O-glucoside — ↓ Human and mushroom tyrosinase [95]

Rose of Sharon (Hibiscus syriacus L.)
Cyanidin-3-O-glucoside,

Cyanidin-3-O-galactoside,
Cyanidin-3,5-O-diglucoside

Mouse melanocytes (B16F10);
Zebrafish

↓Melanogenesis
by activation of ERK signaling pathway [96]

Bilberry extract

Delphinidin 3-galactoside
delphinidin 3-glucoside,
cyanidin 3-galactoside,

delphinidin 3-arabinoside,
cyanidin 3-glucoside, cyanidin

3-arabinoside, petunidin
3-glucoside, malvidin
3-glucoside malvidin

3-arabinoside

Human adult RPE cells
(ARPE-19)

↓ Photooxidation of pyridinium
bisretinoid A2E [103]

Bilberry (Vaccinium myrtillus) - Human adult RPE cells
(ARPE-19)

↑ Upregulate the oxidative stress defense
enzymes HO-1 and GST-pi [104]

Maqui berry extract (Aristotelia chilensis)
Delphinidin 3,5-O-diglucoside

and delphinidin
3-O-sambubioside-5-O-glucoside

Murine photoreceptor cells
(661W)

↓ Light-induced photoreceptor
degeneration by inhibiting

phosphorylation of p38
[105]

Blueberry extract Malvidin, malvidin-3-glucoside
and malvidin-3-galactoside

human retinal capillary
endothelial cells (HRCECs)

↑ SOD and catalase
↓ Inhibition of ICAM-1 and NF-κβ [106]

Blueberry anthocyanins
bilberries (Vaccinium myrtillus) Rats

↓ Diabetes-induced retinal abnormalities
through Nrf2/HO-1 signaling,

↓ Decreased retinal vascular endothelial
growth factor (VEGF) expression
↑ Degradation of zonula occludens-1,

occludin and claudin-5

[107,108]

Black soybean seeds Rat retinal neurons ↓ damage induced by
N-methyl-N-nitrosourea [109]
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5. Photodynamic Therapy

5.1. Photodynamic Therapy Mechanism

Photodynamic therapy (PDT) was discovered more than 100 years ago and, over the past few years,
it has been thoroughly investigated and developed gaining a status of a consolidated technology for the
treatment of different pathologies. The principle behind PDT is based on the photo-activation of certain
compounds (photosensitizers) after their local or systemic application and optimum accumulation on
pathological tissues. The process involves the activation of the compounds through the absorption of
light with specific wavelengths and the initiation of a series of biochemical processes leading to the
destruction of the damaged tissue. Such activation can occur by two distinct mechanisms dependent
on the intracellular oxygen pressure. For that, the photosensitizer is irradiated, after entering the cells,
with the corresponding light absorption wavelength. This phenomenon allows the excitation of the
photosensitizer and upon the radiation step, part of the energy is radiated in the form of a quantum
of fluorescence while the remaining directs the photosensitizer to the triplet state, which represents
the bioactive and therapeutic form of the molecule [122]. In type I, a radical mechanism through the
electron/hydrogen transfer occurs by direct-contact reactions (between the PS and the tissue) (Figure 4),
leading to the initiation of radical chain reactions and direct damage to the biomolecules. This happens
due to the triplet state of the photosensitizer that is able to transfer energy to the biomolecules.
The electronic/protonic transfer will create free radicals and PS and substrate anions then can react
with the oxygen molecules present within the damaged tissue, yielding to the formation of ROS that
will further develop intracellular ROS cascades culminating in oxidative stress and the destruction of
the damaged cells. The type II mechanism involves the transfer of the excitation energy directly to the
triplet oxygen molecules originating singlet oxygen (Figure 4). This specie is highly reactive due to
its electrophilic behavior being capable of damaging different cellular components such as proteins,
membranes, or even genetic material. This direct energy transfer is possible if the PS has the same spin
of the molecular oxygen [123,124]. Both of them culminate in the production of ROS, and given the
short lifetime of these species, PDT can produce a strong localized effect [125].
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Figure 4. Photodynamic Therapy mechanisms. The photosensitizer (PS) is administered and distributed
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by the appropriate absorption wavelength light and the triplet state PS can go either type I or type
II mechanism.

The prevalence of either mechanism will depend on several factors, such as oxygen concentration,
tissue dielectric constant, and pH and photosensitizer structure. While the direct-contact
reactions resulting from type I mechanisms usually cause higher severity damage, they also cause
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photodegradation of the PS. On the other hand, the direct transfer between the PS and oxygen
molecules promotes the replenishing of the PS. Nevertheless, it is clear that the role of the PS is
efficient for the success of PDT. PS molecules must be able to accumulate preferentially in damaged
cells, such as in cancer. Furthermore, in fact, the common PS tend to combine preferentially with low
density lipoproteins, highly increased in damaged tissues [126,127]. This tendency makes membranes
of particular interest to PDT efficiency. The oxidations promoted on lipids through the action of
the photosensitizers promotes membrane disruption, caused by the presence of free radicals and
oxygen singlets [128]. Consequently, PSs with a higher degree of accumulation in the damaged cells
may potentially exhibit greater cytotoxicity such as demonstrated for cationic porphyrins in Hep2
cells [129]. The research for new PS with a higher efficiency, in the hope to overcome the inherent
problems of PDT has establish three generations for these compounds. The first-generation compounds
englobe the first attempts of PDT clinical approaches. Hematoporphyrin was the first compound
used as a PS. Furthermore, some of the most still commonly used compounds such as Photofrin are
first-generation [130]. However, the first-generation compounds generally present low chemical purity
and high half-life times, needing a higher time of light incidence, and consequently causing problems
such as hypersensitivity in skin. Furthermore, the poor penetration of light represents a problem at
the maximum absorption wavelengths of these compounds (Figure 5). For the second-generation of
compounds research initiated with a need to overcome such problems and compounds with higher
purity, higher yield of singlet oxygen and better maximum absorption wavelengths for a deeper
penetration capacity (in the range of 650–800 nm) has been reported [131–139]. Such compounds have
also an overall poor aqueous solubility making the search for new methods of delivery necessary.
From the second-generation compounds, 5-aminolevulinic acid (ALA) became an important example.
Its metabolization allows this compound to become an active PS only after being transformed in a
protoporphyrin and has been used in different clinical applications [140,141]. The third generation
has been focusing on the discovery of compounds with higher affinity to the target damaged tissue,
thereby reducing the damage to the surrounding healthy cells. This includes not only the synthesis
of new molecules but also the combination of pre-existing compounds (first and second-generation)
with drug delivery systems to improve their bioavailability, therefore improving the efficacy of PDT.
The most outstanding outcomes of these efforts may be the Lab-on-a-chip systems utilizing different
nanomaterials in combination with several drugs to improve the efficacy of this phototherapy [142].
The use of lipoproteins and liposomes for target delivery of PS has been also revealed to be a promising
strategy [143].Int. J. Mol. Sci. 2020, x, x FOR PEER REVIEW  18 of 33 
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The overall efficiency of PDT can be summarized in three main parameters: the photosensitizer,
the appropriate source light, and the intracellular oxygen environment.

5.2. Photodynamic Therapy Use in Cancer

Among the uses of PDT as a therapeutic tool, the anti-cancer action of this technology is
perhaps the most outstanding valence. The basis of this treatment relies on the dependence upon
the uptake of the photosensitizer into the malignant tissue following administration, either systemic,
topical, or intra-localized. After this step of optimal tissue accumulation, the malignant tissue can
then be exposed to specific wavelengths of light for a pre-determined time for the treatment to be
effective. PDT has been used since the beginning of its discovery in cancer treatment. It is no accident
that the first PS used in PDT, hematoporphyrin, was directed against animal tumors [144]. Since then,
the research for new compounds corresponding to the requirements of a PS and for new combining
strategies to improve their inner capacity have had a deep focus in their effects in tumors with the
objective to surpass some of the limitations of traditional PDT in cancer therapeutics.

Depending on the type of tumor, different PDT approaches have been successfully applied.
Very recently, the first reported clinical trial was conducted to evaluate the performance of PDT
in the treatment of primary breast cancer in humans [145]. In this trial, verteporfin was used as a
photosensitizer at a concentration of 0.4 mg/Kg. The clinical practice involved the perforation of
breast tissue by ultrasound guidance for a direct delivery of the light source into the tumor tissue.
The total light dose delivered was between 20 and 40 J. After the treatment, the results revealed that
about 66% of the patient’s tumors (8 in a total of 12), showed significant signs of tissue necrosis.
In some cases, the tumor reduction yield was more than 10%. The authors claim that the research
should be focused on the way of delivery PDT rather than trying to continuously improve the
specificity of PS against a certain type of tumor, even if (like in this case) invasive measures are to
be taken. Nevertheless, the most recent advances have also been focused on the latter approach.
A very recent study using breast cancer cell lines and animal models, demonstrated that the use of
a composite of amphiphile peptide nanomicelles loaded with indocyanine green (PAIN) used in a
combinatory photodynamic/sonodynamic therapy resulted in the elimination of cancer cells both
in vitro and in vivo [146]. More specifically, the authors evaluated the capability of cell elimination
of PAIN after the action of photo- and sono-irradiation through the measurement of ROS cellular
content. A remarkably higher cytotoxicity and consequent lower viability was found in the group
treated with PAIN followed by photodynamics. To further validate its availability for breast cancer
treatment, PAIN was administered into the MDA MB-231 tumor-xenografted nude mice for assessing
the biodistribution in vivo. PAIN exhibited excellent body distribution and tumor targeting capability
in vivo. The authors concluded then that this composite associated with a combinatorial dynamic
therapy proved to be a highly efficient pathway to target and eliminate cancer cells both in vitro and
in vivo. Other strategies to further enhance the delivery of PDT drugs into breast tumors involved
systems based on liposomes or the use of albumin nanoparticles [147,148].

Lung cancer has long been one of the main targets of photodynamic therapy approaches [149–151].
The latest reviews on this matter have described new approaches to enhance the delivery of the
PS to the target tissues. Multidrug resistance has proved to be a major issue in lung cancer
treatment. The improvement of this targeted delivery to the exact local of tumor cells can be
a colossal anti-cancer advantage. Indeed, a very recent study, showed that PLGA-lipid hybrid
nanoparticles have potential to deliver photosensitizer or chemotherapeutic drug for treating both
drug-selected and metastasis-associated multiple drug resistance (MDR) lung cancer cells [152].
A photosensitizer, 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) was loaded
into poly(D,L-lactide-co-glycolide) (PLGA)-lipid hybrid nanoparticles. The PLGA-lipid hybrid
nanoparticles were showed not only to enhance the cellular uptake of the photosensitizer but to also
induce apoptosis in both sensitive and MDR lung cancer cells, after light activation. The authors
concluded that the drug delivery capacity of the PLGA-lipid hybrid nanoparticles was the major factor
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contributing to the MDR-overcoming activity of pTHPP-PLHNPs/PDT. Furthermore, they suggest
that these nanoparticles may be useful not only for PS and PDT but also for the targeted delivery of
non-PDT drugs such as chemotherapeutic agents. Other ways of improving PDT for lung cancer have
also been involving the enhancement of light source efficacy. In a recent clinical trial, a new laser
probe was tested. A composite-type optical fiberscope was used with endobronchial photodynamic
therapy against peripheral type lung cancers [153]. The approach involved the use of talaporfin as PS,
administered 4–6 h prior to the laser irradiation for PDT. This probe allowed not only the accurate
irradiation of the lesion but also a simultaneous visualization of it. The results showed a complete
response to the treatment after one year, suggesting a high efficacy of this approach. In another
study, indocyanine green, was encapsulated with erlotinib-modified chitosan nanoparticles (GECs).
These GECs showed synergistic molecular targeted and photodynamic therapeutic effects in inhibition
of cellular growth and induction of apoptosis in non-small-lung-cancer cells. The study demonstrated
the potential of combining chemo and photodynamic therapy for the treatment of lung cancer [154].

Many other types of cancer have been the focus of PDT either as primary or complementary
treatment, and the trend is similar in the majority of the new approaches. Gastric, colorectal, urogenital,
bladder, and pancreatic cancer, besides previously discussed breast and lung cancers, are among
the ones where PDT therapies have been deeply researched, either looking to improve the delivery
of the known photosensitizers or oxygen, or improve the capability of the light source [155–161].
Nevertheless, the search for new photosensitizers is also an active target for the development of PDT.
Several works have reported the use of new compounds as promising photosensitizers [162–170].
From synthesized compounds based on previous structures to entirely new compounds, the research is
in continuously update. Furthermore, not only lab-made compounds are being reported. The search for
natural options is a growing area for photodynamic photosensitizers, and in fact natural compounds
play a significant role in the development of photodynamic drugs. Although the examples given below
are very recent, the search for natural compounds as photosensitizers for PDT has been active for some
years [130,171]. Some examples are hypericin, hypocrellin, riboflavin, and curcumin.

5.3. The Use in Eye Degenerative Diseases

Ophthalmic PDT was developed in the 1990s as a treatment for age-related macular degeneration
(AMD). The standard of care for several disorders of the retina is retinal photocoagulation.
The photophysical properties of endogenous chromophores are used to cause photocoagulation
of retinal tissues to treat proliferative diabetic retinopathy, neovascular form of AMD or macular edema.
In the macula, the critical pigments that absorb light and their respective peak absorption spectra are
xanthophylls (420–500 nm) within the neurosensory retina, melanin (400–1000 nm) within the RPE cells
and choroidal melanocytes, and hemoglobin (450–550 nm) within red blood cells, contained within the
retinal and choroidal vessels or within areas of extravasated blood [172].

Using visible wavelengths, both green (495–570 nm) and yellow (570–590 nm), or near infrared
laser sources, a therapeutic photocoagulation of unwanted blood vessels is induced in the retina or by
retinal photocoagulation prevent retinal detachment [173]. The depth of penetration is dependent on
the incident wavelength, e.g., optical radiation from argon lasers (457–524 nm) is primarily absorbed
by hemoglobin and oxyhemoglobin in retinal blood vessels, and melanin in the RPE while that from
krypton red (around 650 nm) and diode lasers (790–830 nm) is absorbed by the RPE, as well as choroidal
melanocytes and blood [172].

Considering external agents, human clinical trials were conducted with benzoporphyrin derivative
(verteporfin), tin ethyl etiopurpurin (purlytin), and lutetium texaphyrin (Lu-tex). Verteporfin emerged
as the optimal agent because of its absorption spectrum, lipophilic characteristics and short serum
half-life (minimizing the duration of photosensitivity).

In PDT treatment with verteporfin activation by laser is typically performed 15–20 min after
the intravenous injection of the dye [174]. A beam of red laser light (689 nm diode laser) is applied
to the retina via a slit-lamp delivery system, irradiating a spot chosen to exceed the dimension of
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the neovascularization minimally, with light intensity of 600 mW/cm2, for 83 s, resulting in a total
radiant exposure of 50 J/cm2. Closure of abnormal (leaking) blood vessels occurs for approximately
6–12 weeks in most patients. Inactive verteporfin showed a dose-dependent increase in toxicity for
primary human scleral fibroblasts at 1 µg/mL and above [175]. This may constitute a drawback of these
type of photosensitizers. As so, natural photosensitizers may arise as a solution.

5.4. Anthocyanins and Their Derivatives, A Potential PDT Ally?

Despite the fact that numerous types of photosensitizers have been discovered and developed over
the years, only a small number of these compounds have been clinically approved being predominantly
influenced by the tetrapyrrole structure. The reason for such is that modern PDT has its roots in
porphyrin-derived agents, and a large number of preclinical and clinical experiences have been
accumulated predominately on the basis of photofrin-mediated PDT. This fact may be the main reason
for the continuous research on the improvement on the delivery of the pre-existing compounds.
However, the search for new options should be considered.

Shi et al. have shown the potential use of traditional plants extracts for PDT in the treatment
of head and neck squamous cell carcinoma [163]. From the initial 289 plant extracts, 13 showed
high fluorescence properties and were screened for their photo-physical characteristics. From these,
Acanthopanacis Cortex extract was showed to have potential photosensitizer properties, as revealed
by the cell viability and intracellular distribution assays performed in KB, Hep-2 cells. The authors
concluded that the extract of Acanthopanacis Cortex irradiated at 625 nm could enhance PDT by inducing
ROS and apoptotic pathways in the tested cell lines. This reinforces the perspective about the potential
use of natural compounds.

In therapeutic PDT, the photodynamic sensitizers should absorb between 600 and 800 nm
(red light). Although, and similar to tissue chromophores (amino acids, nucleotides, heme, melanin, etc.),
anthocyanins at acidic pH absorb light at λ < 600 nm (UV-visible), which may at first exclude their
applications for therapeutic PDT.

Besides, at plasmatic pH, resonance-stabilized quinonoid anions (color purple blue of anthocyanins)
are formed from further deprotonation of the quinoidal species. So, there is a shift towards red light.

In addition, the mechanism of blue color development in living flower petals involves
anthocyanin-metal complexes which may result in a bathochromic shift towards the red region [176].

The photophysical and chemical properties of anthocyanins confer to this class of compounds the
suitable features to be used as a photosensitizer in dye-sensitized solar cell (DSSC) [177]. In a study by
Chien et al., anthocyanins were incorporated in solar systems and showed to improve their efficiency.
These newly dye-sensitized solar cells boosted the system capability by almost 2% at a concentration
of 3 mM of red cabbage anthocyanins and at pH 8.0, revealing a crucial importance of the anionic
quinoidal bases for this phenomenon [178]. In another very recent study, the sensitization effect of
anthocyanins of Plumeria Rubia and chlorophyll dyes on optical and photovoltaic properties of zinc
oxide-based dye-sensitized solar cells (DSSC) was evaluated. The authors found that anthocyanins
formed a better bound with zinc oxide and the anthocyanin-DSSC showed a higher performance
compared to that of chlorophyll [179]. Dimethylamino-pyranoanthocyanins have also been proposed
for the use in this type of solar technology [180].

Both properties may confer this class of compound, at least part, of the requirements for PDT.
Besides strong absorption in the red visible spectrum (600–800 nm) and a high extinction coefficient

(50.000–100.000 M−1
·cm−1), to prevent the need of using great amounts of PS, the photosensitizing

agent suitable for PDT must be available in a pure form, and it should be easy to obtain and have a
high singlet oxygen quantum yield [181].

The production of an oxygen singlet by triplet excited state of anthocyanins derivatives
(pyranoanthocyanins) was recently reported [181], and the fluorescence properties of purple-fleshed
sweet potato recently established [17].
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Besides that, anthocyanins are fully established as potent bioactive natural compounds against
a myriad of pathologies, including cancer as referred above. Altogether, these features certainly
make anthocyanins a potential candidate for PDT use, as both photosensitizer and co-adjuvant for
PDT enhancement. In fact, a recent study exploring the potential of cyanidin-3-O-glucoside as a
photosensitizer for antimicrobial treatment revealed an efficient activity of this anthocyanin upon
activation by green light laser [182]. In another very recent study, the modulatory effects of Cornus
mas anthocyanin-rich extract in 5,10,15,20-terat-suphonato-phenyl-porphyrin (TSSP) based PDT was
evaluated in animal models [183]. The authors found that the apoptotic and necrotic effects of the PDT
treatment were enhanced by Cornus mas association before PDT.

As well-established antioxidants, anthocyanins may have the potential to interact with the
oxygen singlet through quenching phenomena, which may be a problem for the efficiency of PDT.
However, depending on the concentration of antioxidants, the hormesis effect may promote a
pro-oxidative behavior. A recent study showed that several natural and synthetic antioxidants have the
potential to enhance the efficacy of PDT, probably due to the quenching action driving the mechanism of
PDT towards free radical rather than 1O2 [184]. Anthocyanins are reported as singlet oxygen quenchers.
Cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, cyanidin-3-O-galactoside, malvidin-3-O-glucoside,
and malvidin-3,5-O-diglucoside, all showed capacity to function as catalytic quenchers of 1O2 [185].
Furthermore, the stability of mono and diglucoside anthocyanins was evaluated under the presence of
photochemically produced oxygen singlet. The degradation of the different anthocyanins suggested
a quenching capacity to 1O2 [186]. This ability may direct anthocyanins to type I PDT, in which
anthocyanins may act in their triplet state directly in biomolecules.

Although a lot more research is obviously necessary, it becomes clear that anthocyanins and their
derivatives may represent an interesting new class of compounds for PDT treatment, either as primary
photosensitizers or co-adjuvants.

6. The Role of Bioavailability for Anthocyanins Photoprotective Properties

In order to exert their biological effects, natural compounds must reach their target tissues. From a
therapeutic point a view, the bioavailability of such bioactives is a crucial determinant for their expected
effects [187]. In this way, the efficiency of techniques such as PDT will highly depend on the capacity of
the compounds to cross the different cell barriers, either at gastrointestinal or skin level, depending on
the administration route of the photosensitizer. In the case of anthocyanins this is of particular interest,
due to their previous discussed physical and chemical characteristics. Anthocyanin’s bioavailability is
normally considered rather low; however, today it is widely known that many factors underestimate
the real bioavailability of such compounds [187]. Recent evidence suggests that these compounds
can be absorbed at the gastrointestinal level and detected in the systemic circulation [120,187–189].
Together with their metabolites, these compounds can be detected after a few minutes after ingestion.
Not only their kinetics but also their mechanisms of absorption are widely known. Bilitranslocase
and glucose transporters at the gastric level and glucose transporters and intestinal level have been
reported as important mechanisms of anthocyanins transport across such barriers [4,119,190–192].
Furthermore, the structural influence on their transport efficiency has been widely reported, and very
recently it was shown that complex anthocyanins from purple-fleshed sweet potato were more resistant
to digestion processes and were able to cross both gastric and intestinal cell barriers with a comparable
transport to the monoglucoside anthocyanins [5]. Although their metabolization has a significant
extent, this may be advantageous to these compounds has their metabolites can also exert biological
effects at several degrees and targets [193].

Regarding the skin application of anthocyanins, different factors must be taken into consideration
to ensure the effectiveness of their biological activities. Not only the properties of the compounds,
but also the properties of the formulation itself in which they are incorporated, determine the capacity to
overcome the stratum corneum (SC) and reach the epidermal and dermal skin layers. Different systems,
such as ultradeformable liposome and noisome-based gels have been reported for their capacity to
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enhance the skin penetration, stability, and delivery of anthocyanins [84]. More recently, the release
and skin permeation profiles of anthocyanins from a lipophilic delivery system were extensively
studied in both porcine skin model and in human volunteers [194]. Two distinct lipstick formulations,
one containing elderberry (mainly composed by simple glycosylated anthocyanins) and red radish
(predominantly composed by larger anthocyanins exhibiting complex patterns of glycosylation
and acylation) were tested to understand how the different structural patterns of anthocyanins
might influence the skin permeation capacity. As expected, the smaller hydrophilic elderberry
anthocyanins displayed higher permeability coefficient Kp (cm/h) and steady state fluxes Jss (µg cm2/h)
across the SC following lipstick application either in human volunteers or on porcine ear skin.
However, the compounds from red radish were also identified at depths relevant for overcoming
the SC, which indicates that the molecular weight was not a limitation for their diffusion in the
skin. Overall, both HPLC and ATR-FTIR analyses allowed the identification and quantification of
anthocyanins within the samples from the volunteers, demonstrating the penetration of the compounds
as well as their lateral diffusion within the skin. Interestingly, hypodermal delivery has been reported
for delivery of a proanthocyanidin-rich extract from grape seeds, a strategy to reach the epidermal
and dermal skin layers, overcoming the issue of SC barrier crossing [195]. The quantification of
anthocyanins within the epidermis and dermis is still a relatively unexplored topic of research, but it
is of major importance considering the need to determine the required concentrations to observe
the beneficial properties of anthocyanins in vivo, therefore this issue should be extensively explored
in future works as it would provide very useful insights regarding the topical application of these
molecules. Altogether, the actual knowledge about anthocyanins bioavailability reinforces the potential
use of these natural compounds’ novel photosensitizers for PDT and other skin applications.

7. Conclusions

Anthocyanins are generally associated with their antioxidant effect; although, anthocyanins
are more than that, and they are quite versatile pigments with unrevealed properties (Figure 6).
These pigments have been a challenge not only for chemists but also for biologists, especially due
to their equilibrium forms at different pHs. This feature is clearly amazing since the observed
biological effect at each pH is a net of the individual effect of each molar fraction. This scenario is
even more complex when the diversity of natural sources is taken in consideration and with them an
extraordinary huge number of related structures. Due to their ability to absorb light in the UV and
blue light region and to revert the pharmacological pathways associated with UV prolonged exposure,
anthocyanins possess the ability to protect skin and eye cells against light damage.

Anthocyanin’s dual oxidative effect may be explored towards phototherapy. In fact, due to the
reported ability to form quinones and quench singlet oxygen, these pigments may be used in the PDT
type I mechanism.

One of the main properties of anthocyanins is their reactivity which is dramatically reduced
with the formation of a 4th ring through chemical pathways identified in anthocyanin-rich foodstuffs,
such as red wine. These derivative pigments, pyranoanthocyanins, present a wide spectrum of colors
ranging from yellow orange to blue, extending the range of absorption in the visible range from 400 to
500 (precursor pigments) to 600–800 nm. In addition, the ability to produce singlet oxygen, not reported
for anthocyanins, may include these anthocyanin-derivative pigments as PS in type II mechanism.

In conclusion, anthocyanins constitute a natural source of unexplored bioactives
towards photoprotection.
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