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A B S T R A C T   

In the past decade, stereotactic body radiation therapy (SBRT) has emerged as a valid treatment option for 
patients with localized prostate cancer. Despite the promising results of ultra-hypofractionation in terms of 
tolerance and disease control, the toxicity profile of SBRT for prostate cancer patients with a history of surgical 
treatment of benign prostate hyperplasia is still underreported. Here we present an overview of the available data 
on urinary morbidity for prostate cancer patients treated with SBRT after prior surgical treatments for benign 
prostate hyperplasia. Technical improvements useful to minimize toxicity and possible treatments for radiation- 
induced urethritis are discussed.   

Introduction 

Modern radiotherapy techniques and better knowledge of radiobi-
ology have led to the emergence of ultra-hypofractionation as a valid 
curative treatment option for patients with localized prostate cancer 
(PCa). Large prospective studies have shown the good tolerance and 
outcome results of stereotactic body radiotherapy (SBRT), with ran-
domized clinical trials demonstrating the non-inferiority of ultra- 
hypofractionation in terms of disease control and toxicity compared to 
standard fractionation or moderate hypofractionation [1–4]. 

Despite these premises, a thorough understanding and evaluation of 
the treatment-related side effects of these emerging therapeutic mo-
dalities remains critical to ensure their safe adoption in clinical practice. 
Toxicities affecting the genitourinary (GU) system are undoubtedly a 
significant problem, greatly affecting the quality of life of PCa patients 
undergoing curative external beam radiotherapy (EBRT). This is 
particularly evident in patients with a previous history of surgical 
treatment of benign prostate hyperplasia (BPH), one of the most 
commonly benign disease observed in aging men. 

Current standard of care for BPH that do not respond to standard 

medication includes transurethral resection of the prostate (TURP) or 
adenomectomy through open prostatectomy for patients with prostate 
glands larger than 80 g [5,6]. Due to the high prevalence of PCa and BPH 
in aging men, it is therefore not uncommon to observe a prior history of 
TURP or adenomectomy in patients who are candidates for an EBRT 
treatment. 

While the correlation between EBRT and an increased risk of GU 
toxicity in patients with a prior TURP treated with standard fraction-
ation has already been demonstrated [7], the impact of ultra- 
hypofractionated SBRT on the occurrence of urinary side effects after 
a previous TURP has been less clearly reported. 

Prostate SBRT and TURP: current evidence 

In a retrospective study on 208 PCa patients treated with definitive 
SBRT, Gurka et al. observed with a median follow-up of 48 months up to 
18.3 % of the patients experiencing hematuria, with history of prior 
procedure(s) for BPH being significantly associated with this event [8]. 
In another study, Murthy et al. used a database to select 50 PCa patients 
with a previous history of TURP treated with definitive SBRT. These 
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patients were matched by propensity score to a cohort of patients 
without a prior TURP treated with SBRT during the same time period 
[9]. With a median follow-up of 26 months, there was no statistically 
significant difference between non-TURP versus TURP patients in terms 
of cumulative occurrence of grade ≥ 2 acute (8 % vs 6 %) and late GU 
toxicities (8 % vs 12 %), urethral stricture (4 % vs 6 %), and incontinence 
rates (0 % vs 4 %). 

Four other studies reported the GU toxicity outcomes of patients 
treated with SBRT with a prior history of BPH treatment. Tambas et al. 
compared prostate-specific antigen kinetics, toxicity, and quality of life 
of 20 patients treated with a conventionally fractionated volumetric arc 
therapy (VMAT) technique with 28 patients treated with SBRT. Both 
cohorts were well balanced regarding the rate of pre-treatment TURP 
(17.9 % in the VMAT group vs 20 % in the SBRT group). All the five 
patients (17.9 %) with a previous history of TURP treated with SBRT 
presented a grade 3 GU toxicity compared to only one single patient in 
the VMAT group (5 %) [10]. In a retrospective study of 47 patients with 
a history of prior TURP (including multiple TURP) treated with SBRT, 
Pepin et al. found a cumulative late grade ≥ 2 and grade ≥ 3 GU toxicity 
rate of 49 % and 6.4 %, respectively. At least one episode of transient 
hematuria was observed in more than 50 % of the patients [11]. In 
another single-institution series of 24 patients with a history of surgery 
for BPH treated with a 5-fraction SBRT, cumulative late grade 2 and 3 
GU toxicities were observed in 8 (33 %) and 4 (16.7 %) patients, 
respectively [12]. Notably, patients with a prior adenomectomy or 
multiple TURPs were at a higher risk of developing severe GU toxicities. 

In one of the largest series of PCa patients with a prior history of TURP 
presented during the last ESTRO 2023 meeting, Maitre et al. analyzed 
the occurrence of late toxicity in 204 patients treated with either mod-
erate hypofractionation (64–68 Gy/25fx, n = 116) or SBRT (35–37.5 
Gy/5fx, n = 88). When regarding cumulative late grade 2 GU toxicities, 
rates were similar among patients treated with moderate hypofractio-
nation or SBRT, 24.3 % and 27 %, respectively. Nevertheless, cumula-
tive grade 3 late urinary toxicity was 7.4 % for the whole cohort, 
significantly higher with moderate hypofractionation compared to SBRT 
(11.3 % vs 2.2 %, p = 0.01), with hematuria (9.6 % vs 2.2 %) and urinary 
obstruction (4.3 % vs 0 %) as the most contributory symptoms for the 
higher toxicity observed with moderate hypofractionation [13]. 

Even if the majority of the analyzed studies used SBRT treatments 
delivering doses between 33.5 Gy and 40 Gy with state of the art daily 
image-guidance mostly using cone beam computed tomography imag-
ing [8,9,12], strict comparison of the results of these studies remains 
challenging (Table 1). The different time intervals between TURP and 
SBRT could possibly have impacted the healing capacity of the surgical 
cavity [14] and different optimization strategies to the urethra could 
have influenced the development of long-term GU toxicity. Noteworthy, 
in the Tambas et al. study, urethra and the surgical cavity were not 
defined as organ at risk, possibly explaining the GU toxicity of grade 3 
occurring in all patients treated with SBRT [10]. 

Despite differences in treatment planning and delivery, it seems that 
the late GU toxicity rates of patients with a prior history of TURP treated 
with SBRT and reported in Table 1 are higher than the late GU toxicity 

Table 1 
Stereotactic Body Radiation Therapy series in prostate cancer patients with transurethral resection of the prostate.  

Reference 
Year of 
publication 

n (total/ 
TURP) 

Type of 
RT 

IGRT 
technique 

RT dose, 
schedule and 
prescription 

Median time 
between 
TURP and RT 
(range) 

Median 
follow- 
up 

GU toxicity 
grading 
scale 

With TURP 
GU toxicity 
grade ≥ 2 

Without 
TURP 
GU 
toxicity 
grade ≥ 2 

Other worsening 
factors 

Gurka et al. 
2015 8 

208/24 SBRT Daily 
IGRT 

36.25 Gy and 
35 Gy 
in 5 fx 

NA 48 
months 

CTCAE v 
4.0 
Hematuria 

18.3 %  Use of alpha-blockers 
Prostate volume 

Murthy 
et al. 
2019 9 

100/50 SBRT Daily kV/ 
CBCT 

35 Gy and 
37.5 Gy 
in 5 fx, EOD 

10 months 
(3–96) 

26 
months 

RTOG/ 
CTCAE v 
4.0 
GU ≥ G2 

Acute: 6 % 
(1 patient 
with G3) 
Late: 12 % 
(1 patient 
with G3 et 1 
patient with 
G4) 

Acute: 8 
% 
Late: 8 % 
(1 patient 
with G3) 

Diabetes mellitus 

Tambas 
et al. 
2016 10 

SBRT arm: 
28/5 
VMAT arm: 
20/4 

SBRT  

VMAT 

NA 33.5 Gy 
in 5 fx EOD  

75.6 Gy in 35 
fx 

NA 23 
months 

CTCAE v 
4.0 
G3 urinary 
retention 

SBRT arm: 
5 patients 
with G3 
VMAT arm: 
1 patient 
with G3   

Pepin et al. 
2020 11 

47/47 SBRT NA 35 and 36.5 Gy 
in 5 fx, EOD 

NA (1–5 
years) 

56.4 
months 
(Mean 
FU) 

CTCAE v 
4.0 
GU ≥ G2 

Acute: 15 % 
(No G3) 
Late: 54 % 
(5 patients 
with G3)  

Use of alpha- blockers, 
5 alpha reductase 
inhibitors and 
antimuscarinics 

Huck et al. 
2022 12 

24/24 
(5 
adenectomy) 

SBRT Daily kV/ 
CBCT 

35 Gy, 36.25 
Gy, 
and 40 Gy in 5 
fx, EOD 

54 months 
(2–204) 

45 
months 

CTCAE v 
4.0 
GU ≥ G2 

Acute G3: 
4.2 % 
Late G2: 33 
% 
Late G3: 17 
%  

Multiple TURP, 
adenomectomy 

Maitre 
et al. 
2023 13 

204/204 SBRT 
IMRT 
(MHRT) 

NA 36.25 Gy in 5 
fx 
68 Gy in 25 fx 

10 months 
(7–16) 

37 
months 

CTCAE v 
5.0 
GU ≥ G2 

SBRT: 27 % 
G2, 
2.2 % G3 
MHRT: 24.3 
% G2, 11.3 
% G3   

Abbreviations: TURP, Transurethral resection of the prostate; NS, not significant; NA, not available; SBRT, Stereotactic Body Radiotherapy; GU, Genitourinary; VMAT, 
Volumetric Modulated Arc Therapy; MHRT, moderate hypofractionated radiotherapy; CTCAE, Common Terminology Criteria for Adverse Events; RTOG, Radiation 
Therapy Oncology Group; EOD, every-other-day; IGRT, Image-guided radiotherapy; kV, kilovoltage. 
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rates reported in some of the landmark trials of SBRT for localized PCa 
[2–4]. In the HYPO-RT trial, aiming to show the non-inferiority of a 7- 
fraction regimen compared to conventional fractionation up to 78 Gy, 
patients treated with ultra-hypofractionation experienced only a 5 % 
grade ≥ 2 late GU toxicity, according to the Radiation Therapy Oncology 
Group (RTOG) grading scale. [2]. Similarly, in the PACE-B trial 
comparing conventionally fractionated radiotherapy to SBRT, 24-month 
cumulative incidence rates of RTOG grade ≥ 2 GU toxicity was observed 
in 18.3 % of the patients treated in the SBRT arm. [4]. Based on these 
results, it seems reasonable to assume that patients with a previous 
history of surgery for BPH are at higher risk of developing late GU 
toxicities when treated with SBRT than patients who have not under-
gone this type of treatment. 

Mechanisms, mitigation, and management of urinary toxicity 
post-TURP 

Mechanisms of urinary toxicity post-TURP 

The urethra and bladder neck are critical structures particularly 
sensitive to high radiation doses. A correlation between the dose 
received by prostatic urethra and the bladder neck and the risk of GU 
toxicity has been demonstrated in several brachytherapy studies [15]. 
Even for SBRT, in a combined analysis of 23 prospective clinical trials 
the dose of radiation delivered to the intraprostatic urethra has been 
associated with the occurrence of acute and late GU toxicity. In this 
study, each 1 Gy increase in urethral dose was associated to a 0.8 % and 
1.0 % increase in acute and late grade 2 toxicity, respectively, after 
adjusting for age, prostate size, bladder dosimetry, and initial urinary 
function [16]. 

It might be speculated that after TURP, the resection cavity and the 
largest exposure of urothelial mucosa may explain the higher sensitivity 
to radiation observed in these patients. Fibroblast proliferation, 
replacement of elastic tissue and muscle fibers following TURP, com-
bined with radiation-induced intravascular coagulation, extensive tissue 
degeneration and necrosis, represent the main pathophysiological 
mechanisms increasing the risk of late GU toxicity [17–19]. Interest-
ingly, in favor of this hypothesis, a linear correlation between the vol-
ume of the intraprostatic post-surgical cavity and the occurrence of 
severe GU toxicity has been observed in the study by Huck et al. [12]. 
Using multiparametric magnetic resonance (MR) imaging to delineate 
the intraprostatic post-surgical cavity, among the 24 SBRT patients 
analyzed, the five who developed grade 3 GU toxicities had a mean post- 
surgical intraprostatic cavity volume of 6.3 cc, six-fold larger than the 
cavity of patients without severe toxicity (1 cc). 

Although TURP remains one of the gold standard surgical treatment 
of BPH [20], other mini-invasive ablative techniques such as Holmium 
laser enucleation of the prostate (HoLEP) [21–23], or laser vaporization 
(Greenlight) [24] have been developed to reduce operating time, hos-
pitalization duration, and morbidity. Urolift [25] or prostatic artery 
embolization [26] are other non-ablative techniques preserving the 
urethral tissues currently proposed as alternative to standard ablative 
procedures for patients with symptomatic BPH [27]. Although these less 
invasive techniques may potentially mitigate the risk of radiation- 
induced toxicity occurring after SBRT, their supposed preventive effect 
remains yet to be demonstrated. 

Mitigation of urinary toxicity post TURP 

Minimizing the dose to the urethra or the resection cavity by limiting 
hot spots or by reducing the dose delivered compared to the whole gland 
could be a promising approach to limit the rate of GU toxicities occur-
ring in PCa patients undergoing SBRT after a previous TURP [28]. Of 
note, long-term results of a phase II randomized trial of PCa patients 
treated with a linac-based technique to 36.25 Gy in 5 fractions and 
limiting the dose to the urethra at 32.5 Gy (equivalent to 74 Gy in 2 Gy 

per fraction using a α/β = 1.5 Gy), showed that 5 year late grade ≥ 2 GU 
toxicity rates were below 25 %, with only one patient presenting late 
grade 3 GU toxicity [29]. By analogy, protection of the resection cavity 
in TURP-treated patients, with a much larger surface of exposed healthy 
tissue, would likely be an attractive strategy to reduce the risk of 
radiation-induced GU toxicity. Proper visualization and definition of the 
urethra and resection cavity using dedicated MR imaging protocols as 
well as routine implementation of standard of care image-guidance 
modalities remain the essential requirements needed to implement a 
“cavity-sparing” SBRT technique for mitigating urinary toxicity post- 
TURP [30]. Of note, use of MRI-guided SBRT techniques with daily 
online adaptive represents certainly an appealing treatment technique 
for treating these patients. As observed in a systematic review and meta- 
analysis, acute grade 2 or higher GU or GI toxicity can significantly be 
reduced using a MRI-guided adaptive SBRT technique compared to a 
fiducial or CT-guided non-adaptive prostate SBRT (12 % and 5 % on 
average, respectively) [31]. 

Management of urinary toxicity post TURP 

If prevention of GU toxicity fails, several treatment approaches of 
post radiation cystitis and urethritis are currently proposed. The 
approach to managing radiation cystitis depends on the extent of 
symptoms. For cases classified as Grade 1 and Grade 2, the main goal is 
usually to relieve symptoms. When symptoms mainly involve increased 
frequency and urgency, anticholinergic drugs are commonly used to 
provide relief. In addition, for all levels of severity, initial treatment may 
involve bladder irrigation, which can also help remove blood clots in 
cases of evident macrohematuria [32]. In selected cases, procedures 
such as fulguration using alum or silver nitrate might be employed 
directly to stop macrohematuria [33,34]. Hyperbaric oxygen therapy 
(HBOT) represents another approach proposed to treat refractory cases 
of post-radiation cystitis or urethritis after failure of standard drug 
medication. By promoting oxygenation of the tissues, it participates in 
healing by restoring fibroblast growth and collagen synthesis, as well as 
by promoting neoangiogenesis and the development of epithelialization 
[35]. Its use in post-radiation bladder and urethral lesions has been 
demonstrated in several retrospective studies [36,37] and confirmed by 
a phase II-III randomized controlled trial (RICH-ART) [38]. 

Conclusions 

Based on literature, appropriate patient selection is needed when 
SBRT is proposed in patients with a history of surgical treatment of BPH, 
especially when multiple TURPs or adenomectomy procedures have 
been performed. Use of adaptive MRI-guided SBRT implementing 
“cavity-sparing” techniques may represent an interesting strategy for 
mitigating urinary toxicity in patients with a prior history of TURP of the 
prostate, although its use requires further investigation. 
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