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1. Introduction
Alzheimer’s disease (AD) is a devastating brain disorder characterized by an irreversible loss of memory and damage of 
cognitive functions. AD typically results in a full deterioration of memory skills and mental activities, leading to the most 
widespread form of senile dementia and affecting a lot of demented individuals worldwide with increasing tendency [1]. 
Many etiopathogenic mechanisms including metabolic, genetic, environmental factors, and lifestyle are key pathological 
features in appearance and progression of the disease [2]. The AD is associated with deficits in cholinergic neurotransmission 
[3], bio metals dysfunction [4,5], formation of toxic β-amyloid (Aβ) plaques by the deposition of abnormal proteins in the 
form of these plaques [6], inflammation and increased oxidative stress [7], destabilization of calcium homeostasis [8], and 
accumulation of tau-protein hyper phosphorylation [9].

Acetylcholine (ACh) is a critical neurotransmitter for specific aspects of brain healthy and cognitive activities. The 
cholinesterase inhibitors play a vital therapeutic role in elevating ACh levels [10]. That is released at the end of the neuron 
by the appearance of a nerve impulse, which is transmitted at synapses. Enhancement of the activity of cholinergic 
neurons seems to be the only way to develop strong medications for reducing disease exacerbation [11]. It is carried 
out by acetylcholinesterase (AChE) inhibition, the enzyme having control over the hydrolysis acetylcholine [12,13]. The 
information on crystal structure of AChE is crucial to comprehend its high catalytic effectiveness and atomic basis for 
the binding of ACh-receptor to recognize ACh [14]. In addition, the clarification of the basic action mechanism of the 
pharmacological action of these agents would be suitable for further research in the drug design process. The plurality of 
cholinergic neurotransmission problems is treated by AChE inhibitors, which are the basis of some drugs considered to be 
the first developed generation drugs to reduce the severity of cognitive disorders [15]. For that reason, the search for new 
potent acetylcholinesterase inhibitors with improved interactions is highly demanding.

Abstract: Alzheimer’s disease (AD) is a multifactorial and polygenic disease. It is the most prevalent reason for dementia in the aging 
population. A dataset of twenty-six 1,2,3-triazole-based derivatives previously synthetized and evaluated for acetylcholinesterase 
inhibitory activity were subjected to the three-dimensional quantitative structure-activity relationship (3D-QSAR) study. Good 
predictability was achieved for comparative molecular field analysis (CoMFA) (Q2 = 0.604, R2 = 0.863, rext

2 = 0.701) and comparative 
molecular similarity indices analysis (CoMSIA) (Q2 = 0.606, R2 = 0.854, rext

2 = 0.647). The molecular features characteristics provided 
by the 3D-QSAR contour plots were quite useful for designing and improving the activity of acetylcholinesterase of this class. Based on 
these findings, a new series of 1,2,3-triazole based derivatives were designed, among which compound A1 with the highest predictive 
activity was subjected to detailed molecular docking and compared to the most active compound. The selected compounds were 
further subjected to 20 ns molecular dynamics (MD) simulations to study the comparative conformation dynamics of the protein after 
ligand binding, revealing promising results for the designed molecule. Therefore, this study could provide worthy guidance for further 
experimental analysis of highly effective acetylcholinesterase inhibitors.

Key words: Three-dimensional quantitative structure-activity relationship, molecular docking, molecular dynamics simulations, 
1,2,3-triazole, acetylcholinesterase inhibitory activity, Alzheimer’s disease

Received: 15.10.2020              Accepted/Published Online: 10.02.2021              Final Version: 30.06.2021

Research Article

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0000-0001-8669-9657
https://orcid.org/0000-0002-6237-6930
https://orcid.org/0000-0001-8453-0356
https://orcid.org/0000-0003-0081-6109
https://orcid.org/0000-0002-7742-4376
https://orcid.org/0000-0001-6707-9057
https://orcid.org/0000-0002-9622-0512
https://orcid.org/0000-0002-8901-047X


EL KHATABI et al. / Turk J Chem

648

Computational modeling has held upper hand in further research in order to understand the origin and prognosis of 
neurodegenerative diseases, as every human brain is unique. In silico approaches including 3D-QSAR, molecular docking 
and MD simulation could offer solutions to important matters which molecular biology alone might not explain. The 
point of the current research is designing more potent Alzheimer inhibitors with improved binding infinity which could 
be more effective agents for the management of AD. Therefore, the relationship between structural features of a series of 
selective 1,2,3-triazole based derivatives identified as acetylcholinesterase inhibitors and biological activity was revealed by 
comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. 
Consequently, six new compounds with high predicted potency were in silico designed. In addition, molecular docking 
and molecular dynamics (MD) simulation were performed to ascertain the critical interactions and study the dynamic 
behavior of ligands in the active sites of AChE related proteins. The integrated approaches have proved to be a promising 
avenue for drug design, which would provide useful insights into the crucial structural understanding for further synthesis 
of acetylcholinesterase inhibitors.

2. Materials and methods
2.1. Data set
A series of experimentally reported twenty-six 1,2,3-triazole based derivatives were taken from published studies [16,17] 
and employed for molecular modeling. The dataset was divided into a training set of 20 molecules (80%) and test set of 
6 molecules (20%) to construct and evaluate the models, respectively. The AChE inhibition activities IC50 (µM) were 
converted into the corresponding pIC50 values, which were further used as dependent variables for quantitative structure-
activity relationship (QSAR) analysis. The chemical structures and activity values of the compounds were depicted in 
Figure 1 and listed in Table 1.
2.2. Minimization and optimization 
The 3D structure of the studied compounds was sketched using SYBYL-X 2.0 program [18] and minimized under the 
Tripos standard force field [19], with Gasteiger-Hückel atomic partial charges [20] by the Powell method with 0.01 kcal/
mol as the convergence criterion. The compounds were further optimized by density-functional theory (DFT) method 
B3LYP/6.311 (d, p) basis set level to achieve the equilibrium geometry for each compound [21]. The optimization was 
performed using Gaussian software (09, Gaussian Inc., Wallingford, CT, USA). 
2.3. Molecular alignment
The molecular alignment aims to enhance the linearity of 3D-QSAR models. The representative molecule 2 was chosen as 
template. The remaining molecules were then aligned to common substructure of the template using the simple alignment 
method in SYBYL [22], which is shown in Figure 2.

Figure 1. Chemical structures of the compounds.
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2.4. 3D QSAR: CoMSIA and CoMFA studies
Based on molecular alignment, 3D-QSAR analysis has been utilized to increase further knowledge of the chemical 
structures of ligands that correlate well with the bioactivity of the observed interactions [23,24]. These studies were 
developed to analyze quantitatively, steric, electrostatic, hydrogen bond acceptor (HBA) hydrogen bond donor (HBD), 
and hydrophobic effects fields. 3D-QSAR analysis was performed by using SYBYL with standard settings. The value of 
column filtering is set to 2.0 kcal/mol with 30 kcal/mol as the energy cutoff value [25].

Table 1. pIC50 values of the reported 1,2,3-triazole based 
derivatives against acetylcholinesterase 1-26.

Training/Test N° Ar pIC50

Training 1 H 5.347
Training 2 3,4-Me 5.744
Test 3 4-Me 4.699
Training 4 2-Me 5.431
Training 5 4-OMe 4.437
Training 6 2-Br 5.483
Training 7 2-Cl 5.481
Test 8 2,3-Cl 4.731
Test 9 3,4-Cl 5.690
Training 10 4-F 4.995
Training 11 4-Me 4.361
Training 12 2-Me 5.007
Training 13 2-Br 5.677
Training 14 2,3-Cl 5.298
Training 15 3,4-Cl 3.988
Training 16 4-Cl 4.531
Test 17 3-Cl 4.790
Training 18 4-F 4.789
Test 19 3-F 4.647
Training 20 H 4.432
Training 21 2-F 4.654
Training 22 2-Cl 4.703
Training 23 2-NO2 4.607
Test 24 3-OMe 5.469
Training 25 3-Me 4.301
Training 26 3-F 4.320

Figure 2. Core and aligned compound using molecule 2 as a template.
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2.5. Partial least square (PLS) analysis
The partial least squares method [26] is an extension of multiple regression analysis employed to linearly correlate the 
independent variables (CoMFA and CoMSIA fields) to dependent variables (pIC50 values). The PLS with leave-one-out 
cross-validation was carried out using a training set of twenty molecules to obtain simultaneously the cross-validation 
correlation coefficient (Q2) and the optimum number of components (N). Subsequently, the correlation coefficient (R2), 
Fisher test (F) and standard error of estimate (SEE) were obtained by applying noncross validation and without column 
filtering. In general, (Q2 > 0.50 and R2 > 0.60) are required conditions for the internal predictability of a QSAR model 
[27,28]. The best models were also judged based on low optimal number of component and SEE values. To further evaluate 
the predictability of a model, an external validation was performed using a test set of six molecules, where the required 
condition (rext

2 > 0.6) must be satisfied [29].
2.6. Y-randomization test
The Y-Randomization test is performed to survey the strength of the generated models [30]. After every iteration, a new 
QSAR models is created by using the dependent variable (-logIC50) randomly shuffled. The low values of Q2 and R2 of the 
model indicate that the developed 3D-QSAR model with original data is powerful and is not inferred by chance.
2.7. Molecular docking
The molecular docking is a powerful approach, which was conducted by the Surflex-Dock [18] to predict the optimized 
binding conformation of a ligand and understand the receptor-ligand structural interactions. The obtained results were 
analyzed using PyMol and Discovery studio 2016 software [31,32]. The ligands and protein preparation steps for the 
docking protocol were applied to establish molecular docking and predict the binding modes. 
2.7.1. Macromolecule preparation   
The X-ray crystal structure of AChE (PDB code: 1EVE) was downloaded from the RCSB data bank.  Its cocrystallized 
ligand was removed, and the obtained protein structure was utilized for this study. The Discovery Studio 2016 was used to 
prepare the protein by addition of polar hydrogens and removing water molecules in 1EVE receptor. 
2.7.2. Ligand preparation 
The most active compound of database and the newly designed molecules were docked into the binding pocket of 1EVE 
receptor. The binding mode between the receptor and docked molecules was studied, compared, and selected for further 
analysis.
2.8. Molecular dynamics (MD) simulation
The AChE complexed with drug candidates were subjected to MD simulation to understand the dynamic behaviors and 
conformational changes of ligands. GROMACS 5.1.1 software package with gromos54a7 force field was used to run 20 
nanoseconds MD simulation on docked complexes of inhibitor and protein. Ligand parameters were generated with the 
same force field using PRODRG server [33]. The cubic simulation box was generated by gmx editconf tool. The system 
was solvated with SPC water model using gmx solvate tool. The electro-neutralization of the system was performed using 
gmx genion tool. Afterwards, energy minimization was carried out to eliminate steric clashes and optimize of structure. 
Following energy minimization, equilibration was performed in two steps. The NVT equilibration was performed for 100 
picoseconds at 300 K to stabilize the temperature of the system. This was followed by 100 picoseconds NPT equilibration 
at 1 bar pressure. The pressure coupling at 1 bar was maintained using Parrinello–Rahman barostat [34]. Using the LINear 
Constraint Solver (LINCS) algorithm, bond lengths were kept conserved [35]. Particle mesh ewald (PME) was applied to 
deal with long-distance electrostatics interactions [36]. Finally, the 20 ns MD simulation was applied for each complex 
with desired temperature and pressure on a Linux machine with Intel core i-7 processor (32 GB RAM).

3. Results and discussion 
3.1. Statistical analysis and validation
Based on the 3D-QSAR modeling, it seemed that the created models have a credible fitting for predicting new anti-
acetylcholinesterase agents as contained in the PLS analyses summary (Table 2). The experimental and predicted pIC50 
are shown in Table 3. Obviously, highly predictive abilities were assessed for both models. In the CoMFA model, the 
resulting crossvalidated coefficient Q2 is 0.604 with 4 as principal components, N. The R2, SEE and F-test values of the best 
CoMFA model were 0.863, 0.16 and 93.62, respectively, while the proportions of steric and electrostatic contributions in 
the model are, respectively, at 67.9% and 32.1%. The optimal CoMSIA model generated an Q2 of 0.606 with 4 as principal 
components, R2 of 0.854, a low SEE of 0.17 and 99.96 as F value. The proportions of steric, electrostatic, HBA, HBD, and 
hydrophobic contributions accounted for 5.3%, 21.4%, 14.7%, 33.5%, and 25%, respectively. Moreover, highly external 
prediction ability was achieved, in which the external validation coefficient rext

2 value for CoMFA was 0.701 and 0.647 
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belonged to CoMSIA.  The high Q2, R2 and rext
2 values along with low SEE value and an optimum number of components, 

suggest that both models possess high predictive abilities and significant statistical reliability of the QSAR models. 
3.2. Contour map analysis
To identify the structure requirements contributing to the binding affinity, the CoMFA/CoMSIA contour maps were 
generated, which could provide an increase in the biological activity of the molecules. The modification in certain area 
according to the useful information provided by the contour maps would rationally guide lead optimization. Compound 2 

Table 2. PLS statistics parameters.

Model Q2 R2 SEE F N rext
2

Fractions

Ster Elect Acc Don Hyd

CoMFA 0.604 0.863 0.16 93.62 4 0.701 0.679 0.321 - - -
CoMSIA 0.606 0.854 0.17 99.96 4 0.647 0.053 0.214 0.147 0.335 0.250

Table 3. Experimental and predicted pIC50 of twenty-six 1,2,3-triazole 
based derivatives.

Training/
Test N° pIC50

CoMFA CoMSIA

predicted predicted

Training 1 5.347 5.462 5.458
Training 2 5.744 5.673 5.664
Test 3 4.699 5.037 5.031
Training 4 5.431 5.507 5.522
Training 5 4.437 4.373 4.361
Training 6 5.483 5.534 5.529
Training 7 5.481 5.528 5.522
Test 8 4.731 5.209 5.200
Test 9 5.690 5.258 5.264
Training 10 4.995 4.904 4.905
Training 11 4.361 4.465 4.462
Training 12 5.007 5.069 5.084
Training 13 5.677 5.785 5.779
Training 14 5.298 5.197 5.178
Training 15 3.988 4.237 4.239
Training 16 4.531 4.334 4.331
Test 17 4.790 4.710 4.706
Training 18 4.789 5.673 4.793
Test 19 4.647 4.682 4.687
Training 20 4.432 4.409 4.408
Training 21 4.654 4.604 4.611
Training 22 4.703 4.713 4.721
Training 23 4.607 4.601 4.610
Test 24 5.469 5.448 5.459
Training 25 4.301 4.311 4.308
Training 26 4.320 4.307 4.310
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was used as a reference structure since it is the most active compound and then superposed over the CoMFA and CoMSIA 
contour maps as displayed in Figures 3 and 4, respectively.
3.2.1. CoMFA contour maps
CoMFA steric interactions are displayed in green (80% contribution) and yellow (20% contribution) colored contours. 
The bulky substituents are favored around green regions, while yellow regions’ bulky groups are unfavored. As depicted 
in Figure 3-A, two small green contour maps located at C-3 and C-6 positions of the phenyl, indicate sterically favorable 
bulky substituents at these positions, which could increase activity. A yellow contour map is covered the C-4 position of 
the phenyl ring, indicating that position is not favorable for larger substituent, which could be demonstrated by compound 
5. For example, the compound 9 (pIC50 = 5.690) with OCH3 group at the C-4 position of the phenyl ring showed lowest 
activity than those with no or less bulky substitute at the same position.

CoMFA electrostatic interactions are displayed in red (20% contribution) and blue (80% contribution) colored 
contours. The electropositive charge groups are favorable in the blue regions of electrostatic contours for enhancing the 
inhibitory activity, while the red contour may lead to an increase in inhibitory activity of the electronegative charges as 
shown in (Figure 3-B). Two red contour maps are seen near C-1, C-2, and C-6 positions of the phenyl ring, suggested 
that electronegative groups at these positions would exhibit good anti-acetylcholinesterase activity, this can explain why 
the activity of compounds 6 and 7 with an electronegative substituent in C-2 position of phenyl ring, showed a slight 
increase of inhibition affinity. On the other hand, a medium sized blue contour is observed close to the C-3 and C-4 
positions, which suggested that electropositive groups at these positions are favorable to increase the inhibitory potency 
of 1,2,3-triazole based analogs.
3.2.2. CoMSIA contour map       
The CoMSIA contour plot analysis was carried out to describe the important molecular properties of the steric, electrostatic, 
H-bonding, and hydrophobic interaction fields. Since the steric and electrostatic contour maps obtained from the CoMFA 
and CoMSIA model were consistent, only the hydrophobic and H-bonding contour maps were described and analyzed 
here.

As mapped in Figure 4-A, the yellow areas (80% contribution) are where hydrophobic groups predicted to enhance 
biological activity, whereas white domains (20% contribution) represent areas where hydrophobic groups are predicted to 
be detrimental to activity. A yellow contour can be observed around the C-6 position of the phenyl ring, which indicates 
that replacing this position with hydrophobic groups may increase the activity. In contrast, a white contour near the C3 
and C4 positions revealed hydrophobic groups at these positions would result in the loss of the bioactivity. For example, 
derivatives 17, 19, 25, and 26 (pIC50 = 4.301–4.790) bearing hydrophobic groups (i.e., F, Cl, and Me) at C-3 position 
presented distinct decrease. Moreover, two medium sized white contours are observed on the other side of the molecule 
close to benzylpiperidine which suggested that hydrophilic groups at these positions are favorable to increase the inhibitory 
potency. 

The cyan (80% contribution) and purple (20% contribution) contours (Figure 4-B) represented the desired and 
undesired positions for donating hydrogen bond, respectively. A cyan contour is seen on the bridge between the piperidine 
and benzylpiperidine indicates that hydrogen bond donors at this area could improve the potency. 

Figure 3.  Contour maps of CoMFA analysis for compound 2. A) Steric fields; B) Electrostatic fields.
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The favorable and unfavorable positions for HBA groups are shown as magenta (80% contribution) and red (20% 
contribution) contours, respectively (Figure 4-C). The magenta contour around benzylpiperidine illustrated favorable 
region where HBA groups are beneficial for the biological activity, while a very small red contour located at piperidine 
implies that the HBA groups at this position would decrease the inhibitory activity. 
3.3. Y-randomization test
Table 4 shows the results of nine random shuffles for the Y-randomization test. The Q2 and R2 obtained by the nine iteration 
were ranging from –0.014 to 0.227 and 0.116 to 0.402, respectively, for CoMFA, while for CoMSIA, the Q2 and R2 were in 
the range (from –0.099 to 0.235) and (0.137–0.329), respectively. This indicates that the developed models are robust and 
are not inferred by chance correlations.
3.4. SAR summarized results
Figure 5 summarized the information provided by CoMFA and CoMSIA studies, which could supply some meaningful 
clues to design new molecules with high predictive activity. Various modifications were tried on certain areas by use of 
outcome of the SAR results.
3.5. Newly designed compounds 
According to the main structure–activity relationship revealed by the present study, six (A1-A6) new 1,2,3-triazole 
based derivatives were in silico designed by modifying chemical structure of compound 2. Figure 6 shows the structural 
template of the newly designed molecules. The predicted activity values of the newly designed compounds were in the 
range (6.026–6.569) and (6.062–6.597) for CoMFA and CoMSIA models, respectively. All the designed molecules showed 
greater predicted activities not only than that of compound 2, but also than its experimental activity (pIC50 = 5.744) as 
shown in Table 5. 

Figure 4. Contour maps of CoMSIA analysis for compound 2. A) Hydrophobic fields; B) H-bond donor fields; C) H-bond acceptor fields
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Table 4. Q2 and R2 values of the Y-randomization test.

Iteration
CoMFA CoMSIA

Q2 R2 Q2 R2

1 0.182 0.288 0.148 0.294
2 0.025 0.187 0.021 0.192
3 0.109 0.322 0.159 0.329
4 0.121 0.244 0.103 0.288
5 –0.014 0.158 –0.099 0.166
6 0.098 0.116 0.102 0.137
7 0.227 0.402 0.199 0.296
8 0.201 0.275 0.235 0.301
9 0.091 0.128 0.102 0.141

Figure 5. SAR summarized results from the 3D-QSAR study

Figure 6. The structural template of the newly designed molecules.
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3.6. Docking results
The most active compound and designed compounds were molecularly docked with the X-ray crystallized complex 
of AChE (PDB:1EVE) using Surflex-dock to gain deeper insight into the binding modes and explore the interactions 
between the protein and these inhibitors. Compound 2 and the proposed compound A1 were further subjected to detailed 
molecular analysis and compared. They were all well-superimposed in the ligand-binding pocket of the protein. The 
proposed compound A1 was scored as high as 6.7088. It was found higher than that of compound 2 (total score = 5.8942). 
As shown in the two-dimensional diagram of the molecular docking (Figure 7), the 1,2,3-triazole linker and the C-O of 
amide bond made both a hydrogen bond with TYR120. Moreover, the NH on the bridge between 1,2,3-triazole linker and 
the phenyl substituted by two methyl was in Pi-donor hydrogen bond contact with SER122. On the other side of the ligand, 
benzyl moiety made a Pi Lone Pair interaction with SER286.

The results of docking showed favorable and convenient interactions for the proposed compound A1 (Figure 8) by 
presenting a conventional hydrogen bond. The NH of amide bond made a hydrogen bond with TYR70; the NH substituent 
in C4 position of the benzyl ring connected to 1,2,3-triazole formed a hydrogen bond interaction with GLU199. Moreover, 
the coumarin fragment with planar structure bound to the aromatic amino acid PHE331 by a π-π stacking interaction.

Furthermore, the docking results had been compared with the QSAR results to confirm mutually the correlation. The 
binding interactions match well with the results of electrostatic and hydrophobic contour maps. These findings support 
the selected pose of the proposed compound A1, which would form a stronger inhibitory effect on the receptor protein. 
3.7. Molecular dynamics simulation
We utilized the X-ray crystal structure of AChE protein (PDB ID: 1EVE) to dock the 1EVE compounds. These virtual 
structures were subjected to 20 ns MD simulations to study the comparative conformation dynamics of the protein after 
ligand binding. Energy, temperature, pressure, and density of the compound bound protein were stable during the 20 ns 
simulation. Table 6 shows the average values of various MD related properties.

Root mean-square deviation (RMSD) analysis computes the average distance between the atoms of 1EVE protein 
during simulation. The analysis provides insights into protein conformation, stability, and equilibrium of the system 
during simulation [37]. The average backbone RMSD for protein-active molecule complex and protein designed molecule 
complex were found to be 0.2565 ± 0.0341 nm and 0.2540 ± 0.0280 nm respectively (Figure 9A). Furthermore, RMSD of 
the protein for protein-active molecule complex and protein designed molecule complex was found to be 0.3129 ± 0.0336 
nm and 0.3090 ± 0.0308 nm, respectively (Figure 9B).  RMSD analysis of both complexes indicates that protein designed 
molecule complex was slightly more stable during the 20 ns MD simulation.

Next, we analyzed the effect of active molecule and designed molecule binding on internal dynamics of target protein by 
calculating the root mean square fluctuation (RMSF) (Figure 9C). Average RMSF value for protein-active molecule complex 
and protein designed molecule complex was found to be 0.1531 ± 0.0731 nm and 0.1431 ± 0.0694 nm, respectively. RMSF 
analysis indicated that binding of designed molecule to the target protein resulted in less fluctuation in comparison to the 
binding of active molecule. Radius of gyration (Rg) is a parameter to assess the folding of regular secondary structures 
into 3-dimensional protein structure. Rg indicates change in protein structure compactness and its overall dimension. The 

Table 5. Predicted pIC50 values of the newly designed molecules.

N° R1 R2 R3 R4
Predicted pIC50

Total score
CoMFA CoMSIA

The most active compound
Comp.2 H CH3 CH3 H 5.673 5.664 5.8942
The newly designed compounds
A1 NO2 H NH2 H 6.569 6.597 6.7088
A2 NO2 OH NH2 H 6.470 6.495 6.6201
A3 NO2 H OH H 6.442 6.468 6.6194
A4 NO2 H NH2 OH 6.407 6.467 6.6188
A5 NO2 H H OH 6.204 6.239 6.4112
A6 NO2 H H H 6.026 6.062 6.3082
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effect of active molecule and designed molecule binding on Rg value of the protein was computed (Figure 9D). Average Rg 
values for protein-active molecule complex and protein designed molecule complex were 2.3604 ± 0.0081 nm and 2.3600 ± 
0.0072 nm, respectively. Rg analysis shows that there is no significant difference in compactness of folding of target protein 
after binding of both active molecule and designed molecule.

Figure 7. Docking interactions of the active compound 2 with the receptor

Figure 8. Docking interactions of the designed compound A1 with the receptor

Table 6. Average values of various MD related properties.

S. No. Property Protein-active molecule complex Protein designed molecule complex

1 RMSD (Backbone) 0.2565 ± 0.0341 nm 0.2540 ± 0.0280 nm
2 RMSD (Protein) 0.3129 ± 0.0336 nm 0.3090 ± 0.0308 nm
3 RMSF 0.1531 ± 0.0731 nm 0.1431 ± 0.0694 nm
4 Radius of gyration 2.3604 ± 0.0081 nm 2.3600 ± 0.0072 nm
5 SASA 235.5676 ± 4.5732 nm2 241.7229 ± 3.5879 nm2

6 Hydrogen bonds (Protein-protein) 399.9980 ± 10.4525 397.3213 ± 9.7869
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Solvent accessible surface area (SASA) determines the bimolecular surface area assessable to surrounding solvent 
molecules. The change in SASA for protein-active molecule complex and protein designed molecule complex were analyzed 
(Figure 10A). Average values of SASA for protein-active molecule complex and protein designed molecule complex were 
reported as 235.5676 ± 4.5732 nm2 and 241.7229 ± 3.5879 nm2, respectively. Protein designed molecule complex has 
significantly high SASA in comparison to protein-active molecule complex.

Hydrogen bond formation plays an important role in the stabilization of protein and protein–ligand complex structures 
by minimizing the energy of the system. Intra-protein (Figure 10B) and protein-ligand hydrogen bonding pattern 
were studied in both complexes (Figure 10C, 10D). Average value of intra-protein hydrogen bonds in protein-active 
molecule complex and protein designed molecule complex were 399.9980 ± 10.4525 and 397.3213 ± 9.7869, respectively. 
Furthermore, hydrogen bond formation between target protein-active molecule (Figure 10C) and target protein-designed 
molecule (Figure 10D) were also studied. Designed molecule forms significantly high number of hydrogen bonds with 
target protein in comparison to the active molecule, which indicates the strong binding activity of designed molecule. 
Further, we conducted secondary analysis for the both complexes to find out the changes in the secondary structures 
induced by the binding of both active molecule and designed molecule (Figure 11A, 11B). There were no significant 
changes in secondary structure observed upon binding of both molecules.

4. Conclusion 
The outcome of this study gave insights into the design of novel AChE inhibitors for the treatment of Alzheimer. In this 
paper, a series of 1,2,3-triazole based derivatives previously identified as acetylcholinesterase inhibitors was studied using 
in silico techniques, such as 3D-QSAR. The overall contour plots analyses revealed that electrostatic and hydrophobic 

Figure 9. Molecular dynamics (MD) simulation trajectory analysis. A. Backbone root mean square deviation (RMSD) of protein-active 
molecule complex (Black) and protein-designed molecule complex (Red). B. RMSD of the whole protein of protein-active molecule 
complex (Black) and protein-designed molecule complex (Red). C. Root mean square fluctuation (RMSF) of protein-active molecule 
complex (Black) and protein-designed molecule complex (Red). D. Radius of gyration (Rg) of protein-active molecule complex (Black) 
and protein-designed molecule complex (Red).
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Figure 11. Secondary structure analysis. A.  Secondary structure analysis of 
protein-active molecule complex.  B. Secondary structure analysis of protein-
designed molecule complex.

Figure 10. Solvent accessible surface area (SASA) and hydrogen bond formation. A.  SASA of  protein-active molecule complex 
(Black) and protein-designed molecule complex (Red). B. Intra-protein hydrogen bond formation in protein-active molecule complex 
(Black) and protein-designed molecule complex (Red). C. Hydrogen bond formation between protein and ligand in protein-active 
molecule complex. D. Hydrogen bond formation between protein and ligand in protein-designed molecule complex.
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substitutions were found to be critical for increasing the AChE inhibitory activity. Overall, these findings were very useful 
for designing six novel AChE inhibitors, among which compound A1 with the highest predictive activity was selected for 
detailed analyses and compared to the most active compound. Furthermore, validation of 3D-QSAR study was performed 
by docking-assisted MD simulation study. The comparison illustrated that designed molecule combined with AChE 
was more stable than the most active compound with the same targeted protein. The designed molecule had a stronger 
electrostatic and hydrophobic interactions with receptor. The identified structure features for AChE inhibition through 
docking and MD simulation studies showed a satisfactory correlation with the 3D-QSAR study.
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