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Abstract

Background: Alfalfa (Medicago sativa) is the most extensively cultivated forage legume in the world, and salinity
stress is the most problematic environmental factors limiting alfalfa production. To evaluate alfalfa tissue variations
in response to salt stress, comparative physiological and proteomic analyses were made of salt responses in the
roots and shoots of the alfalfa.

Method: A two-dimensional gel electrophoresis (2-DE)-based proteomic technique was employed to identify the
differentially abundant proteins (DAPs) from salt-treated alfalfa roots and shoots of the salt tolerance cultivars
Zhongmu No 1 cultivar, which was subjected to a range of salt stress concentrations for 9 days. In parallel, REL,
MAD and H,0, contents, and the activities of antioxidant enzymes of shoots and roots were determinand.

Result: Twenty-seven spots in the shoots and 36 spots in the roots that exhibited showed significant abundance
variations were identified by MALDI-TOF-TOF MS. These DAPs are mainly involved in the biological processes of
photosynthesis, stress and defense, carbohydrate and energy metabolism, second metabolism, protein metabolism,
transcriptional regulation, cell wall and cytoskeleton metabolism, ion transpor, signal transduction. In parallel,
physiological data were correlated well with our proteomic results. It is worth emphasizing that some novel
salt-responsive proteins were identified, such as CP12, pathogenesis-related protein 2, harvest-induced protein,

isoliquiritigenin 2-O-methyltransferase. gRT-PCR was used to study the gene expression levels of the four
above-mentioned proteins; four patterns are consistent with those of induced protein.

Conclusion: The primary mechanisms underlying the ability of alfalfa seedlings to tolerate salt stress were
photosynthesis, detoxifying and antioxidant, secondary metabolism, and ion transport. And it also suggests
that the different tissues responded to salt-stress in different ways.

Keywords: NaCl stress, Medicago sativa root and shoot, Two-dimensional electrophoresis, Differentially

abundant proteins

Background

Soil salinity is a world-wide problem, but is most acute in
North and Central Asia, South America, Australasia, and
the Mediterranean area. The soil solution in saline soils is
composed of a range of dissolved salts, such as NaCl,
Na,SO,4, MgSO,4, CaSO,4, MgCl,, KCl, and Na,COs, each
of which contribute to salinity stress. However, NaCl is
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the most prevalent salt and has been the focus of much of
the work on salinity to date [1, 2]. High NaCl concentra-
tions affect plant physiology and metabolism at different
levels. High concentrations can cause water deficits, ion
toxicity, nutrient imbalance, and oxidative stress, leading
to molecular damage, growth and yield reductions, and
even plant death.

Alfalfa (Medicago sativa L.) is a perennial warm-season
forage legume with a high yield and good nutrient con-
tents (crude protein content can reach approximately 16%
to 22%), and can be grown on more than 30 Mha world-
wide. However, its yield is low in arid and semi-arid
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regions where salinity is the main problem. Alfalfa is mod-
erately tolerant to salinity when the electrical conductivity
(EC) is 2.0 dS/m (1280 ppm) and the soil osmotic poten-
tial threshold is 1.5 bars (1 bar = 0.987 atm) at field
capacity. An additional 7% decrease in alfalfa yields can be
expected with each dS/m increase in saturation extract
salinity [3]. Excessive salinity in the crop root zone creates
osmotic stress, which reduces root uptake of water and
crop transpiration, leading to reduced forage yields [4].

Understanding the alfalfa tolerance mechanisms to
high concentrations of NaCl in soils may ultimately
help to improve vyields on saline lands. Previous
studies indicated that alfalfa salt tolerance is generally
associated with modifications of morphological and
physiological traits, such as changes in plant architec-
ture and growth (shoots and roots), variations in leaf
cuticle thickness, stomatal regulation, germination,
and photosynthesis rate. These changes are linked to
diverse cellular modifications, including, changes in
membrane and protein stability, increased antioxidant
capacity and activation of hormonal signaling
pathways, notably those depending on the “stress
hormone” abscissic acid [5]. The regulation of these
changes at the cellular level are the main responses
that cause alterations in gene expression and several
attempts have been made to obtain a profile for gene
expression in alfalfa under saline conditions [6, 7].
However, transcript profiles do not always provide a
complete story due to limited correlations between
the transcript and protein levels, and proteomics has
become a critical complement to mRNA data and an
improved biological view of plant biology. Currently,
several studies have attempted to analyze alterations
in protein expression in response to salt, and proteo-
mics studies that focused on 34 plant species have
identified 2171 salt-responsive protein identities,
representing 561 unique proteins [8]. To date, few
studies have investigated the effects of salt stress on
alfalfa.

Salt stress induces many different proteomic
changes in various plant tissues due to their distinct
functions and growth environments. A comparative
analysis of different plant tissue responses to salinity
stress at the same time would improve understanding
of different tissues protein compositions and their dif-
ferential responses to salinity stress. Furthermore, it
would provide further insights into the proteomic
mechanisms controlling salt tolerance. A few previous
studies examined protein change responses in differ-
ent tissues to salinity stress, such as the report on
soybean (Glycine max L.) leaves, hypocotyls, and
roots [9, 10], creeping bentgrass (Agrostis. stolonifera
L.) leaves and roots [11], and rice (Oryza sativa L.)
leaves and roots [12]. They all suggested that protein
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responses to salt-stress in different tissues varied and
some protein showed tissue specific abundance.

Alfalfa cultivar “Zhongmu Nol”, one salt tolerance
cultivar commonly used in China agriculture, was
released by the Chinese Academy of Agricultural Science
in 2001. This germplasm represents the four cycle of
recurrent mass selection for alfalfa genotypes that ger-
minate at high levels of NaCl. In this study, we analyzed
the “Zhongmu Nol” cultivar shoot and root responses
to different NaCl concentrations using physiological and
biochemical methods, and comparative proteomics.
Based on our findings, we produced a possible schematic
representation of the mechanism associated with salt tol-
erance in alfalfa.

Methods

Plant materials and stress treatments

Alfalfa seeds (Medicago sativa L.cv. Zhongmu No 1) were
germinated in the dark for 48 h at 28 °C, then transplanted
into 1/2 Hoagland’s nutrient solution and grown on for
7 days. Subsequently, the seedlings were subjected to O
(control), 100, and 200 mM NaCl 1/2 Hoagland’s nutrient
solution for 9 d. The salt concentration was maintained by
a daily input of 50 mM NaCl. The experiments were
conducted in a glasshouse chamber that had an average
temperature of 27 °C/18 °C day/night, and a light irradiance

of 150 yumol m~2 s,

H,0,, MDA, and relative electrolyte leakage analyses

For the H,O, content analysis, 1 g each of root and
shoot tissues were ground in liquid N, and then homog-
enized in 5 ml cold acetone. The supernatants were used
for H,O, content assays after centrifugation at 3000 g
and 4 °C for 10 min. The H,O, content was assayed by
analyzing the production of titanium-hydroperoxide
complex at 410 nm [13]. MDA was measured using a
modified thiobarbituric acid (TBA) method as described
previously [14]. Relative electrolyte leakage was deter-
mined by modifying a method described previously [15].
A total of 500 mg of tissues were rinsed with ddH,O,
placed in test tubes containing 10 ml of ddH,O, and
incubated at room temperature for 2 h. The electrical
conductivity of the solution (C;) was measured using a
conductivity meter (DDS-307A; China). Then the tubes
were boiled for 15 min, cooled to room temperature,
and the electrical conductivity (C,) measured again. The
REL was calculated by the formula: C; / C, x 100%.

SOD, APX, POD, and CAT activity analyses

The enzyme extraction and enzyme activity assays were
determined by methods modified from those previously
described [16]. Root and shoot samples (200 mg each)
were ground into fine powder with liquid nitrogen in a
pre-chilled mortar and pestle. Further grinding was
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performed in a solution of 50 mM potassium phosphate
buffer pH 7.0 containing 1 mM EDTA and 2% (w/v)
polyvinylpolypyrrolidone (PVPP) for the APX and CAT
assays, and in a solution of 50 mM potassium phosphate
buffer at pH 7.0 containing 0.5 mM EDTA for the SOD
and POD assays. The homogenates were centrifuged at
14000 g for 15 min at 4 °C. The resulting supernatants
were centrifuged again and used immediately for enzyme
activity assays or stored at —30 °C to be used later. Total
SOD (EC 1.15.1.1) activity was determined by monitor-
ing its ability to inhibit the photochemical reduction of
nitro blue tetrazolium (NBT). APX activity (EC
1.11.1.11) was determined by following the decrease in
ascorbate and measuring the change in absorbance at
290 nm over 2 min intervals.The POD (EC 1.11.1.7) and
CAT (EC 1.11.1.6) activity were determined by following
the decrease in H,O,, and measuring the change in ab-
sorbance at 240 nm over 2 min intervals.

Protein extraction and 2-DE

The total proteins were extracted by a modified TRIzol
reagent method, which was recently developed to obtain
high-quality proteins from Medicago truncatula tissues
for 2-DE [17]. The whole roots and shoots were cut off
the seedlings, frozen in liquid nitrogen and ground to a
fine powder for protein extraction. Finally, the pellets
were dried in a freeze-vacuum dryer for 10 min, resus-
pended in 1.5 mL lysis buffer (8 M urea, 4% v/v CHAPS,
2% w/v DTT), sonicated (10 min) at 4 °C and incubated
at room temperature for 2 h. The supernatant was col-
lected after centrifugation (40 min, 40,000 g, 4 °C). The
protein concentration of the supernatant was deter-
mined using a 2-D Quant kit, following the manufac-
turer’s protocol.

Samples containing 120 pg total protein in 450 pL re-
hydration buffer (8 M urea, 2% w/v CHAPS, 1% w/v
DTT, 0.5% v/v IPG buffer pH 4-7, 0.002% w/v bromo-
phenolblue) were loaded onto a 24 c¢cm, pH 4 to 7 linear
gradient IPGstrip (GE Healthcare, USA). IEF was carried
out using an Ettan IPGphorll (GE Healthcare, Uppsala,
Sweden). Focusing was performed at 20 °C as follows:
active rehydration at 30 V for 12 h, 150 V for 1 h, 500 V
for 1 h, 1000 V for 1 h, 8000 V for 2 h, and 8000 V up
to 40,000 VH. After IEF, the proteins were equilibrated
as described. First the IPG strips were incubated in
10 mL of equilibration buffer (6 M urea, 30% w/v gly-
cerol, 2% w/v SDS, 50 mM Tris-HCI, pH 8.8) with 1%
w/v DTT for 15 min, and then in the same solution con-
taining 2.5% w/v iodoacetamide instead of DTT for
15 min. Following this, the strips were transferred to
12% SDS-PAGE gels for second dimension electrophor-
esis with the Ettan DALTsix gel system (GE Healthcare,
Uppsala, Sweden), using SDS electrophoresis buffer
(250 mM Tris-base, 1.92 M glycine, 1% w/v SDS) with a
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0.2 W/strip for 1 h, and a 15 W/strip until the dye front
reached the bottom of the gel. All 2-DE separations were
repeated three times for each tissue extract.

Protein visualization, image analysis

Upon electrophoresis, Gels gels were stained with
silver nitrate according to GE handbook (GE Healthcare,
Uppsala, Sweden) with some modifications. Briefly, gels
were fixed in 40% ethanol and 10% acetic acid for 60 min,
and then sensitized with 30% ethanol, 0.2% sodium thio-
sulfate w/v, and 6.8% sodium acetate w/v for 30 min. Then
gels were rinsed with distilled water three times, 5 min for
each time, then incubated in silver nitrate (2.5 g/L) for
20 min. Incubated gels were rinsed with distilled water
two times, and developed in a solution of sodium carbon-
ate (25 g/L) with formaldehyde (37%, w/v) added
(240 mL/L) for two times, first for 1 min, then stained for
4 min. Development was stopped with 1.46%w/v Ethylene
Diamine Tetraacetic Acid for 10 min, then gels were
rinsed with distilled water three times, 5 min for each
time. Gels were stored in distilled water until they could
be processed.Gels images were acquired using a
PowerLook 2100XL color scanner (UMAX Technologies,
CA, USA) and analyzed with Image master 2D Platinum
Software Version 6.0 (GE Healthcare, Uppsala, Sweden).

Protein identification by MALDI-TOF-MS/MS

Proteins were identified by MALDI-TOF-MS/MS.
Selected spots were excised from the gels and
destained with a solution containing 20% w/v sodium
thiosulphate and 1% w/v potassium ferricyanide for
5 min. The supernatant was removed and the gel
spots were washed twice with 25 mM ammonium bi-
carbonate in 50% v/v acetonitrile for 20 min. The gel
spots were then washed in acetonitrile, dried in a
Speed-Vac and digested overnight with 20 pg/mL
trypsin in 25 mM ammonium bicarbonate at 37 °C.
Tryptic peptides were passed through C18 Zip-Tips
and mixed with 5 mg/mL of R-cyano-4-hydroxycin-
namic acid, as the matrix, and subject to MALDI-
TOF/TOF analysis (4700 Proteomics Analyzer,
Applied Biosystems). Data files obtained from
MALDI-TOF/TOF mass spectra were submitted to
the Mascot search engine using Daemon 2.1.0 (Matrix
Science; http://www.matrixscience.com) on Mascot
server version 2.2.1. The data were searched against
the NCBInr database and the peptides were con-
strained to being tryptic with a maximum of one
missed cleavage. Carbamidomethylation of cysteine
was considered a fixed modification, and oxidation of
methionine residues was considered as a variable
modification. The identification was based on the
combination of a high Mascot score and maximum
peptide coverage.
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gRT-PCR analysis

Total RNA was extracted from salt-treated and con-
trol alfalfa roots and shoot by Trizol reagent
(TaKaRa), and c¢cDNA was reverse transcribed from
1 pg of to total RNA using a First Strand cDNA Syn-
thesis Kit (Invitrogen). Gene-specific primers (GSPs)
used for qRT-PCR were designed using primer 5 ac-
cording to cDNA sequences obtained from the alfalfa
(Table 1). The alfalfa Actin gene was used as an en-
dogenous control for normalization. The PCR reac-
tion was carried out in a 20 uL volume containing
10 pL 2 x SYBR Green Master Mix reagent (TaKaRa),
1 pL template cDNA and 0.5 pL of each GSPs with
the following reaction conditions: 95 °C for 30 s;
followed by 40 cycles of 95 °C for 10 s; 55 °C for
10 s and 72 °C for 15 s. Relative gene expression was
calculated using the ddCt alogorithm [18].

Immunoblot analysis

Protein samples (50 mg/lane) were separated using 12%
one dimensional SDS-PAGE gel electrophoresis, trans-
ferred onto nitrocellulose membranes, and incubated at
room temperature for 2 h with rabbit polyclonal anti-
bodies raised against Rubisco activase, Heat shock

Table 1 The primers for gRT-PCR

Protein

Genes Primers

gi[378407816

Sequence
GATACTCTTTCACCACAACAGCCG

Forward
primer
(5"-3)

Actin

Reverse  ACTTCAGGACAACGGAAACGCT
primer

(5"-3)

CcP12 i|3,123,345 Forward TGGCAACAATAGGTGGTCT
primer

(5-3)

Reverse
primer
(5-3")

CTCGTCGGTTTCAGGGT

Forward  GCTGATGAAATCGTCCCA
primer

(5-3)

Reverse
primer
(5"-3)

Forward
primer
(5-3")

HI protein  gi|283,831,548

ACCCTGTTCCTCCCACTAAGCTGTA

PR gil44,887,779 CTAAATTACCAGCATCAACGC

protein 2

Reverse  CCTCTACTTTCATCAGGGACAA
primer

(5"-3)

IOMT gi|22,266,001  Forward GCTGATGAAATCGTCCCA
primer

(5-3)

Reverse
primer
(5-3")

AACCCTGTTCCTCCTACCA
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protein 70 each (Agrisera, Sweden) at 1:5000 dilution.
After washing three times with TBST buffer (0.01 M
TBS, 0.1% Tween-20, pH 7.6), the membranes were ex-
posed for 2 h at room temperature to horseradish
peroxidase-conjugated goat anti-rabbit IgG at 1:300 dilu-
tion. DPositive signals were visualized with 3, 3'-
diaminobenzidine.

Statistical analysis

Data from repeated measurements are shown as mean.
Comparison of differences among the groups was car-
ried out using Student’s test. Significant differences were
determined relative to the P value [P-values <0.05 (*)
and <0.01 (*¥)].

Results

Changes in REL and MAD contents

REL and MAD are indicators of membrane damage
caused by NaCl stress. Stress-induced REL and MAD
changes in the roots and shoots are shown in Fig. 1a, b.
These data demonstrated a significant increase in the
REL and MAD (P-values <0.05 and P-values <0.01)
when alfalfa seedlings were treated with 100 mM and
200 mM NaCl. The roots had higher REL and MAD
contents than the shoots.

Changes in H,0, and antioxidant enzyme activities

As shown in Fig. 1lc, a significant increase in the
H,O, when alfalfa seedlings were treated with
100 mM and 200 mM NaCl (P-values <0.05 and
P-values <0.01). The shoots had higher H,O, contents
than the roots. Under normal conditions, the SOD
activity was higher in the shoots than in the roots,
and it was significant increase (P-values <0.01) in
roots and shoots when alfalfa seedlings were treated
with 100 mM and 200 mM NacCl (Fig. 1d). The SOD
in the roots was 3.78 and 5.29 times higher in 100
and 200 mM NaCl, respectively, than in the control,
and was 1.59 and 2.35 times higher than in the
shoots. Similarly, the APX activity was significant in-
crease (P-values <0.01) in the shoots and roots as the
NaCl concentration increased. Furthermore, the rate
of increase in APX activity in the shoots was slower
than in the roots (Fig. 1f). Salinity effects on POD ac-
tivity are shown in Fig. le. Under normal conditions,
the POD activity in the roots was 5.48 times higher
than in the shoots. Salt stress slightly increased the
POD activity in the roots and shoots, but it was not
significant (P-values >0.05). The salt stress treatments
up-regulated CAT activity by 2.15 and 2.91 times
respectively, in shoot. However, the CAT activity in
the roots slightly decreased under salt stress, it was
not significant (P-values >0.05) (Fig. 1g).
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Identification and functional classification of DAPs

More than 850 proteins were detected in each gel by
ImageMaster software (Figs. 2 and 3). Comparison of
control and salt-treated plants reference gels allowed
the identification of differentially spots. Differentially
spots were selected based on the following criteria: (i)
relative vol% of the spot with fold change in a com-
parison >1.5 or <0.67; (ii) unadjusted significance
level p < 0.05. Then the spots were analyzed by
MALDI-TOF-TOF MS, and a total 61 DAPs were
identified: 26 spots in the shoots and 35 spots in the
roots (Table 2). Differentially expressed proteins were
classified based on KEGG (http://www.kegg.jp/kegg/
pathway.html) and previous literature (Fig. 4). In the
shoots, the largest two groups were photosynthesis
(31%), and stress and defense (20%) groups. In the
roots, the largest three groups were stress and
defense (26%), metabolism (17%), and protein transla-
tion, processing, and degradation (17%). It is

noteworthy that proteins involved in signaling and
ion transport were only found in the roots.

Correlation of 2-DE data with gRT-PCR

Four mRNAs encoding novel salt-responsive proteins
were selected for analysis. We compared the mRNA
levels with the 2-DE data, and determined that all of the
qRT-PCR results were in good agreement with the2-DE
data (Fig. 5).

Immunoblot analysis for RuBisCO activase and heat shock
protein 70

In the current study, the accuracy of 2-DE analysis was
further validated by immunoblot analysis. Proteins of
alfalfa roots and shoots were separated by one-
dimensional SDS-PAGE, and immunoblot analysis was
performed for Heat shock protein 70 and RuBisCO acti-
vase (Fig. 6).
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Fig. 2 2-DE analysis of proteins extracted from alfalfa shoot under different salinity. Arrows indicate protein changes induced by NaCl treatment

In agreement with the changes in protein abundance
observed by 2-DE, Heat shock protein 70 showed an in-
creased amount in response to 100 mM and 200 mM
NaCl treatment. RuBisCO activase immunoblot analysis
revealed an increase amount in response to 100 mM
NaCl treatment, while the 200 mM value is not signifi-
cantly different from control. This result is different in
2-DE analysis.

Discussion

Salt stress decreased the growth of both shoots and
roots, and this is a well-known physiological change
in alfalfa. However, the mechanisms that regulate salt
adaptation in alfalfa are complicated and are not well
understood. In this study, through a combination of
biochemical and proteomic approaches, we were able
to undertake a comprehensive analysis of salt stress
responses and defense in alfalfa shoots and roots for
the first time.

Proteins involved in photosynthesis

Photosynthesis is one of the most important processes
to be affected by salinity. The effects of salt stresses
on photosynthesis are either direct, such as diffusion
limitations through the stomata and the mesophyll,
and alterations in photosynthetic metabolism, or

secondary, such as the oxidative stress arising from
the superimposition of multiple stresses [19]. There-
fore, it was not surprising to observe that the abun-
dance of eight proteins involved in photosynthesis
were altered under NaCl treatment. Among these
proteins, three thylakoid membrane proteins: cyto-
chrome b6-f complex iron-sulfur (Cyt b6/f, spot 12),
chlorophyll a/b binding protein (CAB, spot 16), and
chloroplast oxygen-evolving enhancer protein 1
(OEEL, spot 26) were down-regulated by salt-stress.
These proteins are involved in the light reactions, in-
cluding electron transfer, light-harvesting, and light-
induced oxidation of water. As previously pointed
out, salt stress can limit CO, fixation, and the redu-
cing power production rate is greater than the rate of
its use by the Calvin cycle. The excess reducing
power will induce the production of reactive oxygen
species, thus the protection mechanisms against
excess reducing power are an important strategy for
combating salt stress [19]. In our study, the down-
regulated proteins involved in the light reactions will
help alfalfa to reduce reducing power production.
However, in some salt-tolerant plants, such as
Thellungiella  halophila, Agrostis stolonifera, and
Kandelia candel, salt stress induced the up-regulation
of light reaction proteins [20-22].
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Three spots (spots 2, 3, and 4) were identified as
RuBisCO subunits. RuBisCO, created either through the
carboxylation or oxygenation of ribulose-1,5-bispho-
sphate with carbon dioxide or oxygen, respectively, is
composed of eight large subunits and eight small sub-
units. RuBisCOs are the most common enzymes in
plants and salt stress induced altered abundance of
RuBisCO subunits have been found in almost all green
plant leaves. Previous studies showed that oxidative
stress may lead to small-subunit degradation, which
subsequently leads to translational arrest of the large
subunit. Alternatively, oxidative stress could initially ar-
rest large subunit translation, resulting in a rapid deg-
radation of the unassembled small subunits [23]. It is
noteworthy that a RuBisCO activase protein (spot 8) was
up-regulated as the salt concentration rose. The princi-
pal role of RuBisCO activase is to release inhibitory
sugar phosphates, such as ribulose-1,5-biphosphate,
from the active RuBisCO sites so that CO, can activate
the enzyme controlling carbamylation. Therefore it ul-
timately determines the proportion of available RuBisCO
active sites that are catalytically competent [24, 25].
Salt-stress directed reduction in stomatal conductance
and subsequent low CO, levels, together with the up-
regulation of activase activity, may be required in order
to induce salt stress tolerance. Previous studies have

shown that salt stress induced the up-regulation of
RuBisCO activase in rice leaf lamina, barley, and wild
halophytic rice [26-28].

A CP12 (spot 6) protein was down- regulated after the
200 mM NacCl treatment in the shoots. CP12 is a small
nuclear encoded chloroplast protein, which, in chloro-
plasts, is oligomerized with phosphoribulokinase (PRK)
and NADP*-GAPDH in the presence of NAD(H) to
generate a PRK/CP12/GAPDH complex. However, the
complex dissociates in the presence of NADP(H). In
Synechococcus, the oligomerization of CP12 with PRK
and GAPDH regulates the activities of both enzymes
and thus the carbon flow from the Calvin cycle to the
oxidative pentose phosphate cycle [29]. In this manner,
the down-regulated of CP12 seem to induce by the de-
pression of photosynthesis.

Stress responsive proteins form the largest protein group
Salt stress causes the production of excessive reactive
oxygen species (ROS), which oxidize cellular compo-
nents and irreversibly damage plant cells. In the present
study, a total of 8 identified proteins were found to obvi-
ously relate to anti-oxidative reactions in alfalfa seedling
roots and shoots in response to salt stress. All these pro-
teins were up-regulated under 100 mM and /or 200 mM
NaCl stress in alfalfa shoots and/or roots. The 8 proteins
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included 4 ascorbate peroxidases (spots 23, R16, R21,
R23), 2 glutathione peroxidase (spots 25, R4), 1 ferritin
protein (spot R18), and 1 quinone reductase family pro-
tein (spot 19). These proteins are major ROS-scavenging
proteins, providing plant cells with highly efficient
machinery for detoxifying H,O, and the other ROS.
However, all of these identified proteins had more distri-
bution in root than in shoots. Our proteomics results

might indicate that alfalfa seedling would increase ROS-
scavenging proteins in response to salt stress and root
may have stronger ROS-scavenging capability than
shoot. REL and MAD are important indicators of mem-
brane damage caused by ROS stress. In this study, the
H,0,, REL and MAD contents were similar for all the
NaCl concentrations, and all three were higher in the
shoots than in the roots. A possible reason is that roots
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activase and HSP70 (spots 8 and R1) were compared with the 2-DE data. Significant differences were determined relative to each

Heat shock protein 70

may have a better antioxidative defense system than the
shoots. To validate the hypothesis, four enzymes
involved in ROS scavenging were selected for activity
analysis. It is important to note that the roots had higher
SOD, APX and POD activities, and the shoots had
higher CAT activities. CAT is known to have a lower
affinity to HyO, than POD (mM and pM range, respect-
ively), and lower CAT activities were correlated to salt
tolerance simply because large increases in CAT activity
was not essential as long as POD and APX imposed
tight controls on the H,O, concentration [30]. This
suggests that different mechanisms control the response
to ROS.

In addition to the redox related proteins, plants have de-
veloped cross-tolerance mechanisms to be able to cope
with different stresses. Some biotic stress-related proteins
were induced under salt stress conditions, such as
Pathogenesis-related protein 5(PR5, spot R9), Pathogenesis-
related protein 2(PR2, spots 20, R27). PR2 is encoded by -
1,3-glucanase gene, and plant -1, 3-glucanases are induced
not only by pathogen infection, but also by other factors.
Stress factors like wounding, drought, exposure to heavy
metals, air pollutant ozone, and ultraviolet radiation can
stimulate synthesis of $-1,3-glucanases in some plants [31].
However, there was few reported about it induced by salt
stress. Previously, PR5 was gradually increased in abun-
dance with increasing concentrations of NaCl in Arabidop-
sis, but the change was the opposite in Thellungiella [21].
PR proteins have been found to be induced in several plant

species when they are infected by viruses, viroids, fungi or
bacteria. In our study, the PR protein was induced by salt
stress, which suggested that it had a special role in plant
adaptation to salt stress, but whether it can be used as a
potential salt stress marker in alfalfa needs further research.
Moreover, some abiotic stress-related proteins, such as
alcohol dehydrogenase (ADH, spots R10, R26) and harvest-
induced protein (HI, spot 13) also respond to salt stress.
ADH enzymes were traditionally of interest because of their
activity during oxygen deprivation [32]. However, more re-
cently, ADH gene expression and ADH activity have been
shown to be affected by a number of other stresses [33, 34].
ADH1 has been found to be up-regulated in Porteresia
coarctata under high salinity and this study also suggested
that ADH1 was up-regulated when alfalfa was subjected to
salt stress. HI proteins are involved in defense responses
and the response to biotic stimulus, but their molecular de-
tails are poorly understood.

The main energy metabolism associated proteins were
down regulated
Salt-stress led to a reduction in photosynthesis, and thus
to decreased carbohydrate synthesis. It also inhibited
energy production. Energy production declined as the
NaCl concentration increased. There were three proteins
involved in glycolysis and the citrate cycle decreased
after NaCl treatment.

The abundance of two glyceraldehyde-3-phosphate de-
hydrogenases (GAPDH, spots 18, R34) were altered in
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both the roots and shoots. Previous studies have shown
that salt stress induces the up-regulation of GAPDH in
rice leaves, OSRKI1 transgenic rice roots, sugarcane, and
in Arabidopsis thaliana roots [15, 35, 36]. The up-
regulation of GAPDH may increase soluble sugars accu-
mulation and provide more energy for plants under stress.
It is therefore an indicator of stress tolerance. In this
study, GAPDH was down-regulated in the shoots under
200 mM NaCl treatment, but was up-regulated in the
roots under the 100 mM NaCl treatment. In addition, the
abundance of a cytosolic phosphoglycerate kinase (cPGK,
spot R24) was also altered in the roots. PGK is the seventh
enzyme in the cycle that catalyzes the reaction of 1,3-
biphosphoglycerate and ADP to produce 3-
phosphoglycerate and ATP. GAPDH and PGK are crucial
enzymes in the glycolysis cycle and showed the same
abundance trends as GAPDH in the roots, which presum-
ably reflects altered carbon flux patterns in response to
the increased need for osmotic adjustment in the roots.
Furthermore, a malate dehydrogenase mitochondrial
(miMD, spot R7) was down-regulated under salt-stress in
the roots. Overexpression of malate dehydrogenase in
transgenic alfalfa enhances organic acid synthesis and con-
fers tolerance to aluminum [37]. Malate dehydrogenase
(cytoplasmic) was up-regulated under NaCl stress in cu-
cumber roots and young rice panicles [38, 39], whereas in
our study, malate dehydrogenase was down-regulated
under salt stress. A possible reason is that the MD cellular
localization was different in each species.

Up abundance of the ATP [ synthase subunit was
observed in both the roots and shoots under salt
stress (spots 11, R14). ATP synthase includes two re-
gions: an FO region and F1 region consisting of a, f3,
Y, §, and & subunits. ATP synthase [ subunit induc-
tion by salt stress has been reported in plants [12, 40,
41] and those studies show a positive correlation
between the abundance of ATP synthase and a plant’s
ability to resist salt stress. A nucleoside diphosphate
kinase 1 (NDPKI1, spot R12) was down-regulated
under salt stress NDPKs are housekeeping enzymes,
and their main function is to transfer a y-phosphate from
ATP to a cognate nucleoside diphosphate, thereby balan-
cing the nucleoside pool. NDPK has been reported in re-
sponse to drought [42, 43], cold [44], high temperature
[45], and salt stresses [22, 38]. A recent study showed that
NDPK 2 was involved in salt stress and H,O, signaling in
Arabidopsis thaliana [46].

Salt-stress induced some secondary metabolism proteins
Secondary metabolism is a unique plant characteristic,
is critical growth and development, and also allows
plants to adapt to changing environments. Plant cells
produce a vast number of secondary products, and
some compounds are restricted to single species.
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Flavonoids are ubiquitous plant secondary products
that are best known as the characteristic red, blue, and
purple anthocyanin pigments seen in plant tissues. In
our study, isoflavone reductase (IFR, spot R19), isoliquir-
itigenin  2'-O-methyltransferase (IOMT, spot Rb5),
chalcone reductase (CHR, spot R13), and chalcone isom-
erase (CHI, spot R33) showed up-regulated by salt stress
in the seedling roots under 100 mM. Previously, it has
been reported that flavonoids act as attractants to polli-
nators and symbionts, as sunscreens to protect against
UV irradiation, as allelochemicals, as antimicrobial and
antiherbivory factors, and are involved in resistance to
aluminum toxicity [47, 48]. It is noteworthy that the key
enzyme involved in flavonoid metabolite production
showed an up-regulation under moderate NaCl treat-
ment, which suggested that flavonoids also respond to
the salt stress.

It well known that plants accumulate compatible osmo-
lytes and osmoprotectants that help them to resist salt
and drought stress. A L-myo-inositol 1-phosphate syn-
thase (MIPS, spot 17) was up-regulated by salt stress in
the shoots. The structure of this protein has been well-
studied and was found to be inherently salt-tolerant [49].
Previous studies have suggested that salt stress induced
the accumulation of MIPS in Mesembryanthemum crys-
tallinum and that it was slightly upregulated in P. coarc-
tata [27, 50].

It has been reported that an number of amino acids in-
crease in alfalfa following NaCl treatment [51]. Glutamine
synthetase 58 (GS58, spot R2) was up-regulated by both
the salt stress treatments. GS catalyzes the ATP-
dependent condensation of ammonium with glutamate to
yield glutamine, which then provides nitrogen groups for
the biosynthesis of all nitrogenous compounds in the plant
[52]. Because glutamate is a precursor of proline, GS acti-
vation may contribute to proline synthesis under salt
stress [53]. Previous reports indicated that GS was up-
regulated under salt stress in rice and Arabidopsis roots
[15, 54, 55]. A 3-isopropylmalate dehydrogenase (IMD,
spot R11), which is involved in Leu biosynthesis, and
cobalamine-independent methionine synthase, decreased
in abundance following 100 mM NaCl treatment, but
were up-regulated following 200 mM NaCl treatment. In
Arabidopsis roots, IMD decreased in abundance following
NaCl treatment [15], and the abundances of two IMDs
were also influenced by NaCl in Oryza sativa roots [12].

This study also revealed that many protein related
hormones were synthesized in response to salt treat-
ment in alfalfa. An allene oxide cyclase 2(AOC2, spot
1) protein was up-regulated under salt stress. AOC
catalyzes the stereospecific cyclization of an unstable
allene oxide to 9(S),13(S)-12-0x0-10,15(Z)-phytodie-
noic acid, the precursor of jasmonic acid (JA) [56].
JA is involved in a wide range of stress, defense, and
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developmental processes [57].Transgenic plants ex-
pressing a tomato allene oxide cyclase (AOC) also
displayed enhanced salt tolerance [58]. Up-regulation
of AOC2 protein has been previously reported in
Arabidopsis under salt-stress [15, 21].0ur results pro-
vide additional evidence that AOC improves plants
survival under salt stress.

Salt stress induced protein metabolism

Several proteins, involved in protein translation, pro-
cessing and degradation, were identified. In our study,
ribosomal proteins S4(RP S4, spot 10) was down-
regulated under 200 mM NaCl in the shoots, while,
RP L32 (spot R32) was up-regulated under salt stress
in root. Ribosomes are essential ribonucleoprotein
complexes that are engaged in translation and thus
play an important role in metabolism, cell division,
and growth. The levels of some of the ribosomal
proteins decreased while some specific ribosomal
components increased under salt stress were also re-
ported on Arabidopsis [59] and Gossypium hirsutum
[60]. Moreover, our data showed a eukaryotic transla-
tion initiation factor, 5A-2(elF 5A-2, spot R28), was
up-regulated under 100 mM NaCl, but down-
regulated under 200 mM NaCl. EIF 5A-2 is part of
the start site selection for the elF2-GTP-tRNAi tern-
ary complex within the ribosomal-bound preinitiation
complex, and also stabilizes the binding of GDP to
elF2. Alter abundance of elF5A protein has also been
reported in rice leaf lamina and SnRK2 transgenic rice
under salt stress [26, 55]. Other eukaryotic translation
initiation factor, such as elF3I, were also found down-
regualted under salt-stress in Arabidopsis roots and
Gossypium hirsutum roots [15, 60]. All of these stud-
ies suggest that complicated regulation mechanisms
may govern protein synthesis in order to help plants
cope with salt stress.

Several proteins that promote the proper folding of
proteins and/or prevent the aggregation of nascent or
damaged proteins were detected. A protein, disulfide-
isomerase A6 (PDI A6, spot R25), was up-regulated
under 100 mM NaCl treatment but down-regulated
under 200 mM NaCl treatment. A major function of
PDI is as a chaperone, where it helps wrongly folded
proteins to reach a correctly folded state without the aid
of enzymatic disulfide shuffling [61]. Moreover,
increased abundance of PDI protein has also been
reported in rice roots [62] and Gossypium hirsutum
roots [60]. A heat shock protein, 70 (HSP70, spot R1),
was up-regulated under NaCl stress. HSPs are grouped
into five families: HSP100s, HSP90s, HSP70s, HSP60s,
and sHSPs (small HSPs), and may prevent misfolding
and promote the refolding and proper assembly of the
unfolded polypeptides generated. Experiments in which
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chrysanthemum HSP70 gene was overexpressed in Arabi-
dopsis thaliana showed that an increase in HSP70 abun-
dance led to a remarkable tolerance to heat, drought and
salt [63]. In our study, HSP70 was up-regulated by expos-
ure to high salinity, which suggested that the proteins play
a crucial role in aiding the folding and assembly of pro-
teins under salt stress in alfalfa seedlings. These results are
similar to the results reported for Kandelia candel, Sac-
charum spp., Brachypodium distachyon, and Oryza sativa
under salt stress [12, 20, 40, 64]. A proteasome subunit
alpha type-2-B (spot R30), which is involved in protein
degradation, accumulated under salt stress in the roots.
The proteasome is a very large protein complex (26S)
containing a 20S core particle, and is a multicatalytic pro-
tease that degrades proteins using an ATP-dependent
mechanism by which cells regulate the concentration of
particular proteins and degrade misfolded proteins [65].
The degradation process yields peptides that are about
seven to eight amino acids long, which can then be further
degraded into shorter amino acid sequences that can be
used to synthesize new proteins [66]. In Brachypodium
distachyon, a proteasome subunit was down-regulated in
the salt-treated group but up-regulated in the recovery
group, which suggested that it was mainly involved in ab-
normal condition recovery rather than in the defense
against salt stress [64]. In our study, the refold-associated
proteins were up-regulated, which suggested that alfalfa
handles misfolded proteins mainly through refolding. One
possible reason is that energy production is depressed
under salt stress and degradation is an energy-consuming
process.

Transcriptional and translational control is a part alfalfa’s

response to salt stress

Under salt stress, many response and defense-related
genes are stimulated by upstream transcription regula-
tory factors, but the genes involved in normal plant
growth and development are inhibited [64]. Gene
expression regulation is achieved at several levels, i.e.
transcriptional, post-transcriptional, translational, and
post-translational levels. For example, a maturase pro-
tein (spot 5) involved in post-transcription was down-
regulated under 200 mM NaCl in the shoots. In vivo,
most plant group II introns do not self-splice, but re-
quire the assistance of proteinaceous splicing factors,
known as maturases [67, 68]. Maturase genes can be
found in fungal and plant mitochondria, as well as in
plant chloroplasts, and the down-regulation of this pro-
tein may be related to the translation of related genes.
Two nucleic acid binding proteins (NABPI1, spots 15,
R35) showed altered abundance in both the shoots and
roots under salt stress. NABP is a small and highly con-
served protein with nucleic acid chaperone activity that
binds single-stranded nucleic acids [69]. One group of
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NABPs is the cold shock domain (CSD) containing pro-
teins, and these CSDPs are involved in various cellular
processes, including adaptation to low temperatures,
cellular growth, nutrient stress, and the stationary phase
[70, 71]. RNA-binding proteins (RBPs) have crucial roles
in various cellular processes, such as cellular function,
transport, and localization. They also play a major role
in post- transcriptional control of RNAs, such as spli-
cing, polyadenylation, mRNA stabilization, mRNA
localization, and translation. In this study, three RNA
binding proteins (spots 7, 24, R22) were identified.

Salt stress depressed the abundance of proteins involved
in cellular processes

Salt stress decreased the growth of alfalfa, and several pro-
teins associated with the dynamic changes of cellular pro-
cesses were found in the current study. The actin
cytoskeleton plays a critical role in plant development by
regulating a number of fundamental cellular processes, in-
cluding cell division, cell expansion, organelle motility, and
vesicle trafficking [72, 73]. The dynamic reorganization of
actin is modulated by the specific activity of a number of
actin binding proteins (ABPs) that either promote or inhibit
actin polymerization. Actin-depolymerizing factor (ADF) is
one of the most highly expressed ABPs in plants that
modulate the dynamic organization of the actin cytoskel-
eton by promoting filamentous actin disassembly [74].
ADFs were induced by salt stress, drought, and cold in
cereal plants [43, 54, 75], which suggested that ADFs might
be required for osmoregulation under osmotic stress.
According to Yan [4], increased ADF levels under salt stress
may result in depolymerization of actin filaments and en-
hanced K" influx through the inward rectification of potas-
sium channels, which helps to restore ion homeostasis. In
this study, two spots, down-regulated under 200 mM salt
stress in the roots, were identified as ADF (spots R6, R31).
Another important ABP is profilin(spot R8), which was also
first up and then down-regulated as the salt concentrations
rose in the roots. These differences may be due to the need
for growth under salt stress.

Two cell division cycle proteins (CDC48, spots 21,
22) were up-regulated under 100 mM NaCl. CDC48
belongs to the ATPases associated with proteins and
has many cellular activities. They are believed to
function as chaperones and to regulate cell-cycle
progression, membrane fusion, and the destruction
misfolded secretory proteins [76, 77]. Recent studies
have shown that virus movement is impaired by the
overexpression of CDC48, suggesting that CDC48
controls virus movement by removal of movement
proteins from the endoplasmic reticulum-transport
pathway and by interfering with protein movement
using microtubule dynamics [78].
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Signal transduction and ion transport

Salt stress is first perceived by putative sensors in the
root cell membranes and these signals are transmitted to
the cellular machinery to regulate gene expression and
changes in cellular metabolism designed to prevent or
minimize the deleterious effects of abiotic stress. This
signaling is mediated by different kinds of secondary
messengers, such as Ca”*. Salinity induced increases in
cytoplasmic free calcium ([Ca2+]cyt) and fluctuations in
[Caz+]cyt provide a means for relatively rapid responses
and may lead to specific changes in gene expression
programs [79]. Two annexin proteins (spots R15, R17)
were identified in our study. Annexins are a multigene,
multifunctional family of Ca**-dependent membrane-
binding proteins found in both animal and plant cells, and
certain annexins may be targets of [Ca2+]cyt fluctuations
[80]. In Arabidopsis thaliana, annexins have been shown to
mediate osmotic stress and abscisic acid signal transduction
[81]. In alfalfa, annexin is up-regulated in response to os-
motic stress, abscisic acid (ABA), and drought [82].

A plasma membrane H*-ATPase (PM H'-ATPase,
spot R3) was also up-regulated under salt stress. A re-
sponse to the accumulation of Na” ions in the cytosol is
their compartmentalization within the vacuole, while an-
other response is to extrude them from the cell. In each
case, the active Na* efflux requires a H* gradient across
the vacuolar membrane enerated by stimulating protein
expression of the vacuolar H *-ATPase [83].The accu-
mulation of PM H'-ATPase gene mRNA was induced
by NaCl and this has been found to occur in glycophytes
and halophytes. In rice, a salt-tolerant mutant highly
expressed PM H'-ATPase in its roots, compared to the
non-mutant variety [84]. Therefore, the increased abun-
danceof plant plasma membrane H*-ATPase many play
an important role in salt stress tolerance in alfalfa.

Conclusion

In summary, we found significant physiological and pro-
tein abundance differences during salt treatment in al-
falfa. Quantitative analysis of more than 850 spots on 2D
gels showed significant variations in of 36 protein spots
from the roots and 27 protein spots from the shoots,
which were confidently identified by MS/MS. These
DAPs are mainly involved in the biological processes of
photosynthesis, stress and defense, carbohydrate and
energy metabolism, second metabolism, protein metab-
olism, transcriptional regulation, cell wall and cytoskel-
eton metabolism, membrane and transport, signal
transduction. The diverse array of proteins affected by
salt stress conditions indicates that there is a remarkable
flexibility in alfalfa roots and shoots metabolism, which
may contribute to its survival in salinity conditions.
Further analysis demonstrated that the primary mecha-
nisms underlying the ability of alfalfa seedlings to
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tolerate salt stress were photosynthesis, detoxifying and
antioxidant, secondary metabolism, and ion transport. In
parallel, physiological data, including REL, MAD and
H,0, contents, and the activities of antioxidant enzymes
all correlated well with our proteomic results. It is worth
emphasizing that some novel salt-responsive proteins
were identified, such as CP12, pathogenesis-related
family proteins, harvest-induced protein, isoflavone
reductase, isoliquiritigenin 2’-O-methyltransferase, chal-
cone reductase, chalcone isomerase. QRT-PCR was used
to study the gene expression levels of thefour above-
mentioned proteins; four patterns are consistent with
those of induced protein. These novel proteins provide a
good starting point for further research into their func-
tions using genetic or other approaches. These findings
significantly improve the understanding of the molecular
mechanisms involved in the tolerance of plants to salt
stress.
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