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Abstract

A high burden of Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) bacter-

emia has been reported from urban informal settlements in sub-Saharan Africa, yet little is

known about the introduction of these strains to the region. Understanding regional differ-

ences in the predominant strains of S. Typhi can provide insight into the genomic epidemiol-

ogy. We genetically characterized 310 S. Typhi isolates from typhoid fever surveillance

conducted over a 12-year period (2007–2019) in Kibera, an urban informal settlement in

Nairobi, Kenya, to assess the circulating strains, their antimicrobial resistance attributes,

and how they relate to global S. Typhi isolates. Whole genome multi-locus sequence typing

(wgMLST) identified 4 clades, with up to 303 pairwise allelic differences. The identified

genotypes correlated with wgMLST clades. The predominant clade contained 290 (93.5%)

isolates with a median of 14 allele differences (range 0–52) and consisted entirely of geno-

types 4.3.1.1 and 4.3.1.2. Resistance determinants were identified exclusively in the pre-

dominant clade. Determinants associated with resistance to aminoglycosides were

observed in 245 isolates (79.0%), sulphonamide in 243 isolates (78.4%), trimethoprim in

247 isolates (79.7%), tetracycline in 224 isolates (72.3%), chloramphenicol in 247 isolates

(79.6%), β-lactams in 239 isolates (77.1%) and quinolones in 62 isolates (20.0%). Multidrug

resistance (MDR) determinants (defined as determinants conferring resistance to ampicillin,

chloramphenicol and cotrimoxazole) were found in 235 (75.8%) isolates. The prevalence of

MDR associated genes was similar throughout the study period (2007–2012: 203, 76.3% vs

2013–2019: 32, 72.7%; Fisher’s Exact Test: P = 0.5478, while the proportion of isolates har-

boring quinolone resistance determinants increased (2007–2012: 42, 15.8% and 2013–

2019: 20, 45.5%; Fisher’s Exact Test: P<0.0001) following a decline in S. Typhi in Kibera.

Some isolates (49, 15.8%) harbored both MDR and quinolone resistance determinants.

There were no determinants associated with resistance to cephalosporins or azithromycin

detected among the isolates sequenced in this study. Plasmid markers were only identified
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in the main clade including IncHI1A and IncHI1B(R27) in 226 (72.9%) isolates, and IncQ1 in

238 (76.8%) isolates. Molecular clock analysis of global typhoid isolates and isolates from

Kibera suggests that genotype 4.3.1 has been introduced multiple times in Kibera. Several

genomes from Kibera formed a clade with genomes from Kenya, Malawi, South Africa, and

Tanzania. The most recent common ancestor (MRCA) for these isolates was from around

1997. Another isolate from Kibera grouped with several isolates from Uganda, sharing a

common ancestor from around 2009. In summary, S. Typhi in Kibera belong to four

wgMLST clades one of which is frequently associated with MDR genes and this poses a

challenge in treatment and control.

Author summary

Typhoid fever is a major public health concern in endemic regions. Understanding the

circulating strains of S. Typhi, could provide insight into the genomic epidemiology and

guide in the choice of appropriate antibiotics. In this paper, our aim was to characterize S.

Typhi strains causing invasive disease in Kibera, where a high typhoid burden has been

described. We also aim to understand the evolutionary history of these strains and how

antimicrobial resistance determinants have changed over time. We found that there was

low diversity of S. Typhi observed in Kibera isolates with isolates grouping into 4 wgMLST

clades and five genotypes. The majority (93.5%) of the isolates belonged to genotype 4.3.1;

phylodynamic analysis suggest isolates of this genotype from Kibera are related to other

4.3.1 isolates from Africa and this genotype has been introduced multiple times in Kibera.

This genotype in particular warrants close monitoring to inform antibiotic strategy in this

population. Furthermore, concurrent detection of gene markers for MDR and quinolone

resistance in some isolates raise concern about the potential emergence of extensive drug

resistant (XDR) strains. Additional surveillance is needed in Kibera to monitor changing

trends in resistance that may require altering clinical treatment, and to inform other pre-

ventive measures such as typhoid-conjugate vaccine introduction.

Introduction

Typhoid fever is a systemic febrile illness caused by Salmonella enterica subspecies enterica ser-

ovar Typhi (hereafter referred to as S. Typhi). The global estimate of typhoid fever burden

ranges between 11–21 million cases and approximately 128,000 to 161,000 deaths annually [1].

Increasing antimicrobial resistance (AMR) in S. Typhi complicates treatment and control of

the disease in endemic regions. However, this increase is not uniform globally and has evolved

at different rates in various endemic regions [2]. The first cases of S. Typhi isolates showing

multidrug resistance (MDR), defined as co-occurring resistance to ampicillin, chlorampheni-

col and co-trimoxazole, were reported in the early 1970s [3,4]. Later, ciprofloxacin resistance

was also reported in majority of clinical isolates from endemic regions [5–7] and since late

2016 an extensive drug resistant (XDR) clone of S. Typhi with resistance to ceftriaxone has

emerged and as a result of these changes some countries are shifting the recommended treat-

ments to other classes of antimicrobial agents [8–11]. This evolving threat highlights the

importance of monitoring circulating strains of S. Typhi for early detection of antimicrobial

resistance patterns to guide on selection of effective antibiotics for patient management.
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Whole-genome sequence (WGS)-based approaches using next-generation sequencing

(NGS) have become effective tools to study genetic diversity and prediction of resistance phe-

notypes [12–18]. Extensive genomic studies of the S. Typhi strains are required to re-construct

the full-scale evolutionary history and to understand the mutational events that have occurred

over time [18]. Studies of the global population structure of S. Typhi have revealed a single

clonal genotype, 4.3.1 (formerly described as haplotype 58 or H58) associated with MDR and

increasing fluroquinolone resistance and date the emergence of this strain sometime in the

mid to late 1980s or early 1990s, and indicate this strain has been increasing in population size

since the early 1990s [17,19,20].

In Kibera, an urban informal settlement in Nairobi, Kenya, a high incidence (247 cases per

100,000 person-years of observation) of S. Typhi bacteremia was reported from 2007–2009

[21]. However, typhoid fever incidence can be dynamic over time [22], and declines in the

Kibera typhoid fever incidence were observed from 2013 through 2017 [23]. Our objective was

to characterize the S. Typhi strains causing invasive disease in Kibera over a 12-year period to

understand the evolutionary history of these strains, their relationship to global typhoid iso-

lates, and how antimicrobial resistance determinants have changed over time. To achieve these

objectives, we sequenced genomes of invasive Salmonella isolates obtained from ongoing sur-

veillance in Kibera.

Methods

Ethics statement

The population-based infectious disease surveillance (PBIDS) protocol for primary data collec-

tion was approved by Kenya Medical Research Institute’s Scientific and Ethical Review Unit

(SSC protocol number 1899 & 2761) and US Centers for Disease Control and Prevention (Pro-

tocol number 4566 and 6775). Written consent to participate in PBIDS was provided by heads

of household at the time of enrollment. In addition, individual written informed consent from

the patient (or parent/guardian) was obtained prior to sample collection.

Study site

The study participants were residents of Kibera, an urban informal settlement in Nairobi,

Kenya. An informal settlement in this context is an area where groups of temporary housing

units have been constructed on land that the occupants have no legal claim. Kibera is charac-

terized by high population density, limited access to safe water, and poor sanitation [21].

Source of isolates

Isolates were derived from the Population-Based Infectious Disease Surveillance (PBIDS) plat-

form, implemented by the Kenya Medical Research Institute in collaboration with the U.S.

Centers for Disease Control and Prevention. PBIDS participants (~25,000 individuals) of all

ages received free care for acute illness at a centrally located Tabitha Medical Clinic in Kibera

run by Carolina for Kibera (CFK). A blood sample was collected from individuals presenting

to the clinic who met severe acute respiratory illness or acute febrile illness case definitions as

previously described [21]. Briefly, 8-10ml and 1-3ml of blood were collected (from persons�5

and children <5 years respectively) and inoculated in blood culture bottles then transported to

Diagnostic and Laboratory System Program (DLSP) microbiology laboratory, a CDC-sup-

ported Kenya Medical Research Institute (KEMRI) laboratory in Kibera. BACTEC 9050 sys-

tem alarm-positive bottles were sub-cultured using standard microbiology procedures [21].

Identified bacterial isolates were preserved in ultra-low freezers (-70C). For this study, all
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Salmonella isolates that were available from blood culture collections from March 2007 –Feb-

ruary 2019 were retrieved from the freezers. These were revived in Trypticase Soy agar

(TSA-BD) media for 16–24 hours at 37˚C and DNA was extracted from all the viable isolates.

DNA extraction and sequencing

The DNA sequencing of 412 Kibera isolates was conducted in three different institutions:

Technical University of Denmark (DTU), Wellcome Sanger Institute, Cambridge, UK and

KEMRI- DLSP laboratory in Nairobi. DNA extraction of 322 isolates was done using Wizard-

Genomic DNA Purification Kit (Promega) and the rest by Qiagen DNeasy Blood & Tissue Kit

(Qiagen) following the manufacturer’s instructions. Genomic DNA of the 412 Salmonella iso-

lates was used to create genomic libraries using the Nextera XT DNA sample preparation kit

(Illumina Inc.) at DTU (n = 39), Sanger Institute (N = 322), and KEMRI-DLSP (n = 51). Fol-

lowing this procedure, the libraries were multiplexed, paired-end sequenced using Illumina

platforms i.e., HiSeq 4000 by DTU, HiSeq X Ten by Wellcome Sanger Institute, and Miseq at

KEMRI- DLSP. Raw sequence data from DTU and Wellcome Sanger Institute were trans-

ferred to KEMRI-DLSP for bioinformatics analysis. The raw sequence data have been submit-

ted to the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under accession no.

ERP105715 or NCBI under the BioProject PRJNA750407. Accession numbers for individual

sequences can be found in S1 Table.

Data quality checks

General sequence data quality was checked using FastQC v0.11.15 tool [24]. Quality indicators

of the sequence data were determined using SneakerNet v0.3 [25]. SneakerNet measures the

average quality score of the forward and reverse reads and the combined genome coverage for

each genome. We designated a coverage threshold of 30x and a minimum quality score of 30

for each read and if the q-score was below 30 an additional 10x coverage was required. Seq-

Sero2 was used for WGS-based Salmonella serotyping (April 2019 alpha-test version) [26] and

confirmation of laboratory culture serotyping. Contamination-free reads were determined by

the absence of secondary genera in strains using MIDAS v. 1.3.0 [27] and Kraken 2 v. 2.0.8

[28], where the threshold for MIDAS is coverage�1.0x and for Kraken it is�.5.0%. The

absence of secondary Salmonella serotypes was monitored with SeqSero2 [26]. Isolate genomes

that misidentified the species or serotype confirmation, identified the presence of secondary

genera or secondary serotype above a respective threshold, or did not meet the required quality

indicator thresholds were removed from downstream analyses.

Sequence based subtyping

Whole genome multi-locus sequence typing (wgMLST) analysis was done using BioNumerics

v. 7.6.3 (bioMérieux SA, Marcy-l’Étoile, France) [29]. An UPGMA tree was generated by

determining the loci that were present in 95% of genomes (4177 loci) out of the total number

of loci detected in the genomes (5082 loci). Sequence data was further analyzed using genoty-

phi v. 3 implemented in Pathogenwatch to determine S. Typhi genotype (https://github.com/

katholt/genotyphi) [30,31].

Resistance determinants and plasmid typing markers were identified using methods

described by Tagg et al. 2020 [32]. Briefly, genomic sequence data were assembled de novo
using shovill v. 1.0.9, with the–cov-cutoff set as 10% of the average genome coverage. Resulting

assemblies were screened for resistance determinants using starAMR v. 0.4.0 using the data-

bases from ResFinder (version updated on February 19, 2021) [33] (90% identity; 50% gene

cutoff) and the PointFinder scheme for Salmonella (version updated on February 1, 2021).
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Plasmid markers were identified using Abricate v.0.8.10 and a database adapted from Plasmid-

Finder [34] (90% identity; 60% gene coverage). A fisher’s exact test was performed to examine

differences between AMR genotypes in two different study periods. Data were analyzed using

the stats package for R version 4.1.1.

The wgMLST tree was annotated with resistance, plasmid, genotype, and year of isolation

using iTOL v 6.4 [35].

Phylogenetic analysis and molecular clock

To examine the relationship between S. Typhi in Kibera to global S. Typhi isolates and

understand the emergence of S. Typhi in Kibera, we conducted a molecular clock analysis.

For comparison, S. Typhi genomes from Wong et al. 2015 [17] and Park et al.2018 [37] were

obtained from NCBI and characterized through the QC and subtyping methods outlined

above. Additional isolates obtained from a study in Uganda were also included [38]. For

each genotyphi-assigned genotype observed more than once in Kibera, a phylogeographic

analysis was attempted. Due to the differences in sampling schemes within each country, up

to 10 genomes from each country represented within a given genotype were sampled for

inclusion in our phylogeographic dataset. We sampled to include a diversity of years, and

sampled randomly within each year. For each genotype a separate hqSNP phylogeny was

generated briefly as follows. Using Lyve-SET v1.1.4f [39] and the presets for Salmonella
enterica, an alignment was generated using the sequence of 2014K-0817 as a reference (NCBI

Accession: AAOGUB000000000). The resulting alignment was processed using Gubbins

V.3.0.0 [40] to remove regions of the alignment having undergone recombination. Resulting

phylogenies were analyzed using TempEST v 1.5.3. [41]. The best fitting root was selected

and the correlation between root to tip divergence and time were examined using the corre-

lation function. Genotype 4.3.1 displayed a moderate positive correlation and was selected

for further analysis.

A discrete phylogeographic analysis was conducted using BEAST v. 2.6.4 based on the mod-

els which are part of the beast-classic 1.5.0 package [42], adding location as a discrete trait. The

model averaging tool bModelTest v. 1.2.1 [43] was employed to select an appropriate substitu-

tion model for each genotype. To determine the tree model which best fits the data, for each

genotype, all coalescent tree priors were evaluated (constant population, exponential popula-

tion Bayesian skyline, and extended Bayesian skyline) using either a strict clock or a lognormal

relaxed clock. Analysis was performed on the filtered SNP matrix generated using Lyve-SET

and Gubbins as described in the previous section, and the xml file from Beauti was modified to

account for constant sites (<data id = ’filt’ spec = ’FilteredAlignment’ filter = ’-’ data = ’@fil-

tOriginal’ constantSiteWeights = ’694048 783222 770094 689472’/>). All molecular clock anal-

yses were run for 500,000,000 iterations, with sampling every 50,000 iterations with the first

10% of iterations discarded as burnin. Output was evaluated in Tracer v. 1.7.1 [44]. Three inde-

pendent chains were run, and a representative BEAST tree file was selected for further process-

ing. TreeAnnotator was used to produce a maximum clade credibility tree using the “median”

options for heights. The maximum clade credibility tree was visualized using R v. 4.1.1 and the

package ggtree [36].

Results

Genotypes of S. Typhi isolated in Kibera

Of the 412 Salmonella isolates from Kibera on which WGS was performed, 327 were character-

ized as S. Typhi on initial analysis. The remaining 85 isolates were identified as other non-

typhoid serotypes and were excluded from further analysis. Of the 327 Typhi sequences, 17
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were dropped due to the presence of secondary genera or secondary serotype, or did not meet

the required quality indicator threshold. Three hundred and ten isolates were identified as S.

Typhi and were determined to have adequate sequence quality for further analyses (S1 Fig).

The quality metrics of these sequences are available in S1 Table. By wgMLST, 4 different

genetic clades were identified (Fig 1). The predominant clade captured most isolates detected

from 2007 to 2019 (n = 290; 93.4%). Isolates in the predominant clade differed from each

other by a median of 14 alleles (range: 0–52). All MDR isolates belonged to this clade and were

genotype 4.3.1 which could be further segregated into 4.3.1.1 (n = 254, 81.9%) and 4.3.1.2

(n = 36, 11.6%). All 4.3.1.1 genomes belonged to the East Africa 1 sub-lineage (EA1), while

4.3.1.2 could be further sub-divided into EA2 (n = 24) and EA3 (n = 12). Isolates in the

remaining 3 clades comprised of antimicrobial-susceptible isolates detected from 2007–2014

belonging to genotypes 2.2.2 (n = 2, 0.6%); 2.5 (n = 6, 1.9%); and 3.3.1 (n = 12, 3.9%). The two

isolates belonging to genotype 2.2.2 formed a wgMLST clade and differed by 52 alleles. The six

isolates in the genotype 2.5 clade displayed a median of 9.5 allele differences (range: 0–62),

while the 12 isolates in the genotype 3.3.1 clade differed by a median of 0 alleles (range: 0–5).

Fig 1. wgMLST tree of 310 isolates of S. Typhi isolates collected in the Kibera settlement in Kenya colected from 2007–2019. Displayed outside the tree

(from inside to out) are the presence of antimicrobial resistance determiants (filled boxes in red), the presence of plasmid markers (filled blue boxes), genotyphi

genotypes, and the year of isolation.

https://doi.org/10.1371/journal.pntd.0010704.g001
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Genotypic characterization of antimicrobial resistance in the Kibera

isolates

All the isolates with resistance determinants and plasmid replicons belonged to genotype

4.3.1.1 (lineage I) or 4.3.1.2 (lineage II) (Fig 1) with the former being more common than the

latter. The other non-4.3.1 genotypes did not contain resistance markers or plasmids. We iden-

tified the following resistance determinants in the isolates: aph (3”)-Ib and aph(6)-Id (confers

aminoglycoside resistance) in 245 (79.0%) isolates; blaTEM-1 (confers β-lactam resistance) in

239 (77.1%)isolates; catA1 (confers chloramphenicol resistance) in 247 (79.6%) isolates and

dfrA7 (confers trimethoprim resistance) in 247 (79.7%) isolates; sul1 and sul2 (confers sulpho-

namide resistance) in 243 (78.4%) and 240 (77.4%) isolates respectively and tet(B) (tetracycline

resistance) in 224 (72.3%) isolates. The antibiotic resistance associated genes that contribute to

MDR phenotype as described in this study include: blaTEM-1, catA1, dfrA7, sul1 and sul2. The

prevalence of MDR genes was similar in earlier years where the number of S. Typhi identified

was high (2007–2012: 203 isolates, 76.3%) and later years where S. Typhi levels were low

(2013–2019: 32 isolates, 72.7%; Fishers Exact Test: P = 0.5478) (Fig 2). Additionally, point

mutations in the quinolone resistance-determining regions (QRDR) of gyrA or gyrB were

detected in 62 (20.0%) isolates. These were: gyrA(S83F) in 19 (6.1%) isolates; gyrA(S83Y) in 12

(3.9%) isolates; gyrA(D87N) in 2 (0.6%) isolates; gyrB(S464F) in 27 (8.7%) isolates and gyrB
(E466D) in 2 (0.6%) isolates. Of the isolates with mutations in the QRDR the majority also had

acquired resistance (MDR) genes (n = 49/62; 79.0%) while only 13 isolates (21.0%) had only

Fig 2. Temporal trends in genotype and antibiotic resistance by year of isolation. The top panel displays the genotype by year of isolation, where the x-axis

is the year of isolation and the y-axis is count of isolates from that year belonging to each genotype. The bottom panel displays resistance information, where

detection of determinants for a particular antimicrobial were employed as a proxy for resistance. The red line illustrates the percent of isolates over time with

genes conferring resistance to ampicillin, chloramphenicol, and sulfa-methoxazole (defined as MDR). The blue line illustrates the percent of isolates with

fluroquinolone resistance determinants.

https://doi.org/10.1371/journal.pntd.0010704.g002
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QRDR mutations. Further, an increase in the proportion of isolates harboring quinolone resis-

tance determinants was observed over the full study period (2007–2012: 42, 15.8% and. 2013–

2019: 20, 45.5%; Fisher’s Exact Test: P<0.0001) (Fig 2). No resistance determinants to 3rd and

4th generation cephalosporins nor carbapenems were detected as well as no mutations in the

acrB gene or other determinants known to confer resistance to azithromycin.

Three different plasmid markers were also detected in the Typhi isolates including

IncHI1A, IncHI1B(R27) and IncQ1. The majority of the isolates (241,77.7%) harbored one or

more plasmid markers while 69(22.3%) had no plasmid markers at all. Of the 241 with plasmid

markers, 223 (92.5%) had all the 3 markers, 15(6.2%) had IncQ1 only and 3(1.2%) had both

IncHI1 markers only.

Molecular clock analysis of genotype 4.3.1

A phylogeographic analysis of global genotype 4.3.1 isolates and isolates from Kibera was con-

ducted to date the emergence of this genotype in Kibera (Fig 3). All isolates in this analysis (S2

Table) shared a most recent common ancestor (MRCA) dating back to approximately 1990

(median: 7/24/1990; 95% Highest Posterior Density (HPD) Interval: 7/9/1986–6/20/1992). The

sampling of isolates from Kenya included eight isolates from Kibera, seven of which were

genotype 4.3.1.1 EA1 and these isolates formed a clade with genomes from Kenya, Malawi,

South Africa, and Tanzania. This clade had a MRCA dating back to around 1997 (median 8/

20/1997; 95% HPD Interval 2/20/1995–9/11/2000). All but one of the Kibera isolates in this

clade had resistance determinants and were MDR. The resistance aph(3”)-Ib, aph(6)-Id, bla-

TEM, catA1, dfrA7, sul1, sul2, and tet(B) were detected in MDR isolates, and one isolate had an

additional gyrA(S83F) mutation. The remaining Kibera isolate was genotype 4.3.1.2 EA3 and

grouped with isolates from Uganda. These isolates share a common ancestor from around

2009 (median 6/22/2009: 95% HPD Interval 7/7/2003–1/29/2013). The Kibera isolate in this

clade had the following resistance determinants, aph(3”)-Ib, aph(6)-Id, blaTEM, catA1, dfrA7,

and a gyrA(S83Y) mutation. An additional genome from Kenya from a previous study [17]

grouped with isolates from India and was genotype 4.3.1.2. EA2. This analysis highlights multi-

ple distinct introductions of the 4.3.1genotype in Kibera.

Discussion

The genomic data from our study provide insight into the S. Typhi population that has been

causing invasive disease in Kibera for more than a decade. We also identified 4 different

genetic clades amongst the Kibera isolates with the dominant clade persisting throughout the

study period. The predominant clade comprised of S. Typhi genotypes 4.3.1.1 and 4.3.1.2 and

frequently harbored IncHI1 plasmids, which have been reported to contribute to the success of

dominant MDR S. Typhi haplotypes [45]. This might help explain the persistence of this geno-

type in Kibera throughout the study period. The other three genotypes lacked resistance deter-

minants and plasmid markers and were isolated only infrequently throughout the study

period and were not detected after 2014 because they could have been displaced by the domi-

nant strain.

Further analysis showed that, all the isolates with resistance markers belonged to S. Typhi

genotype 4.3.1. The majority of these isolates had MDR genes and the percentage of MDR

remained relatively consistent over time. However, the transmission of the ESBL and azithro-

mycin producing S.Typhi has not yet spread to the African continent and surveillance for this

should be strengthened. The MDR genes were associated with IncHI1 plasmids which are

known carriers of MDR genes and are also associated with the H58 Typhi haplotype, now

denoted as genotype 4.3.1. The 69 (22.3%) MDR isolates without plasmids could have had the
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MDR genes integrated into their chromosomes thereby losing the plasmids in the process

[17]. We also observed chromosomal point mutations on DNA gyrase subunits A and B but

none on topoisomerase IV gene. While a previous study of global S.Typhi strains showed that

African strains, including those from Kenya, had increased MDR but no gyrA mutations [17],

we report a combination of both in some isolates. A greater proportion of the isolates with

mutations on QRDR (gyrA/B) also had MDR genes which increase the possibility XDR strains

could emerge. The increase in fluoroquinolone resistance determinants in 2016–2019 isolates

could have been caused by indiscriminate use of fluoroquinolones (e.g. ciprofloxacin) for a

period of time [17]. The issue of over- the- counter drugs and incompletion of dosage are also

common practices in Kibera and could have contributed too. Notably, we did not detect trans-

missible fluoroquinolone resistance markers in the Kibera isolates within the study period.

Phylogeographic analysis of isolates from Kibera along with additional global S. Typhi iso-

lates [17,37] suggests that multiple introductions of genotype 4.3.1 occurred in Kibera, and are

consistent with the EA1-3 4.3.1 sub-lineages circulating in Kenya [46]. The MRCA of isolates

in this analysis was similar to that previously reported thus confirming our approach [17]. The

majority of the Kibera isolates belonged to 4.3.1.1 EA1 and show a close genetic and temporal

relationship with other isolates from Africa, specifically from Malawi, South Africa, and Tan-

zania. Clustering of isolates from these countries was initially reported by Wong et al. 2015

and we estimate these isolates share a common ancestor from around 1997 [17]. Kariuki et al,
estimate the emergence of the EA1 sub-lineage to be around 1990 [46]. Six out of seven of the

genomes from Kibera possessed resistance genes commonly reported in the H58 isolates (aph
(3”)-Ib, aph(6)-Id, blaTEM, catA1, dfrA7, sul1, sul2, and tet(B)), and one of these isolates con-

tained an additional gyrA(S83F) mutation previously reported to be present in 45% of H58 iso-

lates, and rare in EA1 [17,47], while the remaining isolate did not have any resistance

determinants.

The remaining isolate from Kibera in this analysis was isolated in 2019 and belonged to

4.3.1.2 EA3 and shows a close genetic and temporal relationship with isolates from Uganda

collected in 2015 and 2018. The MRCA of this clade dates back to approximately 2009, after

which several large outbreaks have been reported in Uganda [48,49], and Kariuki et al. further

date the emergence of EA3 in Kenya to be around 2012 [46]. The 2019 isolate also possessed

resistance genes common to H58 (aph(3”)-Ib, aph(6)-Id, blaTEM, catA1, dfrA7) in addition to

the gyrA(S83Y) mutation previously reported to be present in 9% of H58 isolates overall, but

conserved among EA3 [17,46]. Overall these data indicate multiple introductions of MDR

4.3.1 (H58) into Kenya and continued monitoring may help better elucidate pathways of

spread in the region and help identify control measures.

We found several limitations in our study. One of the limitations of this study is that data

are from an urban informal settlement which may not be representative of rural settlements or

other urban areas in Kenya. This study utilizes short-read sequencing which provides valuable

Fig 3. Global context of 4.3.1 genomes from Kibera using a molecular clock analysis. Tip dated maximum clade

credibility tree of 148 isolates of S. Typhi genotype 4.3.1 generated using BEAST2. This analysis includes 8 isolates

from the Kibera settlement in Kenya sequenced as part of the present study, 10 isolates from Uganda, and the

remaining isolates are from two previous studies of the phylogeography of S. Typhi published by Wong et al (2015)

and Park et al. (2018). The x-axis denotes calendar year. The tree is colored by location, with isolates from Kenya

highlighted in red. Tip labels include the isolate ID and accession ID separated by an underscore. The country from

which the sample was isolated from is also displayed. Posterior support for internal nodes are displayed where values

are>0.70. Grey horizontal bars indicate the 95% Highest Posterior Density (HPD) Interval for height of the given

clade (corresponds to age). Colored star markers on the x-axis indicate relevant epidemiological events. Red stars

indicate typhoid outbreaks in Uganda, and the blue star marks when improvements in water sanitation were made in

Kibera [50].

https://doi.org/10.1371/journal.pntd.0010704.g003
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information to perform genomic characterization, however complete assembly of plasmids is

challenging with this technology due to insertion sequence elements and other repeat elements

in the plasmid sequence. Additional study is required to associate specific resistance genes

with specific plasmids, as well as facilitate comparison with known reference plasmids previ-

ously identified in S. Typhi. Limitations of the molecular clock analysis include the detection

of only a moderate temporal signal, which weakens our ability for more precise estimation of

divergence events. A moderate temporal signal was also observed by Wong et al. which they

attribute to sampling of isolates over a short time frame [17]. Differences in sampling schemes

in different regions may influence molecular clock results; however we attempted to mitigate

this by subsampling data to not allow for too many sequences from a particular country.

Regional data gaps may also exist, which may challenge our interpretation of the global evolu-

tionary history of S. Typhi.

Conclusion and recommendation

Low divergence of S. Typhi was observed in Kibera isolates with isolates grouping into 4

wgMLST clades and five genotypes, of which one clade comprised of genotypes 4.3.1.1 and

4.3.1.2 and contained the majority of isolates. The presence of MDR genotype 4.3.1 in this pop-

ulation is of clinical and public health importance and warrants monitoring to guide empiric

antibiotic treatment in this context. Additionally, the coexistence of MDR gene markers with

fluoroquinolone resistance markers in the Kibera isolates reflects the potential for emergence

of extensively drug resistant (XDR) strains in this population. The transmission of the ESBL

and azithromycin producing S.Typhi has not yet spread to the African continent and surveil-

lance for this should be strengthened to monitor changing trends in resistance that may

require altering in clinical treatment and additional preventive measures such as TCV vaccine

introduction decisions.
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