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Abstract

Background: Technologies based on DNA microarrays have the potential to provide detailed information on genomic
aberrations in tumor cells. In practice a major obstacle for quantitative detection of aberrations is the heterogeneity of
clinical tumor tissue. Since tumor tissue invariably contains genetically normal stromal cells, this may lead to a failure to
detect aberrations in the tumor cells.

Principal Finding: Using SNP array data from 44 non-small cell lung cancer samples we have developed a bioinformatic
algorithm that accurately models the fractions of normal and tumor cells in clinical tumor samples. The proportion of
normal cells in combination with SNP array data can be used to detect and quantify copy number neutral loss-of-
heterozygosity (CNNLOH) in the tumor cells both in crude tumor tissue and in samples enriched for tumor cells by laser
capture microdissection.

Conclusion: Genome-wide quantitative analysis of CNNLOH using the CNNLOH Quantifier method can help to identify
recurrent aberrations contributing to tumor development in clinical tumor samples. In addition, SNP-array based analysis of
CNNLOH may become important for detection of aberrations that can be used for diagnostic and prognostic purposes.
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Introduction

Bioinformatic algorithms have been developed to use SNP array

information to identify genomic aberrations such as DNA copy

number changes and loss-of–heterozygosity (LOH), i.e. stretches of

DNA with exclusively homozygous markers [1–8]. However, one

major drawback of these methods is that genetic heterogeneity in

tumor samples, caused by the mixture of cancer and stromal cells,

is often not taken into account. As a consequence aberrations are

often not detected in samples with a large proportion of genetically

normal cells. This may partly explain why, despite the accumu-

lation of large amounts of genomic data, the clinical impact of such

analyses for diagnostic purposes is still small. Tumor tissue

represents a mixture of tumor and non-tumor cells, i.e.

inflammatory cells, stromal fibroblasts and cells of blood- and

lymph vessels [9]. The fraction of normal cells often exceeds the

fraction of tumor cells in patient samples stored in biobanks

(Figure 1A). This sample heterogeneity severely affects copy

number analysis. To the best of our knowledge there are no

estimates on how the sensitivity of detection of genomic

aberrations depends on the proportion of normal cells in clinical

tumor samples. One reason may be the difficulty to estimate the

tumor vs. normal cell ratio histologically by microscopy in

heterogeneous tumor samples with varying proportions of normal

cells in different parts of the sample. Moreover, there is a lack of

consensus on how tumor cell content in a solid cancer should be

assessed and annotated. Thus, the performance of the current tools

for detection of genomic aberrations in clinical tumor samples is

often uncertain.

A recently developed tool takes sample heterogeneity into

account for identification of copy number states [10]. It is designed

for studies with paired samples (tumor and normal). In practice,

however, paired samples are often not available for larger patient

cohorts.
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In another study Nancarrow et al visualize the expected pattern

of allele frequencies depending on varying proportions of normal

cells in the tumor sample using simulations [11].

Another promising analytical tool, AsCNAR, is able to identify

LOH even when one of two mixed cell lines is present only in a

proportion of about 20% [12]. Recently Assie et al described an

algorithm that take tumor heterogeneity into account in

identifying genomic aberrations in samples with 40–75% of tumor

cells [13].

Studies suggest that copy number neutral LOH can be a

mechanism for inactivation of tumor suppressor genes [14].

Several studies and our own data suggest that CNNLOH is more

common than previously thought [15,16]. Taken together this

suggests that CNNLOH may be important in determining certain

cancer phenotypes. To analyze CNNLOH on a genome-wide

scale in the tumor cells in heterogeneous samples we focused on 1)

developing an algorithm to quantify the proportion of normal cells

in the sample and 2) to quantify CNNLOH throughout the

genome in the tumor cells. Such quantitative analysis has the

potential to become an important tool for molecular cancer

diagnostics.

Results

A strategy for quantification of CNNLOH in
heterogeneous tumor samples

To quantitate CNNLOH in heterogeneous tumor samples the

allele-specific signal contribution from different types of cells need

to be estimated. Figure 1 illustrates a typical mixture of cells in

frozen sections of a non-small cell lung cancer (NSCLC) tumor

sample and provides a schematic representation of the different of

types of cells and genotypes that could be present in the event of a

genomic deletion or CNNLOH. Other genomic aberrations,

including those giving rise to higher ploidy aberrations, may also

occur at the same locus as the deletion or CNNLOH, further

complicating the picture. However, the likelihood of such events

can be expected to be low and in this study they have been

assumed to be negligible in comparison to the effects of deletions

and CNNLOH.

The fraction of normal cells can for some types of tumors be

measured in a straightforward manner. In hematological tumors

the fraction of normal cells can be measured using flow cytometry

employing informative surface markers. However, single cell

suspensions for flow cytometry are difficult to obtain from solid

tumors. Alternatively, automated or manual means of identifying

normal cells by counting them in situ based on molecular markers

or morphology may be used. These methods require advanced

imaging techniques or time consuming work for a trained

histopathologist. In this paper we use the signal intensities from

the two SNP alleles to estimate the fraction of normal cells and use

that information to estimate the proportion of tumor cells with

CNNLOH.

Quantification of the proportion of normal cells from SNP
genotyping array data

In samples where the proportion of normal cells is difficult to

obtain by other means, we set out to estimate the fraction of

normal cells from SNP data only. As shown in Fig. 1B the fraction

of cells with 2N DNA (C2N) in regions with deletions is the sum of

the normal cells (Nnormal) and the tumor cells with 2N DNA (T2N).

The basis for the CNNLOH Quantifier method is to use the allele-

specific signals A and B for each locus to obtain the experimental

Allele B frequency (ABf), as a normalized ratio of B/(A+B) see

METHODS. A derivation and a graphical illustration are

available elsewhere [17]. The ABfs of heterozygous informative

markers in complex tumor samples depend on copy number and

Figure 1. Tumor sample heterogeneity. A) Hematoxylin-eosin stained frozen section of a representative NSCLC case analysed in this study
(original magnification 406). The tumour sample is composed of a mixture of tumor cells white arrow, stroma with a blood vessel black arrow,
inflammatory cells, i.e lymphocytes red arrow, and a remaining lung alveolus filled with macrophages green arrow. B) Deletion LOH. Normal cells are
indicated by oval cell shape. The deleted region in the tumor cells (rectangular cell shape) is indicated by white circles. Schematic chromosome pairs
with only informative markers A for the black and B for the red chromosme. Below each chromosome the genotype in the area of the deletion is
indicated. Cells with different copy number genotypes are labelled Nnormal, T2N, T1N, and T0N. N indicates that the cell is normal and T that it sis a
tumor cell. The subscripts for the tumor cells indicate the DNA content in the region with deletion. Since these are all the cell types in the sample the
proportions sum up to one. C) Copy neutral LOH. In this case the tumor cells all have 2N DNA content. However, some tumor cells are homozygous
(in this case BB) for the region of interest (Thom) and the other type is heterozygous AB (Thet). The sum of the fractions of cells equals one.
doi:10.1371/journal.pone.0006057.g001
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cellular composition of the sample. In a first step we set out to

identify the proportion of C2N cells by comparing the experimental

ABfs in a window of consecutive SNPs in regions with mono-allelic

deletions with simulated data. The simulations take factors into

account such as average heterozygosity, tumor cell copy number,

experimental variation and the composition of diploid cells and

tumor cells. Figure 2 illustrates how histograms of observed ABfs

are compared to simulated histograms with varying fractions of

C2N using the Euclidean distance. The histogram with the smallest

distance to the observed histogram identifies the corresponding

C2N (see Fig. 2 and METHODS).

Nnormal is not obtained directly from the estimate of C2N.

However, since the normal cells can be expected to have two of

each autosome their contribution to the ABf is expected to be

equally large for all autosomes, while the additional contribution

of T2N cells may vary with the tumor heterogeneity for each

chromosome. Thus, in samples where copy number loss is

detected on several chromosomes the lowest estimate of C2N for

a chromosome has the smallest contribution from 2N tumor cells.

In many cases where the deletion has caused a proliferation

advantage the contribution to the smallest C2N from 2N tumor

cells will with time be close to zero. Therefore in cases where

information from several chromosomes is available it may be

justified to estimate Nnormal as the smallest C2N.

Validation of SNP array based estimates by comparison
to manual counting of normal cells

We applied the method to 60 non-small cell lung cancer samples

(see METHOD). Forty-four out of sixty samples (73%) met the

arbitrary criteria that at least two regions on two different

chromosomes varied no more than 5% in their C2N estimates and

that could be used to provide an estimate of Nnormal (see

METHODS). The criteria have been set to take into account

the possible effect of constitutive allelic patterns resembling

CNNLOH. Most of the 16 cases for which no estimate could be

obtained did not have two deletions.

In order to validate the estimates of the normal cell fraction

based on the SNP data, a random subset of the 60 NSCLC

samples were selected for careful and extensive microscopic

counting of normal and tumor cells in frozen sections (see

Figure 2. Estimation of the proportion of heterozygous cells. Two examples of observed ABf values along chromosomes. Windows of at least
140 consequtive SNP markers are used to gather allele-specific information along the chromosome. The ABf values in each window are illustrated as
an observed histogram. In the next step the observed histogram is compared to hundreds of simulated histograms where the fraction of
heterozygous cells has been varied. The simulated histogram with the shortest Euclidean distance to the observed histogram identifies the most
likely proportion of heterozygous cells in the sample (X%). The comparison of histograms is used both for estimation of the proportion of diploid cells
(C2N) in regions where tumor cells have deletions and the proportion of heterozygous cells (Chet) in genomic regions with 2N tumor cells. C2N and Chet

are subsequently use for estimation of the fraction of normal cells and quantification of CNNLOH.
doi:10.1371/journal.pone.0006057.g002
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METHODS). Seven out of these cases overlapped with the 44

cases where Nnormal could be estimated, Table 1 shows the

estimates of the fraction of normal cells obtained using SNP array

data and manual counting based on morphology for these

samples. There is good agreement between the results obtained

by the two methods, which indicates that the SNP based method

provides accurate information on the fraction of normal cells in

tumor samples.

Quantitation of copy number neutral LOH in lung cancer
samples

It is necessary to quantify the fraction of normal cells present in

a tumor sample before information from SNP array analysis can

be used to estimate the fraction of tumor cells with 2N DNA that

has LOH, i.e. CNNLOH. CNNLOH = Thom/(Thom+Thet). (see

Fig. 1B). In this case it is the heterozygous tumor cells Thet that

together with the normal cells will modify the Allele B frequency of

the homozygous tumor cells with LOH. For CNNLOH the Allele

B frequency of the informative markers depends on the

heterozygous cells Chet. Simulated histograms taking varying

fractions of heterozygous cells into account were compared to

histograms based on ABf values from a moving window with a

fixed number of markers (see Fig. 2 and METHODS). The

simulated histogram most similar to the observed histogram,

identified the corresponding fraction of heterozygous cells, Chet. If

the fraction of normal cells Nnormal is known, CNNLOH can be

calculated, since 1 = Nnormal + Thom+Thet. To demonstrate the

value of CNNLOH Quantifier method we applied it to a set of

NSCLC samples (see METHODS). Genome-wide quantitative

measurements of CNNLOH are shown in Fig. 3. It can be noted

that there are recurring regions with high degrees of copy number

neutral LOH. One example on chromosome 11 is shown in Fig. 3.

Future work will be focused on elucidating the importance of copy

number neutral LOH in such regions for tumor development. For

comparison CNNLOH was also analyzed in 60 normal reference

samples (see Fig. S1).

Quantification of CNNLOH – comparison between FISH
and SNP data

In order to study the accuracy of the quantification of

CNNLOH we wanted to compare the results to those obtained

with an independent method. Gunnarsson et al have measured the

presence of small deletions on 13q14 in tumor cell preparations

from patients with chronic lymphocytic leukemia (CLL) using

fluorescence in situ hybridization (FISH) [18]. In two cases tumor

cells had acquired two copies of chromosome 13 with an internal

13q14 deletion. Thus, in these cases the proportion of CLL cells

with zero and one FISH signal represent the homozygous and

heterozygous tumor cells respectively. An estimate of the

CNNLOH on chromosome 13 outside of the deleted region on

13q14 can be obtained as the proportion of cells with zero signal

on 13q14 divided by the sum of the proportions with zero and one

signal. Due to too few regions with deletions the proportion of

normal cells could no be obtained from the SNP data. Instead flow

cytometry data from Gunnarsson et al 2008 provided this

information. Thus, the proportion of normal cells from flow

cytometry and SNP array data for the two samples was used to

quantify CNNLOH. Table 2 shows the estimates of CNNLOH

obtained by the two methods. It can be noted that the estimates

only differ by 4 and 6% in the two samples, which indicates that

the measurement of CNNLOH is accurate.

Quantification of CNNLOH is robust to variations in
sample purity

An important requirement for the quantification of CNNLOH

is that the method should be robust and not influenced by the

fraction of normal cells in the sample. In order to test the

performance of the algorithm we varied the fraction of normal

cells in a tumor sample by enriching for tumor cells. In five cases

6 000–10 000 tumor cells were selected using laser microdissection

(see METHODS). Standard Affymetrix SNP array analysis was

performed on DNA from these tumor-enriched preparations. The

fraction of normal cells and tumor LOH for copy number neutral

regions was quantified and the results were compared to the results

from crude tumor samples (Fig. 4). The measurements of

CNNLOH in the crude samples appear to be highly consistent

with those in the microdissected samples. In order to quantify the

performance of CNNLOH detection we chose to count the

number of chromosomal segments in Fig. 4 that had tumor LOH

higher than an arbitrarily set threshold, in this case 0.5 in both

samples. This procedure provides a rough estimate of the ability to

detect CNNLOH. Table 3 shows the ratio of number of segments

that were detected in the microdissected sample compared to the

whole sample. The ratio is close to one for all samples indicating

that approximately the same numbers of segments are detected

irrespective of fraction of normal cells that varied between 1% and

26%. It could be argued that the fraction of normal cells is so low

that it is difficult to observe any difference between the pairs of

samples. However, studying the robustness of copy number

detection it can be noted that in three pairs of samples (13A,

296A and 319A) there was a dramatic reduction (up to 122-fold) in

the number of segments detected as bearing copy number

aberrations in the whole sample (see Table 3.). In summary, the

analysis of CNNLOH appears to be robust, while copy number

detection may be highly influenced even by a proportion of

normal cells in the range of 1–26%, which is modest for many

types of clinical tumor specimens.

Performance of CNNLOH detection on simulated data of
mixtures of normal and tumor cells

The CNNLOH Quantifier method presented here can identify

CNNLOH and quantify the fraction of tumor cells that has

CNNLOH. The method appears to be robust to variations in the

tumor cell content in clinical specimens. However, it would also be

interesting to compare its performance to other methods. To this

end SNP array data was collected from tumor cells in a

microdissected lung cancer sample and from lung cancer tissue

Table 1. Estimation of the fraction of normal cells.

Sample
Fraction of normal cells,
SNP-based

Fraction of normal cells,
counting

367A 0.23 0.29

347A 0.58 0.50

319A 0.23 0.23

234A 0.17 0.20

189A 0.45 0.48

165C 0.42 0.38

39A 0.52 0.55

Comparison between estimates of the fraction of normal cells in Non-Small Cell
Lung Cancer samples using either manual light microscope counting or the SNP
array based method. (see METHODS).
doi:10.1371/journal.pone.0006057.t001
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outside of the tumor from the same patient. Based on this

information we simulated data from mixtures of normal and

tumor cells. In order to measure performance in terms of

sensitivity and specificity we used LOH detected by paired

analysis of the tumor sample and its normal control using dChip in

copy number 2 regions as the gold standard that defined

CNNLOH. We wanted to compare the CNNLOH Quantifier

method to other methods also using allele-specific information.

These methods have been shown to outperform genotype-based

methods [13]. AsCNAR is one such method but the presently

available implementation is not flexible enough to use on this type

of simulated data. On the other hand the SOMATICS method

was designed for data from the Illumina SNP platform, but could

be adapted to analyze simulated data based on data from the

Affymetrix platform. Therefore we chose to compare performance

of the CNNLOH Quantifier method with SOMATICS (see

METHODS for details). Sensitivity and specificity of the methods

for varying mixtures of normal and tumor cells are shown in

figure 5AB. It can be noted that CNNLOH Quantifier has a sharp

increase in sensitivity, above 40% tumor cells, that is due to the

threshold of CNNLOH calling that corresponds to a fraction of

35% tumor cells. CNNLOH Quantifier has a higher sensitivity of

about 90% compared to 60% for SOMATICS for fractions of

tumor larger than about 50% (see Fig. 5A). Specificity is generally

higher for CNNLOH Quantifier compared to SOMATICS (see

Fig. 5B). The sensitivity of SOMATICS was lower than what has

been previously reported for data based on SNP array data from

the Illumina platform [13]. We hypothesized that the SO-

MATICS algorithm performs differently on data generated by

the two platforms. In Gunnarsson et al the same DNA

preparations from CLL tumors were analyzed on both 250K

arrays from Affymetrix and 317K arrays from Illumina [18]. We

analyzed both data sets from 9 CLL tumors with SOMATICS and

found that the algorithm identified more CNNLOH using

Affymetrix data. The ratios of the length of the detected

CNNLOH regions with Affymetrix data compared to Illumina

data range from 1.9 to 36 (see Table S1). These additional regions

of CNNLOH identified using the Affymetrix data may to a large

extent be false positives due to the larger experimental noise. Such

a large number of false positives would be consistent with the low

sensitivity of SOMATICS in detection of CNNLOH in the

simulated data based on Affymetrix data (see Fig. 5A).

Table 2. Validation of CNNLOH estimates using FISH.

Sample SNP-array FISH

6 44% 38%

7 84% 88%

CNNLOH estimates just outside of the chromosome 13q14 region in two CLL
samples based on analysis of SNP data compared with CNNLOH estimates
obtained from FISH analysis on chromosome 13q14 in Gunnarsson et al 2008.
Due to too few regions with deletions in these samples SNP data could not be
used to quantify the fraction of normal cells. Instead flow cytometry data from
Gunnarsson et al 2008 was used to obtain the fraction of normal cells. This
information together with the SNP array data was used to quantify CNNLOH.
doi:10.1371/journal.pone.0006057.t002

Figure 3. Genome-wide quantitation of copy number neutral
tumor LOH. A) Quantitative information on tumor LOH ranging from
black 0% to red 100% for the 22 autosomes for 43 non-small cell lung
cancer samples each representing one row. Deletions are indicated by
green and amplifications in blue. Regions where more than 10% of the
samples in a normal reference set had CNNLOH higher than 0.5 was

removed from the plot (see METHODS). Black arrow indicates an
example of a region on chromosome 11 with a higher frequency of
copy number neutral LOH (52%) than the maximum frequency of 10%
in the normal reference set.
doi:10.1371/journal.pone.0006057.g003
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Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki and was approved by the regional

ethical review board in Uppsala (reference number 2006/325).

The need to obtain individual consent from each patient was

waived by the ethical review board, since most of the patients of

the study population (.90%) were deceased at the start of the

project, the research results did not imply any medical risks, and

the results could not alter the information to the patients, their

families or change management. The procedure is in full

agreement with the Swedish Ethical Review Act.

Tumor samples, histological estimation of tumor cell
content and DNA preparation

Fresh frozen human NSCLCs were obtained from the Uppsala

Fresh Tissue Biobank and used in accordance with the Swedish

biobank legislation. The tumor specimens emanated from patients

from a cohort defined by that they were registered in the Uppsala/

Örebro lung cancer registry as having NSCLC, had a frozen tissue

sample in the tissue bank and were diagnosed while alive. Case

status was verified by histopathological review and study of

medical records. Hematoxylin-eosin stained cryosections (4 mm)

were prepared from the frozen OCT-embedded tumor tissue

blocks and reviewed microscopically by a surgical pathologist.

Sixty cases with an estimated tumor cell content over 50% were

included in the study. For a subset of these samples (Table 1) we

performed a careful manual counting of tumor and normal cells by

light microscopy using grids in high power magnification fields

(hpf). At least 2000 cells were counted in 5–10 different areas of

the frozen section depending on the size and heterogeneity of the

tumor sample. For each sample genomic DNA was extracted from

5–10 frozen tissue sections (10 mm) using the QIAamp DNA Mini

Kit (Qiagen) according to the manufacturer’s protocol.

Laser Capture Microdissecion of lung cancer samples
Microdissection was performed as previously described with

minor modification [19]. From 5 lung cancer samples, 12 mm

thick cryosections were prepared, transferred to PALM mem-

Figure 4. Tumor LOH analysis is robust to variations in normal cell content in crude tumor samples and enriched tumor
preparations from the same cases. Five tumor samples 13A, 234A, 296A, 319A and 367A were analyzed for tumor LOH using both DNA from
fresh frozen sections of the whole tumor and from laser microdissected portions of the tumor sections with enriched tumor content. The degree of
tumor LOH is indicated for 200 kb chromosmal segments in color ranging from black (0%) to dark red (100%) along the 22 autosomes. Segments
with copy number aberrations are indicated with deletions (green) and amplifications (blue). Note in an enlarged section of chromosome 7 that the
CNNLOH measurements are approxiamately equal in the pairs of whole and microdissected tumor samples.
doi:10.1371/journal.pone.0006057.g004

Quantification of LOH
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brane-coated glass slides, and stored at 280uC. Immediately prior

to microdissection, sections were thawed and stained with

hematoxylin for 2 minutes followed by fixation in a zinc fixative

for 1 minute and dehydration for 1 minute in 70% and 95%

ethanol respectively. Utilizing the PALM Laser-MicroBeam

System, selected tumor areas containing 6000–10000 cells were

microdissected and transferred by means of a laser puls to 15 ml

DNA extraction buffer ATL (Qiagen) in the cap of a microfuge

tube. DNA extraction was then performed using the QIAamp

DNA Micro Kit according to the manufacturer’s protocol

(Qiagen).

Analysis on Affymetrix 250K SNP arrays
Array experiments were performed according to the standard

protocols for Affymetrix GeneChipH Mapping 250K arrays (Gene

Chip Mapping 500K Assay Manual (P/N 701930 Rev2.),

Affymetrix Inc., Santa Clara, CA). Briefly, total genomic DNA

was digested with a restriction enzyme (Nsp1), ligated to an

Table 3. Quantitation of copy number aberrations and CNNLOH in samples with varying proportions of normal cells.

Sample Segments with CN loss Segments with CN gain Segments with CNNLOH.0.5

13A, N = 0.26 264 590 900

13A micro, N = 0.11 1349 1502 1226

13A micro/13A 5.0 2.6 1.4

234A, N = 0.20 1568 988 831

234A micro, N = 0.14 1581 953 808

234A micro/234A 1.0 1.0 1.0

296, N = 0.36 16 226 302

296 micro, N = 0.02 1958 887 505

296 micro/296A 122 3.9 1.6

319, N = 0.23 1036 1823 1274

319 micro, N = 0.01 2221 2116 1269

319 micro/319A 2.1 1.2 1.0

367, N = 0.23 2446 1324 873

337 micro, N = 0.01 2649 2026 593

367 micro/367A 1.1 1.5 0.7

The number of genomic segments with predicted copy number gain or loss is indicated for each sample. The number of segments with CNNLOH larger than 0.5 and no
copy aberrations detected in either analysis are also shown. The ratio of the number of aberrations in the microdissected and whole samples are indicated. For the
samples with large differences in detection of segments with copy number differences, such as 13A, 296A and 319A, the corresponding detection of CNNLOH appears
to be more robust. The proportion of normal cells for each sample is obtained either from manual counting (whole samples) or by the method presented here
(microdissected samples).
doi:10.1371/journal.pone.0006057.t003

Figure 5. Performance of tumor-only analysis using CNNLOH Quantifier and SOMATICS on simulated data corresponding to virtual
mixtures of normal and tumor cells. Data corresponding to varying fractions of normal and tumor cells was simulated using data from normal
cells and microdissected tumor cells from the same lung cancer tumor. The performance of the two algorithms was evaluated as sensitivity (A) and
specificity (B) compared to CNNLOH detected by dChip in a paired analysis of SNP array data of the normal and tumor cells.
doi:10.1371/journal.pone.0006057.g005

Quantification of LOH
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appropriate adapter for the enzyme, and subjected to PCR

amplification using a single primer. After digestion with DNase I,

the PCR products were labeled with a biotinylated nucleotide

analogue using terminal deoxynucleotidyl transferase and hybrid-

ized to the microarray. Hybridized probes were captured by

streptavidin-phycoerythrin conjugates and finally the arrays were

scanned. Quality control QC, genotype calling and copy number

analyses were made in the Affymetrix GeneChipH Genotyping

Analysis Software (GTYPE) 4.1. The Dynamic Model (DM)

algorithm was used to perform single sample QC. The QC

specification for 250K is a Call Rate .93% using the algorithm

defaults. Subsequent copy number analysis was performed using a

Hidden Markov Model available in the Copy Number Analysis

Tool (CNAT) 4.0.1 with the following parameter settings:

Transition decay 5 Mb, Median normalization and 0.3 Mb

smoothing factor. The reference set used consisted of 96 CEU

samples from the HapMap project (www.hapmap.org/down-

loads/raw_data/affy500k/).

Quantification of the fraction of normal cells
As a first step genomic regions inferred to contain mono-allelic

deletions were identified using the Affymetrix Software CNA 4.0.1

as described above. In order to estimate the fraction of cells with

2N genomic content, C2N, allele-specific information was used.

The Affymetrix SNP raw data was normalized in the software

dChipSNP using the model-based expression method and a

background subtraction method that uses mismatch probes (PM/

MM difference) [6]. The normalized signals were then used to

calculate allelic intensity ratios Ri for each SNP (Ri = B/(A+B)). To

take into account that the same number of A and B alleles may

produce different signals in the assay the allelic ratios were

normalized to allele B frequencies (ABf) for a particular SNP locus

in a given sample by a linear interpolation of the known allele

frequencies for the three genotypes (0, 0.5 and 1.0), as derived and

graphically illustrated in Peiffer et al 2006 [17]. In short the ABf for

a given SNP i was calculated as follows:

if Riv~mABi

ABfi~0:5{mABi{Ri= mABi{mAAið Þ � 0:5

else

ABfi~0:5zRi{mABi= mBBi{mABið Þ � 0:5

where Ri is the allelic intensity ratio and mAA,AB,BB are the mean

allelic intensity ratios for a reference population, for the particular

SNP. The reference set was the same as described for copy

number analysis above. Only the SNPs where an AB call was

present in the reference population were used. For the SNPs where

no homozygous calls were available, the mean AA or BB signal for

all SNPs in the samples in the reference population was used

instead.

A histogram of the allele-specific Allele B frequency information

for the markers on each autosome with copy number loss was

computed. The observed histogram was compared to simulated

histograms for varying fractions of C2N. The C2N of the most

similar histogram is the one most likely to have given rise to the

observed data (see Fig. 2). The simulations describe the variation

in ABf due to variation in the signals from A and B alleles by

drawing A and B signals from normal distributions estimated from

regions with copy number 2. The mean and variance for the

distributions were (0, 0.015) for allele A and (0.995, 0.015) for

allele B. The average degree of heterozygosity was estimated from

copy number 2 regions to 36.7%. Simulated ABf values were

calculated as the sum of simulated Allele B signals divided by the

sum of Allele A and B signals from cells composing the virtual

sample. For example when simulating samples with higher

fractions of 2N cells, the proportion of simulated cells with both

A and B signals is also increased. To maintain the average degree

of heterozygosity and to obtain stable histograms they were based

on the ABf values from the uneven number of 14 848 simulated

SNP loci (see more detailed description of choice of settings in

Text S1). Choosing another sufficiently large number of simulated

loci would produce very similar histograms. The histograms were

normalized to unit area to represent the expected pattern for each

of the 200 steps that varied the fraction of C2N cells between 0 and

67%. The smallest Euclidean distance between the observed

histogram and the histograms with varying C2N identified the

fraction most likely to have given rise to the observed Allele B

frequency pattern. Due to the distribution of the ABf values of the

informative markers around 0.5 we chose to use only bins 5 to 16

to increase the weight of their information. To obtain reasonably

well populated and robust histograms, we chose a minimum of 140

markers/chromosome for estimation of C2N. The smallest number

that will give acceptable performance will depend on the

experimental noise of the data and may vary between data sets.

At least two regions on two different chromosomes that varied less

than 5% in their C2N estimates were required for min(C2N) to be

used as an estimate of Nnormal (see motivation of choice of settings

in Text S1).

Quantitation of copy number neutral tumor LOH in
tumor-only samples

In the case of CNNLOH it is the fraction of heterozygous cells

Chet that modify the Allele B frequency of the homozygous tumor

cells with LOH. Chet = Thet+Nnormal. Histograms were simulated

in the same way as for as above except taking into account the 2N

tumor DNA content and varying Chet between 0 and 91% in 1000

steps. It can be noted that ABf of a tumor sample containing 2N

homozygous tumor cells will be less affected by heterozygous cells

than a sample with 1N tumor cells. These histograms were

compared to normalized histograms based on 2N regions with 140

consecutive markers scanning the diploid regions. The smaller the

window size the larger the risk for false positives. The performance

of the algorithm will also be dependent on the experimental noise

in the data set. We choose a window size of 140 markers to obtain

reasonable resolution and performance on our data set. The

simulated histogram most similar to a particular observed

histogram identified the corresponding fraction of heterozygous

cells, Chet. If the fraction of normal cells Nnormal is known,

Thet = Chet2Nnormal and Thom = 12Nnormal2Thet. Thus, we can

estimate the fraction of tumor cells with LOH, which is defined as

CNNLOH = Thom/(Thom+Thet). In genomic regions with local

stretches of homozygous SNP genotype calls in the normal cells

the assumption of average homozygosity is violated and a non-

tumor specific CNNLOH signal is detected. In order to avoid

these cases genomic regions with a CNNLOH score higher than

0.5 in 10% or more of the samples of a normal reference set is

removed from the analysis. This is a threshold similar to what has

previously been used [20]. The reference set used was 60 CEU

samples from the HapMap project. A plot of CNNLOH in the 60

reference samples with the regions above the threshold removed is

shown in Figure S1.

Visualization of CNN LOH data
Regions with CNNLOH estimates are mapped to virtual

200 kb genomic regions for each chromosome in each sample. In

order to illustrate the tumor LOH information from several

Quantification of LOH
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samples the virtual probes with tumor LOH information from at

least one sample are visualized using the DIGMAP software [21].

The virtual probes without LOH information are assigned the

average value of neighboring probes with information. Copy

number information for the virtual probes is overlaid the tumor

LOH information.

Simulations and analyis of SNP array data from mixtures
of normal cells and tumor cells

SNP array data including Log2- and Allele B frequency values

from the microdissected lung cancer sample 13A and the

corresponding normal genomic DNA called 13C from the

surrounding normal lung tissue was collected. The Allele B

frequency data for virtual mixtures of these two samples (from 0%

to 100% in 5% steps) was simulated by linear interpolation for

each marker. Log2-values and copy number information from the

microdissected tumor sample was used for all virtual samples.

CNNLOH Quantifier and SOMATICS was used to analyze the

simulated data. The results were compared to a gold standard

which was the LOH detected in copy number 2 regions in a paired

analysis of the tumor sample 13A and the paired control 13C using

dChip. All markers in copy number 2 regions with an ABf-pattern

corresponding to 35% homozygous cells or higher were consid-

ered as CNNLOH for the CNNLOH Quantifier algorithm.

Markers detected as CNNLOH in more than 10% of a set of 60

reference samples from the HapMap project were regarded as

false positives and removed from the analysis. Sensitivity and

specificity of detection was measured for SOMATICS and

CNNLOH Quantifier.

Data and software
All microarray data reported here is described in accordance

with MIAME guidelines and has been made publicly available

through GEO with the accession number GSE16092. Computer

code written in MATLAB is available from the authors upon

request.

Discussion

Identification of informative SNPs
A key issue in detection of LOH and quantification of genomic

aberrations in tumor samples is to identify the informative SNPs.

The informative SNPs are those that are heterozygous in the

normal cells of the patient. These markers can loose their

heterozygosity and their allele frequency is dependent on the

relative proportions of heterozygous normal and tumor cells, and

tumor cells that have undergone LOH. In the case of paired

analysis, a normal sample is available and the informative SNPs

are those that are heterozygous in this sample. It is more difficult

to identify the informative SNPs in a tumor-only analysis when the

genotype of the normal sample is unknown.

One recently developed tool, AsCNAR, identifies the informa-

tive SNPs as those that are called heterozygous in the tumor

sample [12]. This is a simple and efficient strategy in the common

cases where there is a significant proportion of normal cells in the

tumor sample. Another tool SOMATICs identifies informative

SNPs based on statistical considerations. However, both of these

tools have difficulty analyzing tumor samples with a low degree of

heterogeneity, when the informative SNPs are difficult to

distinguish from the uninformative ones. In contrast, CNNLOH

Quantifier does not suffer from the same limitations, since it does

not rely on identification of informative SNPs. Instead it uses a

fixed average heterozygosity rate estimated from samples in a

reference population. The risk that the fixed heterozygosity rate is

not appropriate for every studied region in a particular sample

appears to be small, since few regions are identified as having

LOH in our reference population of normal samples. However,

for all tumor-only methods including CNNLOH Quantifier it is

difficult to exclude CNNLOH signals due to regions with

homozygous markers in the constitutive DNA in pure tumor

samples. CNNLOH Quantifier handles this issue by removing

regions with more than 10% of the reference samples exceeding a

35% or 50% CNNLOH threshold from further analysis. However,

even with such a threshold, CNNLOH signals due to signals from

constitutive DNA may occur. Therefore we suggest validating

CNNLOH findings in constitutive DNA when available. A

possible improvement to the method described here could be to

use a variable heterozygosity rate based on a moving average from

the reference data set, but this has not been investigated further.

Copy number information is required to interpret allele
frequency information

Another fundamental feature of the algorithm described here is

the need to have access to correct copy number information

because it determines how much the SNP signal information is

going to be affected by genetically normal cells. The Allele B

frequency is affected more in regions with copy number one than

with copy number 2 because the alleles from the normal cells

constitute a larger proportion of all alleles. When estimating tumor

heterogeneity using CNNLOH Quantifier an implicit assumption

is made that there is only one type of genomic aberration at each

locus. Although an important theoretical limitation, potential

additional genomic aberrations appear to be small in magnitude or

rare events in practice, at least in the tumors we studied, since the

validation experiments indicate good accuracy of the method. One

explanation is that many genomic aberrations provide a

proliferation advantage. Thus, the cells containing these aberra-

tions will become more frequent during tumor development than

cells with other aberrations at the same locus not promoting

proliferation or doing so to a lower extent.

The sensitivity to variation in normal cell content exhibited by

current algorithms for detection of copy number aberrations in

tumor cells, such as CNAT 4.0.1 used here, presents a more

serious problem (see Fig. 4 and Table 3). Failure to adequately

detect copy number aberrations provides inaccurate input data for

the quantification of normal cells and CNNLOH. Undetected

deletions will reduce the available information on which to base

the quantification of normal cells on and may preclude

determining the fraction of normal cells in some samples. For

quantitation of CNNLOH undetected copy number 1 regions will

be analyzed as copy number 2 regions and will therefore receive

exaggerated estimates of CNNLOH. However, the deletions that

are detected appear to be correct, since the estimates of normal

cell content are in agreement with those based on microscopic cell

count.

The evaluation of the performance of the CNNLOH Quantifier

method indicates that it has a higher sensitivity than SOMATICS

at least on data generated using Affymetrix SNP arrays (see

Fig. 5A). The difference in performance of the SOMATICS

algorithm depending on the data source may be explained by

previously shown differences in experimental noise between data

generated on the two platforms [18]. The SOMATICS algorithm

identifies informative SNPs by statistical methods which becomes

more difficult in the more noisy Affymetrix data. The CNNLOH

Quantifier algorithm does not identify each informative SNP but

studies the pattern of a group of consecutive SNPs and thus is

more robust to experimental noise. The downside of studying a

group of SNPs is that the method sometimes identifies too many
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markers as CNNLOH, which affects specificity negatively (see

Fig. 5B).

Summary
In this study we provide a novel algorithm, CNNLOH

Quantifier, for genome-wide quantification of CNNLOH from

SNP array data. We demonstrate that the fraction of normal cells

in tumor samples, as well as copy number neutral LOH, can be

accurately estimated in tumor cells. Since the use of SNP array

data provides genome-wide information, it will now be possible to

quantify common and rare events of CNNLOH in tumor cells

from samples containing normal cells. Our algorithm may also be

applied to screen for biomarkers that may be used for early

detection of cancer. Additionally, this tool can be used to monitor

how rapidly cells with a particular genomic aberration increase in

a population of tumor cells during tumorigenesis. Given the

complex nature of clinical tumor biobank material that forms the

basis for translational cancer research, the development of

bioinformatic tools that can process data from heterogeneous

tumor samples with varying fractions of normal cells is of great

importance.

Supporting Information

Figure S1 Quantification of CNNLOH in the normal reference

samples Quantitation of copy number neutral LOH in the 60

normal reference samples. Regions with CNNLOH above 0.5 in

more than 10% of the samples have been removed. Note that

allelic patterns of CNNLOH are present in several regions in

individual samples. Thus, frequently recurring CNNLOH in

tumor cells can be identified, while it is difficult to identify an

individual tumor-specific CNNLOH event in an individual tumor

sample.

Found at: doi:10.1371/journal.pone.0006057.s001 (1.30 MB TIF)

Table S1 Size of the regions detected as CNNLOH using

SOMATICS on Affymetrix and Illumina data from 9 Chronic

Lymphocytic Leukemia samples described in Gunnarsson et al

[18]. Ratio of the length of regions detected on Affymterix and

Illimina data. Note that SOMATICS detects more CNNLOH

using Affymetrix data than with Illumina data.

Found at: doi:10.1371/journal.pone.0006057.s002 (0.03 MB

DOC)

Text S1 Choice of settings.

Found at: doi:10.1371/journal.pone.0006057.s003 (0.03 MB

DOC)
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