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DNA damage constantly threatens genome integrity, and DNA repair deficiency is
associated with increased cancer risk. An intuitive and widely accepted explanation for
this relationship is that unrepaired DNA damage leads to carcinogenesis due to the
accumulation of mutations in somatic cells. But DNA repair also plays key roles in the
function of immune cells, and immunodeficiency is an important risk factor for many
cancers. Thus, it is possible that emerging links between inter-individual variation in DNA
repair capacity and cancer risk are driven, at least in part, by variation in immune function,
but this idea is underexplored. In this review we present an overview of the current
understanding of the links between cancer risk and both inter-individual variation in DNA
repair capacity and inter-individual variation in immune function. We discuss factors that
play a role in both types of variability, including age, lifestyle, and environmental exposures.
In conclusion, we propose a research paradigm that incorporates functional studies of
both genome integrity and the immune system to predict cancer risk and lay the
groundwork for personalized prevention.
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1 INTRODUCTION

Why some individuals are more susceptible to cancer than others remains a fundamental
unanswered question in cancer biology. Both immunodeficiency and DNA repair deficiency are
associated with elevated cancer risk. The canonical hypothesis regarding DNA repair deficiency is
that unrepaired DNA damage leads to increased somatic mutations and malignant transformation
of somatic cells. An alternative, underexplored hypothesis is that DNA repair deficiency increases
cancer risk, at least in part, by leading to impaired immune cell function. Immunodeficiency is
associated with profound defects in some DNA repair pathways, but for some, like nucleotide
excision repair, how they contribute to immune function is not yet understood. Furthermore, it
remains unclear how inter-individual variation in immune function and DNA repair capacity
(DRC) among the general population collectively contribute to cancer risk. We propose that
integrating blood-based genome integrity assays and immunophenotyping could afford improved
predictions of cancer risk and ultimately open new opportunities for precision prevention and
treatment of cancer.

Here we provide an overview of the current understanding of the origins of inter-individual
variation in both DNA repair and immune function, and the extent to which they have been shown
to contribute to cancer risk. We have structured two sections on inter-individual variation in DNA
repair (Section 2) and immune function (Section 3) similarly to underscore the many parallels
org July 2022 | Volume 13 | Article 8995741
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between two fields that have largely developed independently.
We discuss the role of each process in cancer risk, as well as
genetic and non-genetic mechanisms contributing to inter-
individual variation. After discussing the potential for
integrating immunophenotyping and genome integrity assays
into cancer risk prediction (Section 4), we highlight emerging
technologies that are increasingly making such analyses feasible
(Section 5), and close with a list of open questions
recommendations for future studies (Section 6) and a brief
synopsis (Section 7).
2 VARIATION IN DNA REPAIR AND ITS
RELATIONSHIP TO CANCER RISK
AND CARCINOGENESIS

2.1 DNA Repair Protects Against Cancer
Genome integrity is constantly threatened by endogenous and
environmental DNA damaging agents. These agents include
reactive oxygen species (ROS) generated by normal cellular
metabolism, errors in DNA replication, ultraviolet (UV) light,
ionizing radiation, and mutagenic chemicals (1). While
unrepaired DNA damage can lead to disease by promoting cell
death, transcriptional stress, senescence, and mutations (2),
DNA repair limits these processes by maintaining genome
integrity. Depending on the agent, DNA can be damaged in
numerous ways. The types of DNA damage include base damage,
single strand breaks, inter- and intra-strand crosslinks, bulky
adducts, methylated DNA adducts, mismatches, and double-
strand DNA breaks (DSBs). Complexes of DNA repair proteins
form DNA repair machines that specialize in the removal of
particular types of DNA damage, and defects in one or more of
Frontiers in Immunology | www.frontiersin.org 2
the DNA repair pathways increase the frequency of specific types
of mutations in the genome (3) (Figure 1). As DNA damage and
repair have been extensively reviewed elsewhere (1, 4, 5), we will
not cover the detailed mechanisms here.

2.2 Defects in DNA Repair Are Linked to
Cancer-Prone Genetic Disorders
Genome instability is a hallmark of cancer, and nearly all cancers
are caused by one or more somatic mutations induced by DNA
replication in the presence of DNA damage (6, 7). As our
understanding of the etiology of cancer mutation signatures
advances rapidly, it is becoming evident that genomic
alterations in individual cancers can often be attributed to
specific DNA damaging agents and DNA repair defects (3, 8–
11). Historically, much has been learned from constitutional
DNA repair deficiency syndromes that are associated with
elevated cancer risk in humans. Below we highlight examples
for several DNA repair pathways. In subsequent sections, we
discuss variability in DNA repair in the general population,
which is emerging as a potential predictor for cancer risk (12,
13) (14) (15).

Nucleotide excision repair defects in xeroderma
pigmentosum (XP) patients are associated with an extremely
high risk of skin cancers due to the inability to repair UV-
induced DNA damage (16). Early studies revealed seven
complementation groups that correspond to the DNA repair
genes XPA, XPB, XPC, XPD, XPE, XPF, and XPG. Deficiency in
the translesion DNA polymerase eta (aka POLH or XPV) also
causes XP in humans (17) (18). Cells from these individuals
exhibit normal NER, but are deficient for accurate replicative
bypass of unrepaired UV-induced DNA damage, resulting in an
increased rate of UV-induced mutagenesis. In the case of
combined XP and Cockayne syndrome (XP-CS), mutations in
FIGURE 1 | DNA repair pathways and their association with cancer and immune disorders. Genome integrity is maintained by multiple DNA repair pathways.
Depending on the type of DNA damage, specific subsets of DNA repair proteins recognize and repair the damage. For instance, single strand breaks, abasic sites,
and single base lesions are primarily repaired by base excision repair (BER). Some types of alkylation damage, such as O6-methylguanine and 1-methylguanine, are
repaired by direct reversal (DR). Intra-strand crosslinks and bulky lesions are repaired by nucleotide excision repair (NER). Mismatched bases are repaired by
mismatch repair (MMR), whereas double strand breaks are resolved by homologous recombination (HR) or non-homologous end joining (NHEJ). Unrepaired DNA
lesions may give rise to somatic mutations and cancer. Deficiency in BER, NER, MMR, and NHEJ is also associated with immunodeficiency, which increases cancer
risk(s).
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XPB, XPF, XPD, or XPG have been detected among patients.
These patients display a mild XP phenotype. Yet, despite the
universality of DNA repair deficiency, skin cancers are rare
except in those with mutations in XPB or XPD (19). XP-CS
patients with mutations in XPG are photosensitive and have skin
freckling, but skin cancers are rare. This may be in part due to
very early mortality, but the severe photosensitivity phenotype
that commonly accompanies XPG-CS also leads to early
diagnosis and better sun protection for these patients.

Numerous diseases are associated with defects in double
strand break repair. Fanconi Anemia is caused by mutations in
a group of genes involved in both DSB repair and the repair of
DNA inter-strand cross-links (20). Patients commonly
experience immunodeficiency due to bone marrow failure and
are at increased risk of acute myeloid leukemia (21). Mutation in
Werner syndrome protein (WRN) predisposes to cancer. WRN
is a RecQ family DNA helicase with well-established roles in both
non-homologous end joining (NHEJ) and homologous
recombination (HR), as well as emerging roles in base excision
repair (BER) and nucleotide excision repair (NER) (22). Patients
withWerner syndrome display premature aging, and have higher
risks of cancer and cardiovascular disease (23–26). WRN patients
develop thyroid epithelial neoplasms, melanoma, and soft tissue
sarcomas, as well as leukemia and primary bone neoplasms (27).
RECQL4 is involved in NHEJ (28, 29), HR (30), NER, and BER
(31), and its mutation is known to induce trisomy, aneuploidy,
and chromosomal rearrangements. RECQL4 deficiency is
associated with several diseases, including Rothmund-Thomson
syndrome (RTS), RAPADILINO syndrome, and Baller-Gerold
syndrome (BGS) (32). Patients with RTS or RAPADILINO have
higher risk for osteosarcoma and lymphoma (33, 34). LIG4
syndrome is caused by deficiency in Ligase IV, which is
essential for NHEJ (35). Patients with LIG4 syndrome exhibit
severe combined immunodeficiency due to the role of NHEJ in V
(D)J recombination, a key process for antibody diversification
(36). Ataxia telangiectasia (A-T) is a DNA damage response
disorder caused by mutations in the Ataxia telangiectasia
mutated (ATM) gene. Among other symptoms, patients with
A-T experience immunodeficiency and are at increased risk for
cancer, particularly lymphoid malignancies (37).

Several diseases are associated with defects in base excision
repair and single strand break repair (38) (39). MutY DNA
glycosylase (MUTYH) -associated polyposis (MAP) arises from
germline mutation of MUTYH. Characterized mainly by the
biallelic germline mutations of Y165C or G382D in MUTYH,
MAP is associated with colorectal adenomas and carcinomas (40,
41). As a BER protein, MUTYH functions to remove adenine
opposite 8-oxo-7,8-dihydroguanine (OG), which is left
unrepaired by 8-oxoguanine DNA glycosylase (OGG1), and
thereby prevent G:C to T:A transversion mutations (42). Some
MUTYH variants are associated with diminished OG:A repair
(43), leading to higher colorectal cancer (CRC) risk (44) (45).
Defects in uracil DNA glycosylase (UNG) result in an extreme
immunodeficiency known as Hyper-IgM syndrome due to the
central role of this enzyme in antibody diversification (46). While
UNG deficiency is too rare to allow reliable estimates of its
Frontiers in Immunology | www.frontiersin.org 3
consequences for cancer risk, in general Hyper-IgM patients
suffer from higher rates of malignancy (47). Similarly, deficiency
in the Nth like DNA glycosylase 1 (NTHL1) is associated with a
tumor syndrome that is dominated by colorectal cancer but
includes several other malignancies (48–50).

Constitutional mismatch repair deficiency is an extremely
rare disease that is associated with increased risk of a wide range
of malignancies (51). Lynch syndrome is another DNA repair
deficiency syndrome associated with cancer. It arises from the
presence of one or more mismatch repair (MMR) gene
mutations (52). While the normal tissues in Lynch syndrome
patients often do not exhibit detectable MMR defects, Lynch
syndrome is associated with MMR-deficient cancers with high
microsatellite instability (MSI) (53).

2.3 Factors That Contribute to Variation
in DRC
While much has been learned from diseases associated with
DNA repair deficiency, they are relatively rare and represent the
extremes of inefficient DNA repair in human populations. In the
general population, DNA repair gene polymorphisms, age,
environmental exposures, and lifestyle are several major factors
thought to give rise to inter-individual variation (12). Variation
in DRC is a consequence of the collective influence of
these factors.

2.3.1 Genetics
A large number of polymorphisms have been identified in DNA
repair genes, and their associations with cancer imply functional
consequences. While relatively few studies have investigated
functional significance directly, accumulating research supports
genetic variation as an important driver of inter-individual
variation in DRC (Table 1). For example, variant alleles of X-
Ray repair cross complementing 3 (XRCC3) are associated with
higher levels of bulky DNA adducts (59). XRCC1 variants may be
associated with either higher or lower BER repair activities (60,
62–64). XPD polymorphisms decrease XPD expression, with the
most pronounced effect seen in older individuals (55). Some
OGG1 variants are associated with higher percentage tail DNA
measured using comet assays (% tail DNA). Variant genotypes of
BER and NER genes have also been associated with a wide variety
of markers of genome instability. These include micronuclei and
baseline %TD (58, 61, 66), chromosome breaks (62), sister
chromatid exchanges (56, 60, 61), deletions and dicentric
chromosomes (56), DNA adduct levels (59), overall BER repair
activities (65), repair of radiation-induced damage (54) (58) (56),
and repair of oxidative damage (54) (43), with cumulative effects
for individuals with variant alleles in multiple DNA repair genes
(57). While genetic determinants of DRC might be presumed
exert similar effects on all tissues, this may not be true in light of
evidence from animal models indicating tissue-dependent allele
specific expression (67).

2.3.2 Aging
An age-dependent decline in DRC and DNA damage
accumulation has been proposed as a key mechanism
July 2022 | Volume 13 | Article 899574
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underlying aging (68), and ongoing studies are beginning to
uncover interventions that may mitigate the effects of
compromised genome integrity in older individuals (69). The
presence of age-dependent changes and the potential for
interventions that may reverse them underline the likely role
for age in inter-individual variation in DRC. Here we highlight
studies testing this idea directly in human populations.

Assays that measure the accumulation of DNA damage
provide indirect evidence for age-dependent changes in DRC.
Peripheral blood mononuclear cells (PBMCs) isolated from older
individuals have a higher frequency of dicentric and ring
chromosomes (70) and a higher degree of negative
supercoiling (71). Levels of single-strand breaks (SSBs) and
oxidized bases (detected as formamidopyrimidine DNA
glycosylase (FPG)-sensitive sites) in PBMCs are lower in
younger individuals (age <65 years) when compared with older
Frontiers in Immunology | www.frontiersin.org 4
individuals (age >65 years) (72), although basal levels of SSBs and
alkali sensitive sites in lymphocytes were age-independent in a
separate study (73).

Direct measurements of DNA repair provide further insights
into age-dependent changes in genome integrity. A study that
used neutral comet assays to measure double strand break (DSB)
repair and fluorometric analysis of DNA unwinding (FADU) to
measure SSB repair in X-irradiated lymphocytes found
diminished DSB repair in older individuals (74). Another study
found that while overall rates of repair were similar, a
subpopulation of repair deficient lymphocytes was significantly
more abundant in older individuals (73, 74). Higher levels of
DNA damage might intuitively be interpreted to reflect
inefficient DNA repair, but the situation may be more
complex. For example, one study found that the level of SSBs
correlated positively with OGG1 activity (72), which was higher
TABLE 1 | Polymorphism in DNA repair genes and their association with genome integrity.

Genes Genotype DNA damage and repair activities Ref.

Base excision repair
OGG1 Ser326Cys; GG Lower OGG1 activity vs. CC and CG genotypes (54)

Ser326Cys Higher DNA damage vs OGG1 326 Ser/Ser genotype (55)
Inefficient repair of oxidative DNA damage a (54)

MUTYH G382D, Y165C, and Q324H Less efficient in repairing 8oxoG:A mispairs vs. wild-type MUTYH (43)
APE1 Asn148Gln Inefficient repair of oxidative DNA damage (54)

Associated with repairing of X-ray induced DNA damage (54, 56)
Associated with mitotic delay following X-irradiation (57)

Nucleotide excision repair
ERCC/XPC Lys939Gln Associated with repairing of X-ray induced DNA damage (58)
ERCC2/XPD D312N in exon 10 reduced XPD expression b (55)

K751Q in exon 23 reduced XPD expression b (55)
R156R in exon 6 reduced XPD expression b (55)
312Asn Not associated with repair of X-ray induced DNA damage (56)

Reduction in dicentric chromosomes and two-fold increase in translocation and chromatid exchange (56)
751Gln Not associated with repair of X-ray induced DNA damage (56)

Reduction in dicentric chromosomes and two-fold increase in translocation and chromatid exchange (56)
Lys751Gln Higher levels of bulky DNA adducts (59)

Not associated with higher mean SCE frequency c (60)
Gln751Gln Higher SCE frequency vs. Lys/Lys and Lys/Gln (61)

Single strand break repair
XRCC1 399Gln Lower BER activities (60, 62–65)

Associated with repair of X-ray induced DNA damage (56, 58)
Higher mean SCE frequency c (60)
Increase in deletions (56)

Arg399Gln Lower irradiation-specific DNA repair rates (54)
Associated with mitotic delay d (57)

Arg399Gln; Gln/Gln More chromosome breaks per cell vs. other genotypes (62)
Arg399Gln; AA Higher DNA adduct levels vs. AG and GG genotypes among non-smokers (59)
194Trp Higher BER activities (60, 62–64)
194Try Not associated with repair of X-ray induced DNA damage (56)

Increase in chromatid exchange (56)
Arg194Try Inefficient repair of oxidative DNA damage (54)
Arg194Try; Arg/Arg More chromosome breaks per cell vs. other genotypes (62)
Arg280His Inefficient repair of oxidative DNA damage (54)

Double strand break repair
XRCC3 Thr241Met Higher levels of bulky DNA adducts (59)

241Met Not associated with repair of X-ray induced DNA damage (56)
Increase in deletions (56)
July 2022 | Volume 13 | Art
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in older individuals. The higher levels of SSBs may thus reflect
the accumulation of unresolved repair intermediates
downstream of BER initiation, and phenomenon that has been
termed BER imbalance (75–79). Elevated OGG1 activity in
lymphocytes from older individuals has been observed in
additional studies (72, 80). Nevertheless, in another study
OGG1 repair activity in lymphocytes was reported to decrease
with age (81). The decrease in OGG1 activity was more
pronounced among individuals with Cys/Cys, Ser/Cys, than
with Ser/Ser genotypes at position 326, suggesting that study
design and the genetic makeup of cohorts may at least partially
explain the differences among studies. By contrast with OGG1,
AP site incision capacity is not associated with age (82).

Evidence for age-dependent changes in DRC have also come
from studies wherein cells have been challenged with DNA
damaging agents. Repair replication declines in lymphocytes
irradiated with ultra-violet light (UV), with the rate of UV-
induced decrease in DRC estimated to be about 30% from 20 to
90 years (83). By contrast, repair replication in UV-irradiated
keratinocytes is comparable between infant and older adults,
suggesting that age effects may be heterogeneous across human
tissues (84). Similar to the decline in repair of UV-induced
damage, rejoining of chromosomes following X-irradiation
decreases with age in human leukocytes (85). Consistent with
higher rates of BER initiation following oxidative DNA damage,
a study that compared individuals in three groups based on age
of 35-39 years (Group 1), 50-54 years (Group 2), and 65-69 years
(Group 3) using an ELISA assay in PBMCs following challenge
with hydrogen peroxide revealed significantly higher levels of
single stranded DNA in Group 3, but not Group 2, when
compared to Group 1 (86). This finding is consistent with a
second study that made use of comet assays (80),, as well as those
in the previous section finding elevated OGG1 activity in older
individuals. A rare in vivo study in which the epidermis of
subjects was subjected to UV-irradiation followed by skin
biopsies found that the efficiency in removing irradiation-
induced cyclobutane pyrimidine dimers (CPD) is lower in
older subjects, consistent with ex vivo studies in cultured
primary cells (87).

Host cell reactivation assays have provided important insights
into age-dependent changes in DRC. For instance, in one study
skin fibroblasts from younger donors had higher efficiency in
repairing UV-irradiated plasmids than those from the older
donors (88). However, the same study found no relationship
between age and the removal of genomic UV-induced adducts,
and a second study found the repair UV-induced induced
plasmid lesions was similar in skin fibroblasts from donors of
age 21-96 years (89). The differences between the HCR studies in
fibroblasts might reflect the relatively small samples sizes (N=8-
10), which limit statistical power; a somewhat larger study
(N=20) using host cell reactivation assays in fibroblasts did
find an age-dependent decrease in DRC (90). In lymphocytes,
repair of UV irradiated plasmids decreases with age, with an
estimated average 0.61% decrease per year between 20 and 60
years of age (91). These results were consistent with a second
study using HCR in lymphocytes that found an age-dependent
Frontiers in Immunology | www.frontiersin.org 5
decline in repair of UV-induced damage, which was notably
absent among basal cell carcinoma cases, for whom DRC was
lower than in controls at younger age (92). Another study that
stands out for its analysis of pathways other than NER using host
cell reactivation assays in primary skin fibroblasts indicated that
both NHEJ and HR decline strikingly with age (93). Taken
together, the findings suggest that age-dependent changes in
DRC may depend in a complex manner on the cell type, DNA
repair pathway, and the health status of the study participants.

Age-associated changes in DRC may be explained in part by
the differential expression of DNA repair genes. The expression
levels of excision repair cross-complementing group 1 (ERCC1)
(94, 95), XPA (94), XPF (95), XRCC4, ligase 4 (LIG4), LIG3 (93),
DNA polymerase delta 1 (POLD1) (88, 96), POLE, replication
factor C (RFC) (88), and replication protein A (RPA) (94)
decrease with age. On the contrary, the expression levels of
CSA and XPG seemed to increase with age, but the change could
not be confirmed by qPCR (88). There is no difference in the
expression levels of proliferating cell nuclear antigen (PCNA)
(88), NHEJ factors DNA PKcs, artemis, XRCC4-like factor (XLF)
(93),, Ku70 and Ku80 (93, 97) and HR factors breast cancer
associated gene 2 (BRCA2), meiotic recombination 11 (MRE11),
RAD51, Nijmegen breakage syndrome 1 (NBS1), and RAD51
(93) among different age groups. While these studies were
performed in either human PBMCs and primary fibroblasts,
whether these changes in the expression of DNA repair factors
resemble those in other tissues from the same individual have not
been studied.

Though a detailed review of animal models is beyond the
scope of this article, we note that they recapitulate several aspects
of human aging biology with respect to genome integrity,
including age-dependent increases in DNA damage levels (98)
(99), accumulation of mutations (100, 101), and dysregulation of
DNA repair (102) (103) (104) (105) (106).

2.3.3 Environmental Factors
Mounting evidence indicates that environmental exposures can
alter DRC. Here we focus on two well-established examples,
namely arsenic and smoking. Like tobacco smoke, arsenic is an
environmental agent classified as carcinogenic to humans by the
International Agency for Research on Cancer (107), and causes
cancer at least in part by directly inducing DNA damage (108,
109). Exposure to arsenic is associated with chromosome
aberrations in human PBMCs (110) and DNA damage (111,
112). Children with in utero exposure to arsenic have higher
salivary 8-hydroxydeoxyguanosine (8-OHdG), a biomarker of
DNA damage caused by oxidative stress, than their unexposed
counterparts (113) (114). Consistent with a key role for DNA
damage in the etiology of arsenic associated malignancies,
arsenic exposure is associated with a distinct mutational
signature (115). Furthermore, individuals with lower DRC and
those with select polymorphisms in DNA repair genes are more
susceptible to arsenic induced skin lesions (109) (108) (116, 117)
(110) (118).

Population studies provide extensive evidence in support of
the concept that arsenic exposure leads to alterations in DNA
July 2022 | Volume 13 | Article 899574
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repair. Arsenic exposure is associated with decreased expression
of MutS homolog 2 (MSH2) and mutL homolog 1 (MLH1),
though not PMS1 homolog 2 (PMS2) (119). Urinary arsenic
concentrations are positively associated with MLH1 promoter
methylation, which is consistent with an epigenetic mechanism
of arsenic-induced dysregulation of MMR (120). Arsenic
exposure also leads overexpression of excision repair cross
complementation group 2 (ERCC2/XPD) and less efficient
NER (121). ERCC1 expression may be influenced by arsenic
exposure (122) (111), but there appear to be complex
dependencies on dose, duration, and speciation of arsenic
exposure (122), as well as the age of the exposed population
(94, 95). Diminished expression of XPF and XPB, but increased
in XPG expression have been associated with arsenic
exposure (123). At the functional level, repair of DNA damage
induced by hydrogen peroxide, ionizing radiation and 2-
acetylaminofluorene (2-AAF) is impaired in arsenic-exposed
individuals relative to unexposed controls (112) (117) (111).
These population studies are broadly consistent with in vitro
studies indicating that arsenic exposure synergizes with the DNA
damaging effect of UV (124, 125) and inhibits repair of DNA
damage induced by a variety of agents (124) (126) (127).
Collectively, these findings indicate that, in addition to the
direct induction of DNA damage, arsenic exposure likely
sensitizes cells to the DNA damaging effects of other
mutagenic agents.

Exposure to environmental tobacco smoke (ETS), also known
as passive smoking, compromises genomic stability. Passive
smokers have higher levels of several types of DNA damage
than unexposed individuals (128). They also excrete higher levels
of 5-hydroxymethyluracil (129), which is not directly induced by
tobacco smoke but may result from ETS-induced oxidative
stress. Though passive smoking has not been correlated with
levels of 8-OHdG in serum or leukocyte DNA (128, 130),
lymphocytes from passive smokers have a longer comet tail
length, more Fpg-sensitive sites, and are slower in repairing
H2O2-induced DNA damage (131). Furthermore, buccal
epithelial cells of passive smokers have higher micronuclei
frequency when compared to non-smokers (132). Interestingly,
allele variants and expression levels of several DNA repair genes
have been associated with lung cancer risk and genome
instability among never-smokers, including XRCC1 (132),
OGG1, XPD (133), and AGT (134). A study using nasal
epithelial cells further revealed that NER was among the top 6
pathways with altered gene expression in association with third
hand smoking (135). While these data underscore the potential
role of environmental exposures in modulating DRC, the
mechanism by which passive smoking affects the activity of
specific DNA repair pathways is incompletely understood.

2.3.4 Circadian Rhythm, Lifestyle, and Dietary
Factors
Lifestyle factors have been shown to influence DRC. One of the
most studied factors is circadian rhythm, which has been
reviewed extensively (136–138) (139). It has recently been
shown directly that individuals subjected to a night shift
Frontiers in Immunology | www.frontiersin.org 6
schedule exhibit diminished DRC (140). Diet can also affect
the efficiency of DNA repair (141). Mounting evidence indicates
that calorie restriction is associated with changes in DNA
damage and repair (142). While these phenomena await more
detailed study in human populations, animal models provide
substantial support for the influence of diet on DNA repair. In
mice, calorie restriction enhances NHEJ (143), and increases the
fidelity of DNA polymerase and DNA excision repair in the liver
(144). It also reverses the age-related decline in BER in brain,
liver, spleen, and testis, and lowers their mutation frequency
(145). In rat hepatocytes, caloric restriction altered the induction
and repair of DNA damage in a manner that depended on age
(146). Findings from an Ercc1D/- mouse model of premature
aging further show that dietary restriction from 10% to 30%
could preserve genome integrity, mitigate premature-aging
associated decline in gene transcription, and prolong their
lifespan (147). This supports the hypothesis that dietary
restriction may attenuate the aging process. Similarly, chronic
supplementation of melatonin reduces DNA damage by
upregulating APE and OGG1 (148). The underlying
mechanism and whether additional DNA repair pathways are
affected require further investigation. Overall, the findings in
humans and animal models support a role for lifestyle and
circadian rhythm in DNA repair, adding a layer of complexity
to the origins of inter-individual differences.
3 VARIATION IN IMMUNE FUNCTION AND
ITS RELATIONSHIP TO CANCER RISK
AND CARCINOGENESIS

The immune system defends against both infection and
malignancy. Based on the response time, mode of initiation,
and the cell types involved, there are two immune subsystems.
The innate immune system is activated rapidly upon recognition
of pathogenic antigens and stress signals. It is, in part, comprised
of dendritic cells (DC), monocytes, macrophages, granulocytes,
and natural killer cells (NK). These cells phagocytose pathogens
and activate inflammation signaling pathways and the
complement cascade. The adaptive immune system, on the
contrary, is more flexible in recognizing antigens. Its cellular
components, including T lymphocytes (T cells) and B
lymphocytes (B cells) can undergo mutagenesis to create novel
and specific antigen receptors. T cells can be further subdivided
into naïve T cells that recirculate between blood and lymph
nodes to scout for specific antigens and memory T cells that are
long lived and can mount a response to previously encountered
immunogenic stimuli. Cytotoxic T cells (or CD8+ T cells) secrete
granzymes to induce apoptosis in target cells and pore-forming
perforin to punch holes in the target cell membrane for
granzymatic actions. T helper cells (or CD4+ T helper cells)
secrete cytokines to activate macrophages and further activate
cytotoxic T cells. B cells express membrane-bound and secretory
antigen-specific immunoglobulins (or antibodies) to defend
against pathogens. Like NK cells, they are also involved in the
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activation of CD4+ T cells (149). Thus, immune response to
foreign antigens depends on the specific functions of and
interplay between the two immune subsystems that are
comprised of a wide variety of immune cells.

Due to the presence of neoantigens that arise from genome
instability and can be presented on the cell surface, cancer cells
can be immunogenic. They can accordingly be recognized and
eliminated by immune cells in the process of immune-
surveillance (2). However, cancer cells are capable of escaping
surveillance by altering antigen expression and hijacking the
immune system to favor tumor growth. Through cytokine
secretion, they can induce the differentiation of myeloid
suppressor cells, which are inflammatory monocytes capable of
inhibiting the activities of cytotoxic T and NK cells, as well as DC
maturation (150). Moreover, as innate immune cells, including
macrophages and neutrophils, infiltrate into tumors through
chemotaxis, they can be polarized towards a pro-tumor
phenotype and increase the secretion of proinflammatory
cytokines to support, rather than suppress, tumor growth (151).

Current cancer immunotherapies that leverage the cytotoxicity
of immune cells have proven efficacy in suppressing tumor
growth. For example, NK and NKT cell populations expanded
and activated in vitro have demonstrated potent cytotoxicity
against liver cancer (152). T cells engineered with chimeric
antigen receptors (CAR-T) are highly effective in targeting
CD19-expressing tumors (153). DC vaccines that capitalize on
the cytotoxicity of monocyte-derived DCs induce a tumor-specific
immune response, although the effects differ by vaccination route
and do not correlate with overall survival in phase I/II clinical
trials (154). To date, immune checkpoint blockade therapies that
target the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
programmed death 1 (PD-1) and its ligand PD-L1 have
demonstrated improved responses and better overall survival for
multiple cancers (155). Pembroluzuimab, which is an anti-PD-1
antibody, has been approved by the Food and Drug
Administration to treat patients with metastatic melanoma.
Another anti-PD-1 antibody, Nivolumab, has also been
approved to treat patients with metastatic melanoma and
patients who are previously treated for advanced or metastatic
non-small cell lung cancer. These emerging therapeutic strategies
form the basis for numerous ongoing clinical trials (156). For the
purpose of this review, we highlight them as evidence in support of
immune control of cancers.

3.1 Defects in Immune Function Are
Linked to Cancer
Impaired immune function has been linked to increased cancer
risk. By analogy to genetic diseases of DNA repair deficiency,
patients with impaired immune function have provided insights
on the role of the immune system in cancer. Numerous primary
immunodeficiency disorders are associated with increased risk of
malignancy (157) (158) (159) (160). Notably, since the DNA
repair machinery plays integral roles in multiple aspects of
immune function, some immunodeficiency disorders are
caused by genetic defects in DNA repair as outlined in Section
2.2. In the general population, individuals with low cytotoxic
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activity of peripheral blood lymphocytes have higher risk of
cancer (161). Immunosuppression due to organ transplantation
and some viral infections are likewise factors that impair the
immune response. Patients receiving immunosuppressants to
prevent organ rejection have higher risk for non-melanoma skin
cancer (162). This may explain why transplant recipients are
generally more likely to develop cancer than those without organ
transplantation (163–166). Cancers in transplant patients are
also more aggressive and are associated with poor overall survival
(167–169). Viral infection can suppress the immune system and
increase cancer risk. Human immunodeficiency virus (HIV)
-infected patients develop more aggressive cancer (164) and
have higher risk for Kaposi’s sarcoma, B-cell non-Hodgkin’s
lymphoma, and multiple myeloma (170).

Despite the strong evidence in support of a role for the
immune system in controlling cancers, there are notable
exceptions. Individuals with severe combined immunodeficiency
due to loss of LIG4 function and those with dendritic cell
deficiency tend to be susceptible to hematologic malignancies,
but are not notably predisposed to solid malignancies (160, 171).
Similarly, immunodeficient mice do not necessarily develop
cancer. NOD scid gamma (NSG) mice have a relatively low risk
of developing tumors over a life-span of about 89 weeks (172),
and nude mice do not frequently develop spontaneous tumors
(173), despite being highly susceptible to infection (174, 175).

3.2 Factors That Contribute to Variation in
Immune Function
Inter-individual variation in immune function has been
postulated as a driver of variations in cancer susceptibility.
While age appears to be the most prominent intrinsic driving
factor for variation in immune function, environmental exposures
can also have a significant impact. Genetic variation associated
with autoimmunity, inflammatory disease, and susceptibility to
infection, is estimated to explain to 20-40% of the immune
variation (176), leaving the remainder to be explained by other
mechanisms. In this section, we review how immune function can
be affected by heritable factors, and describe how environmental
exposures may further explain inter-individual variation in the
immune response across populations.

3.2.1 Genetics
Reminiscent of the situation for DRC, significant inter-individual
differences in immune function have been reported. In a recent
detailed repeated measures study, inter-individual variation in
immune cell composition and plasma cytokine levels revealed
that differences between individuals are generally larger than
longitudinal variability within person (177). Plasma levels of the
chemokine CC chemokine ligand 20 (CCL20) are negatively
associated with the proportion of central memory and effector
memory cells in CD4+ and CD8+ T cell lineages, and individuals
with extremely high counts of these immune subsets are found to
have low levels of plasma CCL20 and CCL22. Plasma levels of IL-
16 are also negatively associated with the proportion of central
memory T cells in CD4+ and CD8+ lineages, and CD56dim NK
cells. Overall, plasma levels of 21 proteins accounted for nearly
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80% of the variation in the abundance of central memory T cells.
In a separate study, the abundance of CD8+CD45RO+ memory T
cells and CD3+CD56+ NKT cells was found to vary significantly
between individuals in repeated measures taken from 25
individuals over at least a three-week interval, but levels were
largely stable within-person (178) Of note, differences in
immunophenotype have been associated with age, sex, body
mass index, and race (177, 179–183). Environmental exposure,
vaccination (184, 185), and infection (186–189) can furthermore
lead to within-person variation. Nevertheless, the observation
that the immune cell composition and cytokine levels of an
individual are relatively stable throughout a year (177) suggests
that some variability may be determined by genetics or processes
that occur during development.

Several lines of evidence support a role for genetics in human
variation with respect to immune function. Although studies in
monozygotic and dizygotic twins indicate that immune
responses are dominated by non-heritable factors, numerous
parameters including serum proteins and immune cell
population composition are heritable (190). Single nucleotide
polymorphisms (SNPs) in the IL-12B gene, which codes for IL-
12p40, are associated with immune-related diseases such as
psoriasis (191) and asthma (192). Eight SNPs have also been
identified to be associated with IL-10 levels (181). Furthermore,
studies in twins indicate that ex vivo lipopolysaccharide (LPS)-
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induced IL-1b production, as a measure of innate immunity, is
heritable (180). This suggests that varying levels of LPS-induced
secretion of tumor necrosis factor alpha (TNFa), which ranges
widely from 0.187 to 2.714 ng/ml in healthy blood donors may be
explained at least in part by genetics (193). In further support of
genetic variation as a driver of differences in immune responses,
a functional study using toll-like receptor (TLR) ligand-
stimulated cord blood mononuclear cells has detailed the
association between cytokine production and SNPs in innate
immune genes (182). Taken together, the available data support a
role for genetics in inter-individual variation in immune function
in the general population.

3.2.2 Aging
It has long been appreciated that the immune system undergoes
age-related changes, which are collectively referred to as
immunosenescence and notably include the accumulation of
DNA damage in immune cells (194). Although age-dependent
changes in immune cell function have been reported in bone
marrow (187), bronchoalveolar lavage (179), and thymus (195),
this review will focus on PBMCs because they are most
immediately amenable to population studies. Several studies
have found age-dependent changes in total leukocyte counts
(196) or the composition of leukocyte subtypes (179, 197, 198)
(199) (183, 198) (Table 2).
TABLE 2 | Age-dependent changes in the population of immune cell subtypes.

Immune system Cell types Cell subtypes Age-dependent
change

Rate of change Ref

Adaptive immune
system

Total
lymphocytes

Decrease Not studied (196)

T lymphocytes CD4+ T cells Slight decrease An average of 9.8 cells/ml/year
ranging from -120 to +170 cells/ml/year

(199)

Naïve CD4+ T cells
(CD45RA+CD28+)

Decrease An average of 4.3 cells/ml/year
ranging from -80 to +108 cells/ml/year

(199)

Decrease −0.3%/year (200)
Treg
(CD4+CD25+FOXP3+)

Increase An average of 1.4 cells/ml/year
ranging from -4 to +10 cells/ml/year

(199)

CD4+CD28- T cells Increase An average of 1.6 cells/ml/year
ranging from -23 to +60 cells/ml/year

(199)

Increase 0.24%/year (200)
CD8+ T cells Decrease An average of -1.3 cells/ml/year

ranging from -163 to +69 cells/ml/year
(199)

Naïve CD8+ T cells Insignificant change An average of -1.8 cells/ml/year
ranging from -121 to +53 cells/ml/year

(199)

CD8+CD28- T cells Insignificant change An average of 0.9 cells/ml/year
ranging from -121 to +53 cells/ml/year

(199)

B lymphocytes Mature B cells Insignificant change -6.6 cells/ml/year (199)
Naïve B cells No difference -5.5 cells/ml/year (199)

Decrease −0.36%/year (200)
Memory B cells No difference -0.1 cells/ml/year (199)

Innate immune system NK cells No difference An average of 25.3 cells/ml/year
ranging from -180 to 100 cells/ml/year

(199)

Increase Not studied (196, 201,
202)

CD56bright NK cells Decrease Decrease from 15.6 cells/ml to 8.1 cells/ml in 60
years

(196)

CD56dim NK cells Increase Not studied (201)
Monocytes Trend of increase Not studied (203)
Dendritic cells Plasmacytoid DCs Decrease Not studied (203)

Myeloid or classical DCs Increase Not studied (203)
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Age-related changes in adaptive immune cells have been noted.
A major study involving 177 individuals, who were sampled every
six months for three years, has identified an age-dependent
decrease in CD4+ and CD8+ recent thymic emigrant T cells and
transitional B cells (183). This decrease coincides with the
reduction in thymus and bone marrow activity and an increase
in the inflammatory population and CD8+ T cells. In particular,
the proportion of CD4+ T cells decreases with age (198, 199)
whereas that of CD4+ NKT cells increases with age [(198);
Table 2]. Based on the expression of CD27 and CD28, T cells
can be further subdivided into naïve and early-differentiated cells
(CD27+CD28+) and fully differentiated (CD27-CD28-) CD4+ and
CD8+ T cells (204, 205). A younger cohort had a significantly
larger CD27+CD28+ subpopulation when compared to an older
cohort (206). Similarly, based on the expression of a leukocyte
common antigen isoform, CD45RA, and chemokine receptor
CCR7, T cells can be subdivided into naïve (CD45RA+CCR7+),
central memory (CD45RA-CCR7+), effector memory (CD45RA-

CCR7-), and terminally differentiated effector memory
(CD45RA+CCR7-) cells (207). Within the CD8+ subset, older
individuals had fewer CD45RA+ naïve T cells and more central
memory and terminally differentiated effector cells when
compared to younger individuals (208). In contrast, within the
CD4+ subset, a decrease in the CD27+CD28+ cells was the only
difference observed in older individuals. These findings imply that
the naïve T cells shift towards a more terminally differentiated
subpopulation upon aging. This may limit the plasticity of the
naïve T cells to differentiate and respond to novel antigens. The
concomitant loss of the central memory and terminally
differentiated CD8+ T subsets suggests that regardless of the
activation by CD4+ T cells, the cytotoxic T cell response is
compromised in the elderly.

Age-dependent, subset-specific changes in innate immune cell
counts have been documented. The proportion of NK cells
increases with age (196, 199, 201, 202) (Table 2) Based on the
expression level of the pathogen recognition receptor CD56 (209),
NK cells can be further divided into CD56bright, which resides in
the lymph node (210) and are immunoregulators due to their
cytokine production capacity (211), and CD56dim NK cells, which
have cytotoxic potential (212). The CD56bright subset is less
abundant in cord blood when compared to adult blood (202),
and decreases further with age (196). By contrast, the CD56dim

subset increases with age (201, 203). Similarly, the proportion of
monocytes increases with age (203). This monocyte population
includes the classical, transitional, and CD14+CD16+ non-classical
subsets. Among the non-monocytes, the proportion of myeloid-
derived DCs increases with age, whereas that of plasmacytoid DCs
decreases with age. In view of the age-dependent changes in
immune cell composition, associating the cell count and their
functions will help map the landscape of immunophenotype
throughout life. Integrating this information may help identify
phenotypic and functional biomarkers for immunosenescence,
treatment response, or higher susceptibility to diseases including
infections and cancers.

Molecular markers of immune function, including cytokine
production and response to antigenic stimuli also change with
age. In particular, the production of cytokines interferon gamma
Frontiers in Immunology | www.frontiersin.org 9
(IFN-g), interleukin (IL) -4 (IL-4) and IL-6 has been shown to
increase with age whereas that of IL-2, IL-10, and TNF-a
decreases with age (97, 180, 183, 213). Since the cytokine
production capacity of CD4+ T cells is invariant with age,
changes in T cell subtype composition are proposed to explain
age-related changes in function (206). Interestingly, expression
levels of IL-7 are lower in nonagenarians than middle aged
individuals (214). Genes in the IL7R gene network are also
differentially expressed between the age groups. The fact that
higher IL-7R expression level is associated with better
prospective survival suggests a role for cytokines and immune
response in longevity.

The ability of T cells to respond to mitogenic stimuli is also
affected by age. Aging attenuates the proliferation of PBMCs
induced by stimuli including phytohemagglutinin (PHA),
concanavalin A, pokeweed mitogen, and anti-CD3 (aCD3) or
anti-CD28 (aCD28) monoclonal antibodies either alone or in
combination (97, 197, 213). In particular, CD4+ T cells from
elderly individuals have a lower proliferative response to
staphylococcal enterotoxin B (206). Activated T cells also have
lower induction of nuclear factor kappa B (NFkB) in response to
anti-CD3, phorbol myristate acetate (PMA), and TNFa (215).
Notably, treatment with phorbol dibutyrate and calcium
ionophore A23187 induces higher nuclear translocation of
NFkB in neonatal than adult T cells, though the composition
of NFkB is similar between the two groups (216). Collectively,
these results imply that T cells from older individuals are less
sensitive to stimuli.

Similar to T cells, NK cells isolated from elderly individuals
have diminished proliferation activity and CD69 induction
following treatment with IL-2 when compared to the younger
group (201). The response of CD8+ CD45RO+ memory T cells
and CD3+CD56+ NKT cells to IL-23 also decreases with
increasing age. T cell receptor repertoire diversity decreases and
clonality increases with age (217). Taken together, the findings
support the notion that age-dependent decrease in immune cell
function, based on proliferation and cytokine production induced
by antigenic stimuli, and cytotoxicity, has an impact on cancer
risk. How age-dependent changes in immune function modify
cancer risk warrants further investigation.

3.2.3 The Environment
Exposure to environmental agents can have major effects on the
immune system (218). Given that the exposure effects have been
well documented, to underscore parallels with environmental
agents that affect DNA repair, we will focus on how the immune
system is impacted by the same cancer-causing agents (arsenic
and smoking) that were discussed in Section 2.3.3. We will
review how environmental exposure may contribute to inter-
individual variation in immune function. As with DNA
damaging agents, extensive experimentation has been carried
out in vitro and with animal models to understand the biological
mechanisms underlying the immune effects of environmental
exposures, but they are beyond the scope of this review.

Arsenic-induced changes in the immune system are
implicated by epidemiological studies. Subjects exposed to
higher levels of arsenic have higher serum levels of
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immunoglobulin (Ig) A (219). Urinary arsenic levels are also
positively associated with the number T helper (Th) 17 cells
(220), whereas nail arsenic levels are associated with lower
counts of CD56+ NK cells (221), after adjusting for
confounding factors. Consistent with impairment of the
immune system, lymphocytes isolated from arsenic-exposed
individuals have a longer average doubling time in vitro (222).
They also secrete lower levels of cytokines, including IL-2, IL-4,
IL-6, IL-10, tumor necrosis factor alpha (TNFa), and IFNg
under basal conditions (223) and following stimulation with
concanavalin A (Con A) (224). Monocyte-derived macrophages
isolated from the exposed individuals display abnormal
morphology, diminished adhesion, and have reduced
phagocytic capacity (225). These findings indicate arsenic
exposure disrupts both innate and adaptive immune responses.
Notably, arsenic exposure often leads to skin lesions (219) but
not necessarily cancer. Whether the immunomodulation
induced by arsenic contributes to excess cancer risk in exposed
populations awaits further investigation.

Early life exposure to arsenic may also impact the immune
system. Children with prenatal exposure to arsenic have higher
risk of respiratory illness (226), and diminished cell-mediated
immune function (227). Prenatal arsenic exposure alters cord
blood immune cell composition, increases the proliferation of
effector T and T cells, and reduces the suppression by T
regulatory (Treg) cells in a dose-dependent manner (228)
(229). Prenatal arsenic exposure is also inversely associated
with the percentage of naive and activated T helper memory
cells in cord blood, with notable sex-dependent differences in the
strength of the association (230). Moreover, lymphocytes isolated
from children with prenatal arsenic exposure secrete lower levels
of CX3CL and tumor necrosis factor alpha following PHA
stimulation (231). Proteomic analyses of cord blood further
revealed aberrant levels of chemokine (C-X-C motif) ligands,
macrophage migration inhibitor factor (232), and interleukins
(233). This implies that the prenatal period may be a critical
window of susceptibility for disruption of immune responses by
environmental arsenic exposure. Nevertheless, further studies are
needed to determine whether these arsenic effects can be causally
linked to higher cancer risk later in life.

Smoking suppresses the immune system (234), but the impact
of passive smoking is less studied. One study involving non-
smoking adult volunteers has shown that serum levels of the
nicotine metabolite cotinine correlate with an increase in the
naïve CD3+ and CD4+ T cell subsets and a decrease in
the memory CD3+ and CD4+ T cell subsets in peripheral blood
(235). Other studies have focused on immune cells in the saliva
and nasal lavage, which are primary target tissues due to their
proximity to the exposure route of ETS. For instance, ETS is
associated with a higher percentage of phagocytic cells in the
saliva (236). ETS is also correlated with the level of
immunoglobulin E and immunoglobulin A in nasal lavage
following exposure to ragweed (237). By contrast, ETS has no
effect on the levels of cytokines IL-2, IL-5, IL-13, and IFNg in the
nasal lavage. These findings indicate that ETS has differential
effects on the subsets of peripheral T cells, and may induce
inflammatory responses. Interestingly, parental smoking dose-
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dependently decreases IFNg production in mitogen stimulated
PBMC and is associated with active wheezing in children (238).
In view of the above findings, exposure to ETS in children is
suggested to be associated with asthma and cancer (239). In
summary, the findings reported in this section underscore the
significant impacts of two exemplar environmental exposures
that can modify immune function, and which are associated with
increased cancer risk.

2.3.4 Circadian Rhythm, Lifestyle, and Dietary Factors
As is the case with DNA repair, accumulating evidence indicates
that immune function can vary substantially within an individual
over the course of the day. Circulating immune cell populations
undergo cyclic diurnal changes (240) (241). Among the immune
cell subpopulations investigated, rhythmic changes are strongest
among naïve CD4+ and CD8+ T cells (242, 243), and weakest,
albeit still significant, among B cells (240). These observations
have been made in both humans and mouse models (244), which
have provided insights into how circadian rhythm regulates the
trafficking of immune cells (245) (246). Notably, mice
immunized with T cell dependent antigen trinitrophenyl-
ovalbumin (OVA) in the evening have higher serum levels of
antibodies when compared to those immunized in the morning
(247). Consistent with these findings in animals, individuals
receiving bacillus Calmette-Guerin vaccination in the morning
exhibit stronger trained immunity and adaptive response when
compared to those vaccinated in the evening (248). It is thus
postulated that the timing of immunotherapy or cancer vaccine
administration may affect the tumor suppressing effect. With
these considerations in mind, chronotherapy is emerging as a
novel research field that may improve the efficacy of cancer
treatment (138).

Rhythmic changes in the immune cells are associated with
levels of hormones and regulated by changes in cytokine levels
and the expression of molecular clock genes (249–252). Levels of
the stress hormone cortisol level peak near the time of awakening
and then decline throughout the day (240). Its serum level
negatively correlates with the abundance of circulating T cell
subsets, including total CD4+ and CD8+ T cells (243). In vitro
treatment with cortisol further shows that the suppression is
most pronounced in native T cells, when compared to central
memory and effector memory T cells. By contrast, the effector
CD4+ and CD8+ T cells remain unaffected. Melatonin is the
pineal hormone responsible for circadian synchronization (253)
and its level peaks at night (240). Treatment in vitro with
melatonin does not affect T cell proliferation upon simulation
with Con A (254). However, higher salivary melatonin levels
measured in the morning are associated with a higher percentage
of HLA-DR+ monocytes and CD16+ lymphocytes, a higher CD4/
CD8 ratio, lower lactate dehydrogenase activity in lymphocytes,
and fewer CD3+ and CD8+ cells when compared to low salivary
melatonin levels (255). High salivary melatonin levels in the
evening are associated with a different constellation of immune
system characteristics including lower phagocytic activity of
granulocytes, lower CD4/CD8 ratios, and lower circulating
levels of HLA-DR monocytes and CD16+ lymphocytes.
Moreover, melatonin inhibits the secretion of T-cell
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independent antibodies (IgM, IgG1, IgG2b, and IgG3) in mice
(247). These findings indicate that hormonal disruption of
circadian rhythm can impact the immune response in
complex ways.

Similar to the situation with DNA repair (139), animal
models reveal that immune cells are subject to regulation by a
circadian clock at a molecular level. For instance, rhythmic
changes in the expression of clock genes including brain and
muscle ARNT-like 1 (Bmal1), nuclear receptor superfamily 1,
group D, member 1 (Rev-erba) Period circadian regulator 1
(Per1), Per2, and Clock have been identified in mouse bone
marrow derived macrophages (256), peritoneal macrophages
(257), splenic macrophages, DCs, and B cells (256). In human
CD4+ T cells, rhythmic changes in the expression of clock genes
are synchronized with the production of IFNg, IL-2, IL-4, and
CD40L (258). In wild type mice, serum levels of LPS-induced
cytokines display rhythmic changes (259), which are lost in
Bmal1 deficient mice. Similarly, rhythmic change in serum
levels of IL-6 is lost in Rev-erba−/− mice (259). These findings
reveal that the rhythmic control of immune function is tightly
regulated by an intrinsic circadian clock, and the available data
currently support a stronger role of the circadian clock in the
innate immune response.

How nutrition modifies the immune system is a continually
evolving field of research. Early studies focused primarily on the
effects of vitamins and trace elements on the immune function
have been reviewed (260). For instance, deficiency in vitamin B6
impairs lymphocyte maturation, proliferation, antibody
production, and activity of T cells. It also attenuates NK cell
activities. Deficiency in folate attenuates proliferation of CD8+ T
cells and NK cell activities. Deficiency in vitamin B12 reduces
total lymphocyte counts and the number of CD8+ cells. Vitamin
C has also been shown to stimulate neutrophil chemotaxis, but
its anti-inflammatory effects remain incompletely understood.
Deficiency in vitamin A impairs phagocytosis and increases
production of IL-12 and TNFa, which promotes inflammation.
Deficiency in vitamin D impairs the innate immune response.
Deficiency in trace elements including selenium, zinc, copper,
and iron, can also disrupt the immune system. Comparisons
between high and low fat diets have revealed impacts on cytokine
levels that may impact the homeostatic balance between Treg
and Th17 cells (261). Children following a Mediterranean diet
for a year have higher salivary levels of an anti-inflammatory
cytokine IL-10 and lower levels of IL-17 (262). A variety of
dietary components, including red grape polyphenols, prebiotics,
probiotics and symbiotics have been suggested to boost immune
function in older individuals (263). Taken together, these
findings establish an important role for diet-dependent
immune-modulation, which may affect cancer susceptibility, as
has been recently reviewed (263–265).

Several lines of evidence support a role for exercise in
modulating immune function. Regular exercise and physical
fitness can delay the onset of immunosenescence and
tumorigenesis (265). Exercise improves the circulation and
function of innate immune cells (266–268). Although the
increase in immune cells is transient, it leads to a 40-50%
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decrease in the number of days with upper respiratory tract
infection among adults during winter season (269). By contrast,
exercise routines that induce muscle and tissue injury are pro-
inflammatory and suppresses immune response transiently
(265). Thus, the effects of exercise on the immune system
appear complex and require further investigation.

Collectively, the data presented in this section outline
numerous potential non-heritable sources of inter-individual
variation in immune function. Taken together with the effects of
aging, genetics, and the environment, these findings are consistent
with a highly dynamic model of immune function. As with DNA
repair, assessments of immune function at the individual level
may provide important insights into disease susceptibility, but
must be carried out in a manner that takes the many sources of
variability into account. In the next section, we discuss a possible
strategy for surveying both immunophenotype and genome
integrity in human populations.
4 POTENTIAL FOR SIMULTANEOUS
PROFILING OF IMMUNOPHENOTYPE
AND GENOME INTEGRITY FOR MORE
ACCURATE ASSESSMENTS OF
CANCER RISK

Although DNA repair and immune function are distinct
biological processes, they are subject to many of the same
influences, and they both play important roles in cancer
susceptibility. It has long been appreciated that several DNA
repair pathways play integral roles in the immune system (270)
(271). Furthermore, one of the most acute consequences of
exposure to DNA damaging agents is suppression of the
immune system (272) (273) (273). As outlined in this review,
environmental exposures such as arsenic and passive smoking,
circadian disruption, and lifestyle factors can modulate both
DNA repair and immune function. It is noteworthy that defects
in DNA repair and immune function are two of the most
prominent hallmarks of cancer (2). Accordingly, efforts are
underway to perform functional profi ling in human
populations, with the goal of identifying biomarkers that could
be used for personalized prevention and treatment of cancer.
While the idea of functional profiling has been framed
independently in the context of genome integrity (13), and
immune function (274), we propose that considering both
simultaneously would increase the accuracy and robustness of
cancer susceptibility predictions (Figure 2).

Patients with defects in nucleotide excision repair provide an
excellent example of elevated cancer risk in individuals who are
deficient in DNA repair and, perhaps, immune function (275–
277). XP patients have a massively higher risk of developing UV-
induced skin cancers (278), but also have an increased risk of
developing internal tumors including glioblastoma, leukemia,
lymphoma, and lung cancer (279, 280). The prevailing
hypothesis regarding cancer susceptibility, both in XP patients
and among those with lower NER capacity in the general
July 2022 | Volume 13 | Article 899574

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cheong and Nagel Immunity, DNA Repair, and Cancer
population (14), has been that increased genome instability leads
to higher rates of mutation and thus greater cancer susceptibility.
However, it was noted in early case reports and small studies that
XP patients also suffer from some forms of immune dysfunction
(281) (275). Lymphocytes from XP patients have a larger clone
size in response to allogeneic leukocytes (282), suggesting that
lymphocytes of XP patients are more diverse, possibly due to a
higher somatic mutational burden. Earlier studies have shown
that lymphocytes from XP patients are less responsive to
stimulation with mitogens (275, 277). Notably, serum from XP
patients can attenuate the response of normal lymphocytes to
PHA (275). A case study has also shown that DCs isolated from a
trichothiodystrophy (TTD) patient with an XPD mutation have
lower expression of CD86 co-stimulatory molecules and HLA
glycoproteins, and are defective in stimulating native T
lymphocytes (277). Notably, TTD patients commonly suffer
from infections and there are several documented cases of
immunodeficiency (283). Since some TTD patients do not
appear to exhibit defects in DNA repair, these findings raise
the possibility that NER proteins could have a role in immune
function that is distinct from their role in DNA repair. NK cells
from XP patients of multiple complementation groups display
impaired lytic activity and lower IFNg production in response to
poly I:C stimulation, though the total NK cell count is normal
(276). Moreover, XP patients have higher tolerance to the
grafting of skin from a normal HLA-incompatible donor (275).
Taken together, these findings suggest that innate and adaptive
immune cell function may be defective in patients with
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nucleotide excision repair defects, but the underlying
mechanism and the extent to which these findings may extend
generally to patients with XP and other NER deficiency disorders
remain unknown. Additional, comprehensive studies in larger
cohorts of patients with NER deficiency are needed to assess
whether their cancer-prone phenotypes can be explained in part
by an accompanying immune defect. Such studies would also
illuminate whether inter-individual variation in NER can be
expected contribute to variation in immune function in the
general population.

In the case of xeroderma pigmentosum variant (XP-V),
patients express a truncated POLH, which reduces the
expression and activity of DNA polymerase h (Pol h) (284).
POLH is involved in translesion synthesis (TLS), which
promotes tolerance of CPDs, thymidine dimers, and 8-
oxoguanine lesions (285, 286). Loss of POLH leads to error
prone-repair of CPDs by mutagenic polymerases zeta, kappa,
and iota (287). Interestingly, UVA irradiation induces a
mutational signature that suggests a role for basal mutagenesis
induced by oxidative damage in the elevated risk for internal
cancers in XPV patients (288). XP-V patients also have lower
frequency of A/T mutation and higher frequency of deletion in Ig
genes in activated B cells, which likely reflects the role of POLH
in somatic hypermutation in B cells (289). POLH deficiency may
thus drive the higher cancer incidence among XP-V patients via
multiple mechanisms. In contrast with the severe combined
immunodeficiency often associated with LIG4 syndrome due
to disrupted V(D)J recombination (35), XPV patients do not
FIGURE 2 | Simultaneous assessment of genome integrity and immune function may be a more robust strategy for personalized prevention and treatment of
cancer. Most population studies use blood samples to assess genome integrity and immune function because blood draws are less invasive than the procedures for
collecting other tissues from human subjects. A key assumption is that fundamental processes in cancer etiology (blue boxes) as measured in blood (red boxes) are
sufficiently related to be considered a surrogate for the corresponding target tissue (pink boxes). Since blood and its components are heavily involved in immune
processes, this tissue can provide extensive insights into immunophenotype. Likewise, lymphocytes provide extensive insights into inter-individual variation in
genome integrity mechanisms, including those underlying risk of numerous solid malignancies as reviewed herein. In addition to its role in preventing mutagenesis
and immunosuppression that can be induced by DNA damage, DNA repair is extensively involved in the differentiation and activation of immune cells. Nevertheless,
variation in immune function and genome integrity pathways is independent and challenging to predict from genetics and indirect genomic markers. Therefore
simultaneous functional assessment of DNA repair activities and immune function in studies using blood may improve the accuracy and precision of cancer risk
estimates beyond what is possible when considering either process alone.
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present with pronounced immunodeficiency, possibly due to
compensatory activities of other polymerases in somatic
hypermutation. A small group of patients deficient for a
subunit of another polymerase (POLE) does exhibit
immunodeficiency and points to the possibility for additional
rare polymerase deficiency disorders yet to be discovered (290).

Population studies offer numerous opportunities for
simultaneous investigation of immune function and genome
integrity. In identifying cancer risks and associating genome
instability with cancer outcomes, these studies almost exclusively
rely on blood samples due to its safe and relatively less invasive
sampling method when compared with other types of biopsies.
Furthermore, the multitude of cellular and molecular markers of
immune function in blood represent a rich source of information
that can be paired with analyses of genome integrity in
lymphocytes. Some studies have already taken advantage of the
opportunity to measure both genome integrity and immune
function in a single population. For example, it has been
observed that immunosuppressive drugs suppress DNA repair in
human PBMCs (291, 292). As discussed in the following section,
emerging technologies have greatly increased the feasibility of
simultaneous profiling of DRC and immunophenotype in
human populations.
5 TECHNOLOGICAL ADVANCEMENTS
THAT WILL HELP SHAPE THE FUTURE
OF PRECISION MEDICINE

Significant technological advances have recently yielded
functional tools for the interrogation of genome integrity and
immune function. Here we review a sampling of emerging
technologies that hold promise for enabling combined
phenotyping with respect to DNA repair and the immune
system in human populations.

As has been reviewed recently, several technologies are now
available for analyses of genome integrity in human populations
(13). Fluorescence-based multiplex flow-cytometric host cell
reactivation (FM-HCR) assay measures the ability of live cells
to repair site-specific DNA lesions (293). The assay is designed to
have each fluorescent plasmid engineered to incorporate a
specific type of DNA damage, including mismatches, abasic
sites, oxidized bases, or DSB. The use of multiple fluorescent
proteins enables multiplexing analyses for DNA repair activities.
FM-HCR has thus been applied in a variety of settings, including
in primary human lymphocytes (294–299).

The high throughput CometChip has been developed based
on the established single gel electrophoresis assay (300, 301). Due
to its 96-well format and automated image analysis, the
CometChip is amenable to analyse large numbers of samples.
It has recently been applied in a population study (302) and has
been widely adopted for genotoxicity testing (303–305).
CometChip technology has also been modified to interrogate
DNA methylation status (306), levels of specific DNA adducts
(307), and DNA damage in spheroids, which is also known as
SpheroidChip (308).
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A fluorescence-based unscheduled DNA synthesis (UDS)
assay provides a substantially more convenient and user-
friendly approach for measuring NER in populations. The
original UDS assays used radio-labeled thymidine and
autoradiography, making them laborious and inconvenient for
routine clinical use (309). A new fluorescence-based method
incorporates a thymidine analogue 5-ethynyl-2-deoxyuridine,
which is conjugated to a fluorescent azide after UV irradiation
and can be quantified by flow cytometry (310) (311). This
technology is now being used to support the diagnosis of rare
DNA repair deficiency disorders (312).

Single-cell whole-genome sequencing has opened up a new
venue for studying somatic mutation and identifying mutational
hotspots within the genome (313–316). This technology
leverages single-cell multiple displacement amplification
(SCMDA) procedure for detecting a full spectrum of base
substitutions in a somatic cell. The technology has been used
to reveal age-dependent changes in somatic mutations of B
lymphocytes. The mutations in normal B lymphocytes not
only resemble the COSMIC signatures in cancer (317), the
data imply the age-dependent accumulation of somatic
mutation is pivotal to the development B cell cancers (316).
Thus, SCMDA, in combination with single-cell whole genome
sequencing, is the tool for dissecting interindividual variation in
mutation burdens influenced by genetics, age, environmental
exposure, and lifestyle factors.

Single-cell RNA and DNA sequencing technology has
advanced rapidly in recent years and found application in
nearly every dimension of human biology (318). This
technology analyzes the transcriptome of single cells within a
heterogeneous population (319). It provides a powerful unbiased
alternative to immunophenotyping approaches such as flow
cytometry mass cytometry (CyTOF), which are less expensive
but require labeling of surface markers and reveal little additional
information at the single cell level (320) (321) (322). Single cell
RNA sequencing enables the interrogation of cell-cell
interactions, identification of changes during cell fate
specification, and dissection of regulatory networks associated
with cellular functions at single-cell level and based on cellular
subtypes, which are not feasible in whole tissue analyses (323–
326). Although single cell technologies remain expensive,
continuous innovation raises the prospect of their eventual
application in population studies. The emerging theory of
clonal hematopoiesis of indeterminate potential (CHIP)
describes the presence of somatic mutation in the cancer driver
gene at a variant allele frequency of at least 2% in blood and bone
marrow cells of a healthy individual (327–329). This process of
clonal selection effectively amplifies mutations in a manner that
makes them detectable by bulk sequencing. CHIP is induced by
DNA damaging agents, and associated with increased risk of
both leukemia and solid malignancies. It can thus be presumed to
represent a molecular ruler that reflects both exposure to DNA
damaging agents and the ability to repair DNA damage at the
individual level.

Cellular indexing of transcriptomes and epitopes by
sequencing, also known as CITE-seq, is a high throughput
single-cell RNA sequencing analysis that is coupled with
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epitopes to interrogate expression of cell surface proteins (330).
Since immune cell subtypes express specific surface markers,
which can be captured by specific epitopes, CITE-seq has been
widely used for determining the transcriptome profile of specific
immune cells within a heterogeneous population (331, 332).
Though CITE-seq and single-cell RNA sequencing serve similar
purposes, CITE-seq has a shallower sequencing depth and relies
heavily on the protein expression of specific cell surface marker.
Its design better fits for studying immune cells.

Historically, it has not been feasible to perform functional
screens of such nuanced phenotypes as those associated with
modest defects in genome integrity or immune function. But
these emerging technologies, particularly when used in
combination, will enable such studies. Since blood samples are
routinely collected for molecular epidemiological studies that
focus on either genome integrity or immunophenotyping, the
tissue could be maximally leveraged to understand how both
processes may interact and contribute to cancer risk.
Furthermore, studies combining immunophenotyping with
genome integrity assays may shed light on whether mild DNA
repair deficiencies in the general population lead to increased
cancer risk, at least in part, by limiting the efficiency of
immune responses.
6 OPEN QUESTIONS AND FUTURE
STRATEGIES FOR POPULATION STUDIES

Here we briefly propose a framework for future studies aimed at
understanding the joint influence of inter-individual variation in
DRC and immune function on cancer risk. We pose several
questions in the field that we view as important areas to
investigate, followed by broad recommendations for pursuing
population studies at the intersection of immune function and
genome integrity.

6.1 Open Questions
1. Is blood a reliable surrogate for other tissues? Blood is an
extremely rich source of data, including a variety of immune
cells, cytokines, circulating DNA, and small molecules that can
be analyzed to assess immune function, DNA damage and repair,
and environmental exposures (Figure 3). Because it can be
collected relatively easily and in a repeated manner, sampling
blood is also among the most feasible approaches for population
studies. Nevertheless, circulating immune cells may not reflect
the biology of tissue resident immune cells and tissue-specific
microenvironments. For these reasons, whenever possible, ideal
studies would include sampling the tissue of interest and, in the
case of cancer studies, the tumor as well.

2.Which immune markers are the best predictors of cancer
risk and outcomes? The emerging technologies described in the
previous section provide an unprecedented opportunity for deep
analysis of immunophenotypes, but because they have been
developed so recently, they have only begun to be applied
towards understanding the relationship between immune
function and carcinogenesis. Studies surveying a broad array of
immune markers are needed; these would include a census of
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circulating immune cells, measurements of cytokines, and tests
for immune cell function.

3. Which combinations of functional assays are the best
predictors of cancer risk and outcomes? Emerging functional
assays described above and numerous established assays for
immune cell activation and proliferation (333) integrate
complex regulatory mechanisms and can complement ‘omics
approaches (genotyping, transcriptional profiling, proteomics
and DNA sequencing). Functional assays for DNA repair often
outperform polygenetic cancer risk scores (334), and even
stronger associations are seen in limited cases where multiple
functional assays for different pathways have been applied to the
same set of samples (335). But it is not possible to predict which
functional biomarkers provide the most useful information to
support mathematical models that would predict cancer risk or
cancer outcomes. Thus, cancer case-control studies should be
designed to integrate as many functional assays as is feasible for
the same set of subjects. Given the practical constraints of
funding and expertise, biological materials should be banked
appropriately to enable future analyses.

4. How do markers of genome integrity and immune
function change over the life course? As detailed in section 2
and section 3, the phenotypic markers we propose to survey
with the goal of advancing personalized medicine are subject to
time-dependent variation due to a variety of factors including
lifestyle, environmental exposures, health status, and aging. To
use these functional biomarkers as predictive tools, it will be
necessary to carry out longitudinal studies wherein they are
measured prospectively.

5. Does NER contribute to immune function? Numerous
DNA repair pathways are already implicated in the mutagenic
processes that occur during immune cell development and
activation. In addition to those processes, emerging roles for
DNA damage and DNA repair in gene regulation (336, 337),
together with the growing recognition that many proteins
“moonlight” in multiple roles within the cell (338), raise the
possibility of as yet unrecognized mechanisms by which DNA
repair pathway might contribute to immune function. By
carrying out detailed immunophenotyping in individuals with
profound defects in DNA repair, such as patients with XP, CS,
and TTD, it can be determined whether NER deficiency, perhaps
specifically which global genome (GG-NER) or transcription-
coupled (TC-NER) NER subpathways, is associated with an
immune disorder.

6. Can stem cell-derived cells recapitulate DRC of primary
human tissues? A growing number of studies have found
associations between DRC in blood cells and cancer risk, and
the simplest interpretation is that the blood cells accurately
represent genome maintenance in the tissue where the cancer
develops. However, DNA repair varies with cell type and as a
function of cell cycle and the tissue microenvironment. It is
therefore possible that at least some of the associations between
cancer risk and genome integrity as measured in immune cells is a
reflection of immune cell function, rather than genome integrity
in the target tissue. This question can in principle be unraveled by
studies that measure DNA repair in multiple cell types from the
same individual, but it likely will not be feasible to collect most
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tissues as part of a population study. By differentiating stem cells
into cell types of interest, it may be possible to recapitulate
physiological cell programming and make tissue-specific
assessments of DRC on an individualized basis.

6.2 Recommendations
1. Focus on human studies: The framework we are proposing is
at least in part discovery-based and centers human subjects, not
biological model systems. This is a notable departure from the
traditional approach more familiar to mechanistic biologists,
wherein simple genetic models are used to test hypotheses
before broaching the complexity of human systems. Instead, in
this framework, one would first identify promising biomarkers in
humans, and then follow up with confirmatory studies in model
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systems that best approximate the human biology. Taking the
differences in telomere biology in mice and humans as an
example (339), one can appreciate the value of prioritizing
mechanistic characterization of biomarkers that have shown
promise in human studies, and doing so in a model system
that recapitulates the human biology. Though highly controlled
genetic model systems such as CRISPR knockouts are not a
feature of population studies, there are invaluable natural
experiments and edge cases that can be leveraged for
analogous purposes. For example, the phenotypes associated
with rare genetic disorders that disrupt key aspects of genome
maintenance and/or immune function such as those discussed in
previous sections can be taken as upper or lower bounds for
phenotypic variation in the general population. Likewise,
FIGURE 3 | Simultaneous assessment of genome integrity and immune function using human blood samples. Following density gradient centrifugation of peripheral
blood, peripheral blood mononuclear cells (PBMCs) are enriched in the buffy coat layer. Different immune cell subtypes within the PBMC population can be further
identified based on their specific cell markers. Genomic integrity of the immune cell subtypes can be comprehensively evaluated by integrating various
complementary approaches. Fluorescence-based multiplex host cell reactivation (FM-HCR) evaluates the ability of cells to repair specific DNA lesions. The
CometChip assay reveals the magnitude of genomic DNA damage and repair kinetics in a high throughput manner. Single-cell whole genome sequencing identifies
somatic mutations, whereas RNAseq (CITE-seq and single-cell RNAseq) measure the transcriptome. Moreover, hematopoietic stem cells isolated from the blood
sample can potentially be used to generate induced pluripotent stem cells (iPSCs). Upon differentiating these iPSCs into a somatic cell type of interest, it becomes
feasible to obtain large number of patient-derived, tissue-specific somatic cells, which may otherwise be scarce or not feasible to obtain. Red blood cells (RBCs),
which are enriched in the bottom layer, bind cell-free DNA to minimize inflammatory responses. The plasma layer contains cytokines and chemokines secreted from
the immune cells. These signaling molecules can be pro-inflammatory or anti-inflammatory, depending on the cellular status and presence of antigens. Notably, cell-
free DNA and extracellular vesicles (EVs) are present in the plasma.
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biological samples from patients undergoing therapy with
immunogens, immunosuppressants, or DNA damaging agents
provide opportunities to understand physiological human
responses to potentially carcinogenic real-world exposures.
This is particularly so when the studies are conducted
longitudinally, such that functional assays can be applied to
samples collected before and after the exposure. Samples from
individuals participating in studies that collect detailed personal
environmental monitoring data present similar opportunities,
and hold the advantage of avoiding the potential bias introduced
by focusing on individuals with pre-existing health conditions, as
is common in clinical studies.

2. Maximize the use and preservation of biological sample
(s): The comprehensive functional characterization of human
populations we are proposing is ambitious and may require some
realignment of funding agency priorities and philosophies to
reach its full potential. The prioritization of hypothesis-driven
research commonly constrains the scope of projects and forces
researchers to make decisions to severely limit the collection and
analysis of biological samples. However, as illustrated in
Figure 3, biological samples have extraordinary potential to
provide insights into the many mechanisms driving human
variation. To address this mismatch in the meantime,
researchers should preserve biospecimens as comprehensively
as possible. In the case of blood samples, this would entail
banking each of the components and preserving them in a
manner that is compatible with future downstream analyses,
which may require live cells, for example.

3. Engage in team science: Population studies that make use
of emerging technologies to characterize biological samples are
inherently interdisciplinary. It is generally not within the
capacity of a single investigator to have the expertise needed
for establishing a human study cohort, developing and applying
new technologies, interpreting biological data that span multiple
fields, and, when applicable, treating and evaluating patients. In
addition to a diverse group of scientific and medical experts who
cover the technical expertise, the team should ideally include
stakeholders who stand to benefit from the research. These
stakeholders can also guide the focus of the study from its
inception and ensure that vulnerable and underserved
populations are included.
7 CLOSING REMARKS

Many of the syndromes associated with defects in immune
function or genome integrity have been discovered in recent
years as genotyping technology has advanced. But these studies
importantly relied upon functional characterization of variants
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of unknown significance, or the discovery of patients with a
familiar disease of unknown etiology. The data suggest there are
many more deficiency syndromes still to be discovered.
Functional assays such as those outlined herein present
powerful tools for identifying individuals with deficiencies in
immunity or genome maintenance. By integrating these assays
with modern genomics tools, it should be possible to accelerate
the discovery and annotation of rare variants as well as
functional associations with disease. Population studies are
most easily carried out with blood, which contains the
circulating cells and cytokines that can be used to define the
immunophenotype. Therefore blood samples represent a largely
untapped resource for analyzing both genome integrity and
immune function simultaneously. Studies that compare these
biological features between cancer patients and healthy
counterparts will provide important clinical insights. Yet,
simply surveying the complexity of the functional landscape
across populations to define the range of variability is also a
useful precursor to developing predictive models that
incorporates the variability to explain disease susceptibility.
Leveraging the advanced technologies and our current
understanding of DRC, immune function, mutation, and
cancer, it is timely to address these questions and improve the
precision of strategies that assess and manage cancer risk for the
welfare of population health.
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