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The inflammatory response involves the activation of several cell types to

fight insults caused by a plethora of agents, and to maintain the tissue

homoeostasis. On the one hand, cells involved in the pro-inflammatory

response, such as inflammatory M1 macrophages, Th1 and Th17 lympho-

cytes or activated microglia, must rapidly provide energy to fuel inflamma-

tion, which is essentially accomplished by glycolysis and high lactate

production. On the other hand, regulatory T cells or M2 macrophages,

which are involved in immune regulation and resolution of inflammation,

preferentially use fatty acid oxidation through the TCA cycle as a main

source for energy production. Here, we discuss the impact of glycolytic

metabolism at the different steps of the inflammatory response. Finally, we

review a wide variety of molecular mechanisms which could explain the

relationship between glycolytic metabolites and the pro-inflammatory phe-

notype, including signalling events, epigenetic remodelling, post-transcrip-

tional regulation and post-translational modifications. Inflammatory

processes are a common feature of many age-associated diseases, such as

cardiovascular and neurodegenerative disorders. The finding that immuno-

metabolism could be a master regulator of inflammation broadens the ave-

nue for treating inflammation-related pathologies through the

manipulation of the vascular and immune cell metabolism.

Introduction

Inflammation is a protective response that occurs to

defend and repair our tissues in response to an infec-

tion, tissue damage or stress [1]. An acute inflamma-

tory response involves the coordinated delivery of

blood components (plasma and leucocytes) to the

target site. The recruitment of inflammatory cells from

the blood, together with tissue-resident immune cells,

ensures a relatively rapid way to eliminate pathogens

or contribute to healing. Importantly, the duration

and the intensity of the inflammatory response is
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controlled by the secretion of certain extracellular fac-

tors like cytokines or lipid mediators and chemokines

that attract innate and adaptive immune cells to the

site of damage. A successful inflammatory response is

followed by the resolution phase where the inflamma-

tory response is gradually shut down once the danger

signal or the injury has been eliminated, and this reso-

lution phase is critical for restoring homoeostasis [2].

Under certain circumstances, the immune cells fail to

switch from inflammatory to anti-inflammatory states,

and the inflammation persists over time, giving rise to

chronic inflammation. Since chronic inflammation is

associated with many human age-associated patholo-

gies [3], such as neurodegenerative, cardiovascular,

bone and muscular diseases, controlling the resolution

of the inflammatory response and preventing chronic

inflammation must be a priority. Several complex

molecular mechanisms control the switch from pro-in-

flammatory to anti-inflammatory states and, recently,

the metabolism of immune cells has been pointed to

be essential in this control between pro-inflammatory

and anti-inflammatory profile.

Metabolism is the core process underlying all bio-

logical phenomena, providing energy and building

blocks for macromolecules. One of the main metabolic

pathways that provides energy for cellular processes is

glycolysis, which comprises multiple enzymes that

transform glucose into pyruvate. This pyruvate can

access the tricarboxylic acid (TCA) cycle to be fully

metabolized to CO2, generating NADH and reduced

FADH2 to perform the oxidative phosphorylation

(OXPHOS). On the other hand, pyruvate, even in the

presence of oxygen, can be fermented to lactate with-

out producing ATP but regenerating NAD+, which is

commonly known as aerobic glycolysis. Despite glycol-

ysis is much less efficient than OXPHOS, it is the

metabolic pathway preferred by highly proliferating

cells like cancer cells. Immune cells also undergo this

metabolic reprogramming when they become activated

to mount an inflammatory response. During the peak

of inflammation, immune cells preferentially use gly-

colysis as a source of energy, whereas during the reso-

lution phase they rely mainly on OXPHOS

metabolism, acquiring a pro-resolving phenotype [4]

(Fig. 1). Thus, in recent years it has become evident

that different metabolic routes determine the fate of

immune cells and impact the inflammatory response.

The metabolic state of activated immune cells has

been deeply characterized [5,6]. During the glycolytic

switch, glycolysis supplies metabolic intermediates for

other biosynthetic pathways necessary for cellular

growth and differentiation. In addition to glycolysis,

the pentose phosphate pathway (PPP), the hexosamine

pathway and the glutaminolysis are increased upon

activation [7]. The cellular levels of metabolites result-

ing from this metabolic state determine the activation/

repression of signalling pathways, the epigenetic and

post-transcriptional regulation of inflammatory genes

and the post-translational modification of proteins.

In this review, we summarize recent knowledge on

how glycolysis orchestrates inflammation and how

metabolic pathways control different steps of the

inflammatory response, from vascular activation, leu-

cocyte migration and expansion to the resolution

phase. We finally discuss the mechanisms by which

metabolism is associated with inflammation, explaining

the role of different metabolites accumulated during

glycolysis and the broken TCA cycle.

The glycolytic players of the
inflammatory response

The inflammatory response involves the coordination

of multiple players, including innate immune cells,

such as neutrophils and macrophages; adaptive

immune cells, mainly T lymphocytes; and vascular

cells, including endothelial cells (ECs) and vascular

smooth muscle cells. The classical inflammatory

response progresses through two main clearly distin-

guished phases: initiation and resolution. The initiation

phase is characterized by the sensing of the damaging

agent by resident immune cells, the activation of the

endothelial cells, and the clonal expansion, the prolif-

eration and the recruitment of additional immune cells

to the site of injury. The resolution phase consists in

the clearance of activated immune cells, the generation

of memory immune cells and the recovery of

homoeostasis.

One of the first decisive steps involved in the onset

of inflammation is the activation of the endothelium,

which is characterized by an increase of the expression

of cellular adhesion molecules such as E-selectin,

ICAM-1 and VCAM-1. These adhesion receptors facil-

itate the rolling, tethering and firm adhesion of

immune cells to the vascular wall, increasing vascular

permeability, promoting oedema and blushing. The

activation of ECs is accomplished by the production

of nitric oxide (NO), a well-established inflammatory

agent that induces an increase in vessel dilation and

permeability [8]. In the steady state, ECs rely almost

exclusively on glycolysis for energy generation. Their

mitochondria mainly function as signalling organelles

and metabolize fatty acids and glutamine for the pro-

duction of TCA cycle intermediates [9,10] and for the

synthesis of dNTPs [11]. However, forcing ECs to be

even more glycolytic by the overexpression of HIF-1a,
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a transcription factor that regulates many genes associ-

ated with glycolysis, increases the expression of activa-

tion markers such as VCAM-1, pro-inflammatory

cytokines such as IL-8 and chemokines such as CCL2

[12]. The glycolytic rate in ECs is tightly controlled by 6-

phosphofructo-2-kinase (PFK-2), which converts fruc-

tose-6-phosphate to fructose-2,6-bisP (F2,6BP). F2,6BP

is an allosteric activator of 6-phosphofructokinase-1

(PFK-1) that enhances glycolysis. Inflammatory cytoki-

nes such as VEGF, TNF-a and IL-6 stimulate PFK-2

expression and activity, thus stimulating glycolysis in

ECs [13]. Moreover, PFK-2 partial inhibition reduces

NF-jB activation, resulting in repressed expression of

adhesion molecules [14], pro-inflammatory cytokines

and chemokines [15]. Hence, the modulation of glycoly-

sis in vascular cells might be a potential target to bal-

ance chronic inflammatory diseases.

The next step in the inflammatory cascade is the

production and influx of neutrophils into the damaged

tissue. It has been observed that granulopoiesis

depends on the maintenance of mitochondrial fitness

by autophagy [16]. Consequently, the disruption of

autophagy by Atg7 deletion promotes a metabolic

rewiring towards glycolysis in neutrophils, leading to

defective differentiation [17]. Although mature neu-

trophils are mainly glycolytic, some examples have

shown that mitochondrial respiration is also important

for neutrophil transmigration. Blocking mitochondrial

ATP production or mTOR activation impaired neu-

trophil chemotaxis [18,19]. This suggests that both gly-

colysis and mitochondrial respiration could be

mediating neutrophil transmigration. After transmigra-

tion, neutrophils reach the injured tissue and activate a

number of antipathogen responses that include phago-

cytosis, degranulation, production of high levels of

extracellular ROS and release of neutrophil extracellu-

lar traps (NETs). The production of extracellular ROS

is mediated by the action of the membrane-bound

enzyme NADPH oxidase. Dampening glycolysis led to

impaired NADPH oxidase function and subsequent

deficient pathogen clearance [20,21]. This confirms that

glycolysis is essential for the microbial clearance of
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Fig. 1. Distinctive metabolic profile of cells during the inflammatory response. Inflammatory cells such as Th1 and Th17 cells, activated

microglia, endothelial cells or M1-type macrophages are known to rely mainly on glycolysis and glutaminolysis upon inflammation, displaying

a dysregulated TCA cycle and increased rate of lipid synthesis and the PPP to meet the highly biosynthetic and bioenergetic demand. Once

the inflammatory response is completed, regulatory and memory T cells, resting microglia and M2-type macrophages, which depend mostly

on OXPHOS and fatty acid oxidation, are involved in the maintenance of the tissue homoeostasis to dampen the response.
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neutrophils. The production of NETs is also depen-

dent on metabolism [22]. During this process, neu-

trophil DNA is released into the extracellular media

alongside with proteases that possess antibacterial

activity. The DNA nets trap the pathogen, immobiliz-

ing it and allowing the proteases to achieve their func-

tion [23]. Upon neutrophil activation, mTOR

positively regulates the translation of HIF-1a, inducing
glycolytic metabolism that is essential for NETs pro-

duction and bacterial killing [24,25].

After the neutrophil influx, innate and adaptive

immune cells are recruited to the injured or infected tis-

sue. Again, the metabolic reprogramming drives both

the migration and the fate of macrophages and T cells.

The link between glycolysis and immune cell migration

is revealed by the dual role of the mTORC1 and HIF-1a
pathways in controlling glycolytic metabolism and T-

cell trafficking. The mTORC1/HIF-1a axis controls the

expression of glucose transporters and rate-limiting gly-

colytic enzymes, but also chemokine and adhesion

receptors that regulate T-cell trafficking. The mTORC1/

HIF-1a axis inhibits the expression of the adhesion

molecules CD62L and CCR7, allowing the release of T

cells to the blood [26,27]. Interestingly, T-cell migration

and their metabolism are bidirectionally regulated since

migratory signals may change the metabolic state of

cells. Pro-migratory stimuli upregulate glucokinase

expression which provokes actin cytoskeleton rear-

rangements in regulatory T cells (Tregs) [28].

Dendritic cells (DCs) analyse their environment to

identify pathogens through different pattern recogni-

tion receptors. Apart from antigen presentation, DCs

produce cytokines, chemokines and costimulatory sig-

nals for instructing appropriate T-cell responses. DCs,

like other immune cells, undergo a metabolic switch

accompanying their differentiation and activation [29-

31]. The differentiation of DCs occurs with an increase

of mitochondrial biogenesis and remodelling, support-

ing an important role of mitochondria for the develop-

ment of DCs [32,33]. DCs become active upon binding

TLR agonists, which causes a marked increase in glu-

cose consumption and lactic acid production [34,35].

Activated DCs then increase the expression of Nos2

and, consequently, produce NO, which restricts the

metabolism to glycolysis by blocking OXPHOS [36].

Inhibition of glycolysis with 2-deoxyglucose (2-DG)

blocks both activation and differentiation of DCs

[35,37]. In contrast, glucose deprived DCs enhance T-

cell responses [38].

Similar to DCs, macrophages and T cells present

different metabolism based on their activation state.

Based on surface markers, genes expressed and cytoki-

nes produced, macrophages are classically classified

into pro-inflammatory or M1 macrophages [39,40] and

anti-inflammatory or M2 macrophages [41,42]. M1 dif-

ferentiation is induced by pathogens or Th1 T cells,

and their function is to kill pathogens and present

antigens to T lymphocytes. In contrast, M2 macro-

phages are induced by anti-inflammatory innate

responses and Th2 T cells, and they play an important

role in the resolution phase, producing anti-inflamma-

tory cytokines such as IL-10 and dampening the pro-

duction of TNF-a and NO [42].

M1 macrophages change their metabolism upon

activation, enhancing glycolysis, PPP and displaying a

broken TCA cycle [43-45]. Glycolysis inhibition in M1

macrophages impairs their function by interfering with

phagocytosis, ROS production and cytokine secretion

[44,46,47]. Two of the most important signalling path-

ways for M1 macrophage activation are NF-jB and

Akt/mTOR [48-53]. Akt regulates the polarization of

macrophages since Akt1 inhibition promotes a M1

phenotype, whereas Akt2 deletion enhances M2 differ-

entiation [50]. On the other hand, NF-jB is activated

in response to inflammatory signals and coordinates

all macrophage pro-inflammatory responses [48,54].

Both NF-jB and Akt pathways converge in the stabi-

lization of HIF-1a, which increases the expression of

glucose transporters [55] and glycolytic enzymes to

maintain the glycolytic flux [56-58]. HIF-1a also pro-

motes the expression of inflammatory mediators such

as IL-1b by directly binding the IL-1b promoter

[59,60], by activating NF-jB [54] or by activating the

inflammasome through the expression of the glycolytic

enzymes hexokinase-1 [61] and PKM2 [62] in macro-

phages. Additionally, the metabolic switch of macro-

phages is controlled by the glycerol 3-phosphate

dehydrogenase (GPD2), a key component of the glyc-

erol-phosphate shuttle, that mediates the transport of

electrons to the mitochondria. Upon lipopolysaccha-

ride (LPS)-induced activation, the expression and

activity of the GPD2 is increased, boosting the oxida-

tion of glucose. This enzyme is critical for macrophage

function as the loss of GPD2 impairs IFN-c and IL-6

secretion upon LPS activation [63].

The metabolic response in T cells follows a similar

pattern to macrophages. Na€ıve T cells, which have a

low energy demand, obtain their ATP from OXPHOS

fuelled by glucose and FAO. Upon activation, effector

T-cell lymphocytes change completely their metabolism

to fulfil higher energetic demand. Effector CD4+ and

CD8+ T cells switch their metabolic programme

towards glycolysis for faster ATP production, and they

keep using the TCA cycle to produce intermediates for

protein and lipid synthesis. In the first steps of the

activation, TCR signalling activates PDHK1, which

3353The FEBS Journal 287 (2020) 3350–3369 ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

G. Soto-Heredero et al. Glycolysis during inflammation



inhibits the pyruvate dehydrogenase, and therefore,

pyruvate is metabolized into lactate [26,64,65] instead

of entering the TCA cycle [66]. However, by using a

novel C13 tracing in vivo approach, Ma et al. [67] have

shown that in vivo activated CD8+ T cells use pyruvate

also to fuel the TCA cycle. Similar to macrophages,

different subpopulations of CD4+ T cells have distinct

metabolic programmes. Effector short-lived inflamma-

tory populations, like Th1, Th2 and Th17 subsets, rely

on glycolysis, while long-lived T cells, like Tregs and

memory T cells, preferentially use OXPHOS as a

source of ATP [68-70]. Thus, blocking glycolysis with

2-DG or galactose promotes the differentiation of acti-

vated CD4+ T cells into regulatory and memory T cells

[71-75]. Specifically, inhibiting glycolysis with 2-DG

impairs Th1 and Th2 cells differentiation [76]. Surpris-

ingly, limiting glycolysis does not block proliferation

but cytokine production [72]. The metabolic switch of

T cells is mainly controlled by the mTOR and c-Myc

signalling pathways [77-80] that, upon activation,

upregulate glucose transporters and glycolytic enzymes

[26,77,81]. Inhibition of mTORC1 or mTORC2 pre-

vents Th1 and Th2 differentiation, respectively, and

simultaneous inhibition of both promotes Treg differ-

entiation, demonstrating that mTOR is essential for

effector differentiation of CD4+ [79,82] and CD8+ T

cells [83]. T cells, like macrophages, activate HIF-1a to

enable the glycolytic switch. Rapid ATP production

and PPP occur when HIF-1a is activated, increasing

the biosynthetic capacity of the cell [71]. HIF-1a is

necessary for Th17 differentiation in vitro and, beyond

promoting Th17 phenotype, inhibits Treg development

[84,85]. Surprisingly, Th17 differentiation in vivo in

murine colitis also requires OXPHOS [86]. Eliminating

mTORC1 or HIF-1a in differentiating CD8+ cells

impairs their cytolytic function [26].

At the end of the inflammatory response, both

macrophages and T cells need to acquire a pro-resolv-

ing phenotype in order to gradually shut down the

inflammatory response. M2 macrophages, regulatory

and memory T cells are key players in this phase. In

contrast to M1 macrophages, M2 macrophages uptake

fatty acids to fuel OXPHOS over glycolysis [87,88].

M2 formation is induced by IL-4 and IL-13 cytokines

that activate Akt, preventing the stabilization of HIF-

1a [89,90]. The phosphoglycerate dehydrogenase, the

rate-limiting enzyme in de novo serine biosynthesis

from glucose, is also required for M2 polarization [91].

In addition, M2 macrophages require glutamine to

carry out their function since glutamine deprivation

impairs M2 but not M1 polarization. In these cells,

glutamine is required for the synthesis of UDP-

GlcNAc, an essential molecule for M2 polarization

[92]. M2 macrophages still need glucose metabolism to

fuel OXPHOS and FAO, since 2-DG impairs M2 dif-

ferentiation [93,94].

In contrast to effector CD4+ T cells, Tregs and

memory T cells rely on OXPHOS and FAO [95]. Dis-

ruption of OXPHOS specifically in Tregs by deletion

of mitochondrial complex III causes a premature

autoimmune death [96,97]. In addition, boosting FAO

enhances memory T-cell development after stimulation

[98]. Moreover, IL-15, a cytokine that induces memory

responses, promotes mitochondrial biogenesis and the

expression of FAO enzymes [99], supporting that

memory T cells use FAO as the principal source of

ATP. This characteristic metabolism of Tregs and

memory T cells biased towards OXPHOS and FAO is

maintained by the AMPK and TRAF6 pathways

[68,98,100]. Strikingly, it has been proposed that mem-

ory T cells do not uptake fatty acids but, instead, they

generate them by de novo synthesis [101]. Although

they depend on mitochondrial metabolism, memory T

cells are capable of inducing the glycolytic switch

much faster than na€ıve T cells [102,103].

As mentioned, during the glycolytic switch the hex-

osamine pathway is enhanced, and the end product of

this pathway, the UDP-GlcNAc, serves for O-

GlcNAcylation of several proteins. Strikingly, while

the O-GlcNAcylation initiates an anti-inflammatory

response in macrophages, it triggers pro-inflammatory

effects in T cells through NF-jB and NFAT pathways

[104,105]. Importantly, 2-DG disturbs glycosylation of

proteins and activation of the endoplasmic reticulum

(ER) stress response [76]. Since some of the experi-

ments uncovering the metabolism of immune cells are

based on the use of 2-DG, future experiments will be

required to dissect the contribution of protein glycosy-

lation or glycolysis inhibition of 2-DG.

Neuroinflammation and glycolysis

Neuroinflammation is a common feature to most neu-

rodegenerative diseases such as multiple sclerosis

(MS), and those clearly associated with ageing like

Alzheimer’s disease (AD) or Parkinson’s disease (PD).

Several types of cells participate in the neuroinflamma-

tory process, highlighting microglia and astrocytes.

Microglia are the innate immune cells of the brain,

closely related to macrophages with whom they share

inflammatory signalling pathways such as the inflam-

masome [106]. In the resting state, microglia scan their

surroundings in search of any potentially damaging

agent. Upon injury, they become activated and exert a

number of responses dedicated to restore homoeosta-

sis. As it occurs with other immune cells, resting
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microglia mainly rely on OXPHOS and, upon activa-

tion, they switch on glycolysis and increase glucose

uptake [107,108]. Recent studies have identified several

mechanisms by which glycolysis influences pro-inflam-

matory gene transcription in microglia. One of these

mechanisms involves the formation of advanced glyca-

tion end products (AGEs), which are modifications of

proteins and lipids resulting from nonenzymatic reac-

tions with sugars that typically accumulate during age-

ing [109]. Microglia express AGEs receptors which

stimulate the expression of pro-inflammatory genes

[110]. Importantly, chronic or aberrant activation of

microglia can amplify the underlying neurodegenera-

tive process and worsen the disease outcome [109,111].

A recent work by Baik et al. found that acute expo-

sure to monomeric, oligomeric or fibrillary amyloid-b
(Ab) was able to shift OXPHOS to glycolysis through

the mTOR/HIF-1a pathway in microglia. However,

chronic exposure to Ab had the opposite effect, turn-

ing down both glycolysis and OXPHOS, and impairing

microglia responses. Interestingly, exposure to IFN-c
activated mTOR and glycolysis, improving microglia

response to Ab and ameliorating disease signs in an

AD mouse model [112]. Similarly, microglia from AD-

associated TREM-2 alleles and from TREM-2 knock-

out mice displayed decreased mTOR signalling,

increased autophagy and impaired glycolysis [113].

These studies evidence the complexity of immune cell

responses in vivo and how metabolic changes can

induce different effects depending on the duration of

the response. Importantly, glycolysis activation has

also been recently found in activated microglia from

MS patients [114] and actually targeting glycolysis and

mitochondrial metabolism have been postulated as

therapeutic options to treat MS [115]. Regarding this,

neural stem cell (NSC) transplantation has been

proved to show anti-inflammatory properties in experi-

mental models of MS [116]. This beneficial effect

would be mediated by the secretion of succinate, a

TCA intermediate metabolite, by mononuclear phago-

cytes. Extracellular succinate binds its receptor,

SUCNR1/GPR91, in NSCs, triggering the production

and release of prostaglandin E2, a potent anti-inflam-

matory. Thereby, it impedes further entry of inflamma-

tory monocytes into the central nervous system [117].

While microglia are the main executors of the

inflammatory response in the brain, astrocytes also

play a relevant role in this process. Astrocytes regulate

the integrity and the permeability of the blood–brain
barrier and also play a role in the control of immune

cell trafficking and activation. In addition, astrocytes

are immune-competent cells able to detect danger sig-

nals, release cytokines and chemokines and activate

adaptive immune defence [118]. Cumulative studies

have shown that glycolysis is an important pathway in

reactive astrocytes [119]. An increase in their glycolytic

rate and a subsequent increase in lactate production

has been observed in AD [120] and during ischaemic

insult [121]. Astrocyte-derived lactate is important for

neuronal function and can actually boost memory for-

mation [122]. Thus, activation of glycolysis by reactive

astrocytes may be a mechanism to protect neurons

from neuroinflammation. Recent evidences suggest

that activated astrocytes also transit through different

activation states. A1 astrocytes highly upregulate many

classical complement cascade genes which are destruc-

tive to synapses, so they are postulated as harmful. In

contrast, A2 astrocytes upregulate many neurotrophic

factors, so it was hypothesized that they play a protec-

tive role during neurodegeneration [123]. A1 cells are

abundant in several neurodegenerative diseases includ-

ing AD, PD, Huntington’s disease, amyotrophic lateral

sclerosis or MS [124] as well as during normal ageing

[125]. Since the discovery of A1/A2 astrocytes is very

recent, whether changes in metabolic rates could have

any impact on the acquisition of these phenotypes is

still to be addressed.

How metabolism controls the
inflammatory phenotype?

As a result of becoming glycolytic, cells accumulate

certain metabolic intermediates typical of glycolysis

and TCA cycle that define a specific metabolic profile.

This metabolic state is characterized by an increased

flux of glycolysis, high lactate production, augmented

glutaminolysis, increased PPP and, in macrophages,

broken TCA cycle [7]. In this scenario, the levels of

several metabolites are unbalanced. In particular,

phosphoenolpyruvate (PEP), succinate, citrate, ita-

conate, alpha-ketoglutarate (a-KG), lactate and 2-hy-

droxyglutarate (2-HG) have been demonstrated to

impact the inflammatory state of cells. These metabo-

lites modulate the inflammatory status by (a) activat-

ing signalling pathways, (b) promoting changes in the

epigenetic landscape or (c) post-translational mecha-

nisms. Metabolic enzymes also can (d) post-transcrip-

tionally regulate the inflammatory outcome of cells

(Fig. 2). Some of these metabolites, such as succinate,

act through multiple of these mechanisms to modulate

the inflammatory response (Fig. 3).

Signalling pathways regulated by metabolites

Phosphoenolpyruvate is generated during glycolysis by

the enolase-1 and is accumulated in T cells upon
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activation [126]. PEP contributes to inflammation by

interfering with Ca2+ signalling. When T cells are stim-

ulated through the TCR, Ca2+ enters from the extra-

cellular space and triggers signalling pathways in the

lymphocyte. PEP inhibits the ER calcium channel

SERCA, avoiding Ca2+ flux to the ER. Consequently,

Ca2+ levels increase in the cytoplasm, prolonging TCR

signalling and activating the NFAT [127]. PEP accu-

mulation has a similar pro-inflammatory action on

macrophages, promoting M1 polarization and increas-

ing pro-inflammatory cytokine expression [128]. The

final product of glycolysis, lactate, is now known to

display signalling properties during inflammation [129-

131]. In this sense, lactate suppresses the immune

response by impairing the metabolic reprogramming

towards pro-inflammatory phenotypes and by blocking

pro-inflammatory signalling pathways in monocytes,

macrophages and DCs [132-135]. Lactic acid accumu-

lation in DCs drives the switch to an anti-inflamma-

tory phenotype by decreasing activation and increasing

IL-10 secretion [136]. Furthermore, it inhibits T-cell

migration [137] as well as CD8+ T-cell survival and

cytotoxic activity by inhibiting rate-limiting glycolytic

enzymes [137]. In addition, lactate also promotes the

expansion of the Treg subpopulation [138]. However,

it has been reported that lactate-enriched environments

enhance Th17 responses [137] and NF-jB-dependent
pro-inflammatory activities in macrophages [139]. In

ECs, lactate is capable of entering the cells, stimulating

the NF-jB/IL-8 pathway and inducing ROS produc-

tion [140] (Table 1).

One of the metabolites accumulated as a conse-

quence of the broken TCA cycle and high glutaminol-

ysis is succinate. Succinate accumulates in

macrophages both upon LPS exposure or in the syn-

ovium in rheumatoid arthritis [141]. Succinate accumu-

lation leads to M1 polarization of macrophages by

direct inhibition of the prolyl hydrolase, resulting in

the stabilization of HIF-1a and IL-1b secretion

[60,142]. Succinate also limits the production of the
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reprogrammed towards glycolysis,
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OXPHOS and, in macrophages, disbalancing

the TCA cycle. As a consequence,

glycolysis and broken TCA cycle-released

metabolites such as lactate, citrate or
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promoting signalling, post-translational and
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inflammatory response. Moreover, glycolytic

intermediates fuel other pathways such as

the PPP, which provides biosynthetic

molecules, and the hexosamine one, which

generates UDP-GlcNAc for glycation

reactions. Citr, citrate; Fum, fumarate; Gln,

glutamine; Itac, itaconate; Lact, lactate; Pyr,

pyruvate; Succ, succinate.
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anti-inflammatory cytokine IL-10 [143]. Some metabo-

lites can act as extracellular signalling molecules.

Inflammatory pathways can be modulated by the

extracellular succinate levels through the binding to its

receptor SUCNR1 [144]. Interestingly, both pro- and

anti-inflammatory effects can be mediated by

SUCNR1. As mentioned, extracellular succinate trig-

gers the production of the anti-inflammatory prosta-

glandin E2 in NSCs [117]. In addition, SUCNR1

deletion in myeloid cells promoted a local pro-inflam-

matory phenotype in adipose tissue, demonstrating

that succinate triggers an anti-inflammatory effect in

adipose-tissue-resident macrophages [145]. In contrast,

extracellular succinate causes a pro-inflammatory effect

in different immune cells [146], increasing the migra-

tion and the secretion of the pro-inflammatory cytoki-

nes TNF-a and IL-1b in DCs and macrophages. In

addition, upon DC presentation, succinate improves

the production of IFN-c and TNF-a in T cells without

exerting a direct effect [147,148].

Another metabolite that plays a signalling role and

is implicated in defining the inflammatory state of cells

is citrate, which accumulates in LPS-stimulated macro-

phages [60,92]. Citrate is generated during the TCA

cycle in the mitochondria and is exported by the

citrate carrier (CIC) to the cytosol, where it is required

for fatty acid synthesis. Once in the cytoplasm, citrate

is metabolized by the ATP-citrate lyase (ACLY) to

acetyl-CoA and oxaloacetate, precursors for lipid syn-

thesis, ROS and NO. Reducing cytoplasmic citrate

levels by deletion of CIC decreases the production of

ROS, NO and prostaglandins, impairing the pro-in-

flammatory differentiation of cells and highlighting the

importance that the different subcellular localization

of certain metabolites has in the inflammatory

response [149].

Itaconate is a metabolite derived from citrate that

has been intensively studied due to its antibacterial

properties [150]. Citrate can be transformed into cis-

aconitate, which exits the mitochondria and is decar-

boxylated to itaconate. Itaconate is accumulated dur-

ing the broken TCA cycle in M1 macrophages

[150,151]. Interestingly, the absence of endogenous ita-

conate by genetic deletion of Igr1 causes an increased

production of pro-inflammatory cytokines [152]. In

fact, despite itaconate is increased in macrophages

upon LPS activation, it is considered as an anti-inflam-

matory metabolite [152,153]. Itaconate triggers two

Table 1. Metabolites accumulated in inflammatory cells impact the inflammatory pathways through different molecular mechanisms,

including intracellular signalling events (indicated in blue), post-translational (in orange) or epigenetic (in purple) mechanisms.

Metabolite Mechanism Cell type Reference

Phosphoenolpyruvate

(PEP)

Increased cytosolic Ca2+ T cells [127]

Pro-inflammatory cytokine expression (M1

polarization)

Macrophages [128]

Lactate (Lact) Multiple blockade of the immune response Monocytes, macrophages, DCs, NK cells,

T cells

[132-135]

Th17 responses T cells [137]

TLR4/NF-jB activation Macrophages [139]

NF-jB/IL-8 activation Endothelial cells [140]

Histone lactylation (M2 polarization) Macrophages [177]

Acetate/Acetyl-CoA GAPDH acetylation Memory CD8+ T cells [162]

Histone acetylation (Th1 responses) Macrophages [178-179,182]

Citrate (Citr) ROS, NO, PGs Macrophages [149,181]

Itaconate (Itac) SDH inhibition Macrophages [154]

Keap1 alkylation (Nrf2 activation) Macrophages [156]

a-Ketoglutarate (a-KG) mTORC1 activation (Th1 responses) T cells [158]

Histone demethylation (M2 polarization) Macrophages [186]

DNA methylation modification (Th1 responses) T cells [187]

2-Hydroxyglutarate (2-HG) Histone and DNA methylation T cells [188,189]

Succinate (Succ) HIF-1a stabilization (M1 polarization) Macrophages [60]

Protein succinylation Macrophages [144,169]

DNA methylase inhibition T regulatory cells [96]

Fumarate (Fum) Keap1 modification (Nrf2 activation) Microglia, DCs, T cells [163-166]

Demethylase inhibition Monocytes [184]

S-adenosylmethionine

(SAM)

Histone methylation Macrophages, T cells [190,191]
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different anti-inflammatory signalling effects in cells.

Itaconate directly inhibits succinate dehydrogenase

(SDH), stopping the pro-inflammatory signals from

succinate dehydrogenation [154]. In addition, itaconate

has been recently proved to activate the transcription

factors Nrf2 and ATF3 in macrophages, repressing

pro-inflammatory genes [155]. Knowledge about ita-

conate needs to be carefully interpreted since some

studies have used itaconate derivatives instead of ita-

conate, such as dimethyl itaconate [153,155,156], which

may trigger different effects in cells [157]. a-KG results

from glutamine anaplerosis and is accumulated upon

IL-2 signalling in Th1 CD4+ and CD8+ cells, increas-

ing Th1 differentiation through mTORC1 activation.

In addition, glutamine deprivation or a-KG limitation,

have been shown to favour in vitro Treg differentia-

tion, even under Th1 stimulating conditions [158].

Post-transcriptional regulation driven by

glycolytic enzymes

In the last years, growing evidence supports that gly-

colytic enzymes can act as post-transcriptional regula-

tors of inflammatory genes. Pioneer work from the

Pearce lab revealed that the classical glycolytic enzyme

GAPDH is able to bind mRNA. In the na€ıve state of

CD4+ T cells, GAPDH binds IFN-c and IL-2 mRNA,

inhibiting their translation. Therefore, when glycolysis

is incremented, GAPDH releases these mRNAs to

catabolize substrates, allowing the translation of these

inflammatory cytokines [72]. In monocytes, GAPDH

carries out a similar regulatory function with TNF-a
mRNA [159]. Accordingly, in a wide proteomic

approach, glycolytic enzymes (such as GAPDH, pyru-

vate kinase, lactate dehydrogenase, enolase and aldo-

lase) and enzymes involved in the TCA cycle and lipid

synthesis were identified as mRNA binding proteins

[160].

The enolase-1 is codified by the gene ENO1, which

encodes different transcripts besides the enolase-1

mRNA. One of them is a noncoding RNA that specifi-

cally binds the promoter region of FoxP3, a master

regulator of Tregs. This noncoding RNA impacts the

splicing of FoxP3. Therefore, upon T-lymphocyte acti-

vation, the expression of ENO1 is enhanced to fulfil

the glycolytic flux and the functional isoform of FoxP3

is repressed, thus inhibiting Treg differentiation [161].

Besides its metabolic function, PKM2 can enter into

the nucleus controlling the transcription of certain

pro-inflammatory genes. Upon LPS activation, PKM2

interacts with HIF-1a, and this complex can directly

bind and activate the IL-1b promoter in bone marrow-

derived macrophages (BMDMs) [58].

Post-translational modification of proteins

Some metabolites that accumulate in pro-inflammatory

cells can dictate post-translational modifications of

proteins such as acetylations, succinylations or lactyla-

tions. These post-translational modifications can affect

the epigenetic landscape but also other different pro-

teins related to inflammation. The levels of acetyl-CoA

determine the acetylation of several different proteins

for instance histones, tubulin or p53, but also meta-

bolic enzymes such as GAPDH. CD8+ memory T cells

uptake acetate in vitro and metabolize it into acetyl-

CoA, which in turn is used to acetylate GAPDH. This

acetylation increases GAPDH function, improving the

glycolytic flux and increasing IFN-c production [162].

Itaconate also alters protein function by inducing

post-translational modifications. Itaconate directly

alkylates cysteine residues of the KEAP1 protein.

KEAP1 is usually associated with Nrf2 and promotes

its degradation, but alkylation of KEAP1 permits

Nrf2 function, enhancing the expression of antioxidant

and anti-inflammatory genes [156]. Regarding Nrf2

function, a fumarate derivate, dimethyl fumarate, acti-

vates Nrf2 by modifying KEAP1 in a similar way to

itaconate. This modification reduces microglial activa-

tion, DC maturation and T-cell activation [163-166].

The accumulation of succinate produces succinylation

of proteins [167,168]. Succinyl groups can be added to

lysines, neutralizing lysine positive charges and thereby

likely resulting in conformational changes [167]. Suc-

cinylation could be a mechanism for maintaining gly-

colysis since several glycolytic enzymes have been

found succinylated in macrophages activated with LPS

[144]. In fact, succinylation of PKM2 increases IL-1b
production in LPS-activated BMDMs [169].

Epigenetics

Epigenetics controls gene expression in several impor-

tant biological processes, including inflammation

[170,171]. The function of epigenetic remodelers is

tightly modulated by the levels of metabolic intermedi-

ates and cofactors [172,173]. Additionally, metabolic

programmes can determine the epigenetic signature

through the control of the NAD+/NADH balance

[174-176]. One quintessential example is the role of sir-

tuins, histone deacetylases whose epigenetic function

requires NAD+. Therefore, metabolism can impact

gene expression by regulating cellular metabolites

required for epigenetic modifications or by affecting

epigenetic remodelers.

Very recently, lactate has been shown to lactylate

histones and modify gene expression. Zhang et al.
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showed that lactate accumulation promotes the expres-

sion of M2-characteristic genes during M1 BMDM

polarization. After the first hours of macrophages

exposure to bacteria, lactate promoted the lactylation

of histones, initiating the expression of homoeostatic

genes that have been traditionally associated with M2-

like macrophages [177]. Thus, lactate could lead a

feedback mechanism to drive macrophages to an anti-

inflammatory outcome for the resolution phase. In

addition, deletion of lactate dehydrogenase A

(LDHA), which catalyses the interconversion between

pyruvate and lactate, causes a decrease of IFN-c
expression in T cells [178]. Surprisingly, LDHA con-

trols the expression of IFN-c by modulating the

acetyl-CoA pool, which serves as a donor for histone

acetylation [179,180]. In CD4+ T cells, acetyl-CoA is

used for histone acetylation in the IFN-c promoter,

promoting the differentiation towards Th1 subsets

[178,179]. Both citrate and acetyl-CoA levels impact

the inflammatory state of macrophages, T cells and

microglia through epigenetic modifications. Reducing

the acetyl-CoA pool by ACLY deletion decreases the

expression of glycolytic enzymes such as hexokinase-2,

PKF-1 and LDHA [181]. Increasing acetyl-CoA levels

by acetate supplementation rescued this silencing [182].

In low-glucose conditions, acetate is taken up and con-

verted into acetyl-CoA in CD8+ T cells modifying the

epigenetic landscape and increasing IFN-c production

[183]. Moreover, the levels of succinate influence the

epigenetic state of cells through DNA modifications.

Succinate inhibits the ten-eleven translocation (TET)

family of DNA methylases in Tregs, blocking expres-

sion of suppressive genes but without altering cell pro-

liferation [96].

Another metabolite implicated in epigenetic regula-

tion is fumarate. In monocytes that have been stimu-

lated with b-glucan, a second stimulation with LPS

has been shown to trigger a more efficient response.

This immunological training of monocytes is explained

by an increase of fumarate levels upon b-glucan stimu-

lation. Fumarate decreases the activity of KDM5

demethylases, enabling the expression of genes

involved in the immune response and the migration of

leucocytes [184]. Therefore, altering metabolism is a

way to improve innate immune training that acts

through epigenetic modifications.

Furthermore, a-KG is a cosubstrate for the histone

demethylases family JmjC [185]. a-KG accumulation

induces M2 polarization in BMDMs through histone

demethylation of M2-specific genes, resulting in the

expression of anti-inflammatory molecules [186]. How-

ever, a-KG seems to cause the opposite effect in T

cells. This metabolite is accumulated after IL-2

signalling and favours Th1 differentiation, increasing

the expression of pro-inflammatory and glycolytic

genes by modifying DNA methylation [187]. 2-HG is a

structural analogue of a-KG and acts as a competitive

inhibitor of a-KG-dependent histone demethylases,

promoting histone hypermethylation. 2-HG is accrued

upon activation or hypoxia and promotes histone and

DNA hypermethylation through the inhibition of Utx

and Tet2, respectively. 2-HG increases the expression

of CD62L and CD127, differentiating T cells to mem-

ory cells [188,189]. Upon activation, glucose-derived

ribose and one-carbon metabolism converges in the

generation and accumulation of S-adenosylmethionine

(SAM) in macrophages and T cells. The production of

SAM maintains a high SAM/S-adenosylhomocysteine

ratio that allows the trimethylation of histones,

increasing the expression of pro-inflammatory genes

like IL-1b in LPS-stimulated macrophages. Conse-

quently, impairment of SAM production promotes an

anti-inflammatory phenotype in macrophages both

in vitro and in vivo [190]. SAM also controls T-cell

phenotype by modifying certain epigenetic marks.

Decrease of SAM production by methionine restriction

impairs T-cell proliferation and cytokine production in

both in vitro and in vivo experiments. SAM restricted

T cells showed reduced histone trimethylation and lim-

ited Th17 expansion in an EAE model [191].

Given that different metabolites can simultaneously

influence cell epigenetics and that each metabolite can

modulate the inflammatory status by different mecha-

nisms, it must be considered that the ratio between

metabolites will determine the final inflammatory out-

come (Fig. 3).

Concluding remarks

A growing body of evidence has accumulated support-

ing the immunomodulatory properties of glycolysis

and TCA cycle-released metabolites during inflamma-

tory processes. Molecules such as succinate, citrate or

lactate, which were at first thought to be mere by-

products of cellular metabolism, are now regarded as

paramount signalling, post-transcriptional, post-trans-

lational or epigenetic modulators that dictate the

inflammatory response. In the light of the studies

about immunometabolism, it is clear that immune cells

adapt their metabolism to maintain or change their

inflammatory phenotype. However, very recent find-

ings point to a metabolic switch as a result and not as

a cause of inflammation [192]. Inflammatory processes

are a common feature to many age-associated diseases,

such as cardiovascular and neurodegenerative disor-

ders. The finding that immunometabolism could be a
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master regulator of inflammation broadens the avenue

for treating inflammation-related pathologies through

the manipulation of the vascular and immune cell

metabolism. Therefore, increased understanding of the

metabolic pathways in inflammatory cells could be

exploited therapeutically to dampen exacerbated

inflammatory responses.
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