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Abstract

Purpose

Current limitations in methodologies used throughout machine-learning to investigate fea-

ture importance in boosted tree modelling prevent the effective scaling to datasets with a

large number of features, particularly when one is investigating both the magnitude and

directionality of various features on the classification into a positive or negative class. This

manuscript presents a novel methodology, “Hollow-tree Super” (HOTS), designed to

resolve and visualize feature importance in boosted tree models involving a large number of

features. Further, this methodology allows for accurate investigation of the directionality and

magnitude various features have on classification and incorporates cross-validation to

improve the accuracy and validity of the determined features of importance.

Methods

Using the Iris dataset, we first highlight the characteristics of HOTS by comparing it to other

commonly used techniques for feature importance, including Gini Importance, Partial

Dependence Plots, and Permutation Importance, and explain how HOTS resolves the

weaknesses present in these three strategies for investigating feature importance. We then

demonstrate how HOTS can be utilized in high dimensional spaces such as neuroscientific

setting, by taking 60 Schizophrenic subjects from the publicly available SchizConnect data-

base and applying the method to determine which regions of the brain were most important

for the positive and negative classification of schizophrenia as determined by the positive

and negative syndrome scale (PANSS).

Results

HOTS effectively replicated and supported the findings of feature importance for classifica-

tion of the Iris dataset when compared to Gini importance, Partial Dependence Plots and

Permutation importance, determining ‘petal length’ as the most important feature for positive

and negative classification. When applied to the Schizconnect dataset, HOTS was able to
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resolve from 379 independent features, the top 10 most important features for classification,

as well as their directionality for classification and magnitude compared to other features.

Cross-validation supported that these same 10 features were consistently used in the deci-

sion-making process across multiple trees, and these features were localised primarily to

the occipital and parietal cortices, commonly disturbed brain regions in those afflicted with

Schizophrenia.

Conclusion

HOTS effectively overcomes previous challenges of identifying feature importance at scale,

and can be utilized across a swathe of disciplines. As computational power and data quan-

tity continues to expand, it is imperative that a methodology is developed that is able to han-

dle the demands of working with large datasets that contain a large number of features. This

approach represents a unique way to investigate both the directionality and magnitude of

feature importance when working at scale within a boosted tree model that can be easily

visualized within commonly used software.

1. Introduction

Tree based models, a category of supervised machine learning algorithms, have become widely

used to perform regression or classification. Among the reasons for their popularity is the abil-

ity to perform predictions on data with high dimensionality, mixed type variables and com-

plex, non-linear relationships—better so than linear methods [1].

In many real-life applications however, model interpretation is equally as valuable as the

prediction output. Yet understanding why a prediction was made can be a non-trivial exercise

given that tree-based models can become extremely complex (e.g. deep trees) and difficult to

interpret at scale. Interpretability becomes even more complex in the case of boosted trees

such as XGBoost [2] where numerous different trees are bagged together and weighted with

different importance (boosting).

Some methods exist to understand why a model makes these predictions, such as Gini

importance, partial dependence plots and permutation analysis [3–5]. Whilst those techniques

provide a certain degree of useful insights into the model, they each lack one or more impor-

tant properties for explainability of the model, specifically: (1) the direction in the relationship

between features and the response variable (e.g., whether feature X1 is predictive of the nega-

tive/positive outcome) and (2) magnitude (e.g., how much feature X1 influences the prediction

towards the positive or negative outcome). It is important to note that a successful technique

would need to achieve (1) and (2) in a way that would scale to a larger number of features, thus

providing a truly commensurable understanding of datasets, particularly those that have high

dimensionality.

Recently, a method was proposed to linearize tree-based model nodes to provide an answer

to both (1) and (2) [6]. However, this method has some limitations when it comes to applying

it on boosted trees as each instance of the model added to the ensemble can have a different

tree structure.

In this paper, we first explore the current predominant methods in the field which exist to

determine feature importance in decision trees, before addressing a common problem within

these methodologies: the ability to jointly derive magnitude and directionality of classification
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between features in these models. We then present a novel feature contribution method, “Hol-

low-Tree Super” which extends the linearization methods available for single and ensemble

trees to include boosted trees. Finally, we demonstrate and provide an example for how this

new method can be used to analyse high-dimensionality data, such as in the case of human

neuroimaging datasets investigating brain pathology.

1.1 Common approaches to feature importance for single trees

Before demonstrating our feature contribution method on boosted trees, it is important to

first discuss the most common methods currently available for calculating feature importance.

Whilst there exist many feature importance algorithms, here we examine three popular meth-

ods in the field: Gini importance, partial dependence plots and permutation importance. We

do this on single decision trees—the simplest of the tree-based approaches and thus the most

readily interpretable. For this (and throughout the worked example), we use the well-known

iris dataset [7]—a simple classification problem with four input features relating to plant

dimensions: petal length, petal width, sepal length and sepal width.

Typically, the iris dataset categorizes plants as one of; iris versicolor, iris virginica and iris
setosa. To keep things simple, we removed the iris setosa group to make this a binary classifica-

tion problem (iris versicolor being the negative class (= 0) and iris virginica as the positive class

(= 1).

Using the sklearn DecisionTreeClassifier package [8] we constructed a single decision tree

with a max depth of 4 (Fig 1a).

1.1.1 Gini importance. A standard approach to determining feature importance is to

score features based on the number of times or probability a variable is utilized by the model

for splitting, weighted by some other value. This could be the criterion used to select split

points (Gini or entropy), or some other metric such as the squared improvement to the mod-

el’s F-score. Fig 1b shows the feature importance’s for our binarized decision tree, computed

using sklearn’s “feature_importances_” property. This function calculates feature importance

using the “normalized” total reduction of the criterion brought by that feature, also referred to

as the “Gini importance”.

This approach attributes a score to each feature, where a higher value indicates greater

influence on the output prediction. From our simple decision tree, the most important feature

for outcome prediction was petal length, with petal width, sepal length and sepal width show-

ing no significant difference in their influence for predicting outcomes through this tree.

Despite receiving scrutiny for biasing against variables with higher numbers of categories

[9] the use of Gini importance has seen a resurgence in recent years, particularly when analyz-

ing genomic datasets [10,11]. Whilst it remains an informative metric for assessing the relative

importance of different features used in a model by providing them a relative ranking and is

scalable, it lacks the ability to provide directional information on classification between fea-

tures. Indeed, nothing is said for the variable “petal length” to be more predictive of the posi-

tive or negative outcome.

1.1.2 Partial dependence plots. As an alternative, partial dependence plots (PDP) are

often used to visualize decision boundaries. They help to describe relationships with non-lin-

ear effects, and show interactions between features. To construct such a plot, the PDP function

is calculated at each possible value of a feature, representing the average model prediction out-

put at that value. Without the requirement for linearity, PDPs have shown great advantages in

ecological studies, where features often interact non-linearly to influence species classification

[12]. PDP functions can be calculated for one or two features [13], such that one can visualise

how the values for one feature influence classification, or how values between two distinct
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features interact together to influence classification. Fig 1d shows the PDP for ‘petal length’

alone, and Fig 1e demonstrates the interaction between ‘petal length’ and ‘petal width’ and the

predicted outcome of the constructed simple decision tree.

These two PDP’s together reveal that petal length and petal width become dependent fea-

tures for classification at values less than 5cm for petal length and 1.6cm for petal width respec-

tively, and at greater values for either feature they are largely independent for classification.

The benefits of PDP’s are that they are easy to implement, interpret and provide a measure of

directionality for feature importance. This would scale nicely for the iris dataset, which has

four features. However, the main disadvantage is that the 2D representation of PDPs limits

observations to two variables at a time [13]. This makes PDPs difficult to interpret at the scale

of a dataset which comprises hundreds of variables, as each feature or pair of features at most,

would require their own plot and subsequent analysis to ultimately determine and inform fea-

ture importance.

1.1.3 Permutation importance. Finally, permutation importance of features can be used

to measure the change in the model’s prediction error as the value of the feature is ‘permuted’.

Permutation is the process of shuffling the data points for one feature whilst retaining the

Fig 1. Single binarized decision tree created in SKlearn to classify the Iris dataset. (a) A single binarized decision tree was created in the sklearn

DecisionTreeClassifier package to effectively delineate the Iris dataset. The depth four tree used Iris versicolor as the negative class (= 0), and Iris Virginica

as the positive class (= 1). Iris Setosa was removed from the classification system to allow the binarization of the dataset. (b) We calculated the Gini

Importance for our decision tree using sklearn’s “feature_importances_” property. This revealed ‘petal length’ to be the most important feature in the

model for classification into the positive or negative class. (c) When performing permutation importance on our four features included in our simple

decision tree, we found that permuting the values of petal width had the greatest impact on the model prediction error when attempting to classify data to

the positive or negative class. Unlike Gini importance, this analysis revealed that petal length was also significantly important in the classification process,

whilst sepal length and width again were found to be relatively unimportant in the decision making process, and permutation of these features did not

greatly impact model prediction error. (d) A one feature partial dependence plot (PDP) for ‘petal length’ revealed that positive classification as Iris Virginica

(partial dependence) was non-linearly related to ‘petal length’, with a critical point at 5cm marking certain negative (Iris Versicolor) classification. (e) By

introducing ‘petal width’ and conducting a two feature PDP, we were able to determine that these two features were increasingly dependent for positive

classification at values lower than 5cm and 1.6cm for petal length and width respectively, giving us directional and magnitudinal inferences between two

features (For two feature PDP’s, a colour map is added to help visualise dependencies such that green indicates a greater partial dependency than purple).

https://doi.org/10.1371/journal.pone.0258658.g001
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order for all other features to measure which variable most greatly affects model prediction

error [14]. From this perspective, a feature is unimportant if changing its values has little effect

on the model’s error—implying that the model did not rely strongly on this feature to make

predictions. Conversely, an ‘important’ feature would increase the model error when its values

are shuffled.

We can use sklearn’s permutation importance package to perform this calculation on the

Iris dataset (Fig 1c).

Whilst this is another useful approach to determine the magnitude of feature importance,

much like Gini importance, this method lacks information about directionality. In applying

permutation importance analysis to the Iris dataset, we are able to glean that permuting ‘petal

width’ had the largest effect on the model’s prediction error, and was therefore the most

‘important’ feature. However, we are again unable to say whether ‘petal width’ was more pre-

dictive of the positive or negative outcome.

1.2 Direction and magnitude in feature importance coefficients

As shown, none of the three methods already described are able to provide information about

both outcome directionality and magnitude, in a way which could be efficiently scaled to a

large number of features.

Linearizing decision trees [6] offers the advantage of giving feature importance coefficients

that have a direction, which magnitude can be compared and further scaled to larger datasets.

A general linear equation can be derived from the model by considering that each decision in

the tree stems from a feature and these decisions either increase or decrease the value from the

parent node. Thus, it is possible to consider the final prediction as the sum of each feature’s

contribution within the tree plus a bias value (typically the topmost sample average).

To achieve this for a given prediction, the decision tree that led to that prediction is navi-

gated and the local increments of feature contributions at each node (positive or negative) are

identified. In this way, each prediction can be mathematically described using Eq (1).

f ðxÞ ¼ bias
XK

k¼1
contribution ðx; kÞ ð1Þ

Where; K is the number of features, bias is the value at the root of the node and contribution(x,

k) is the contribution from the k-th feature in the feature vector x [15].

This approach is similar to linear regression in a dynamic sense, and so by borrowing from

regression models in this way we can achieve a similar level of interpretability as linear models.

More specifically, this view of trees enables us to isolate the contributions of each feature for

each prediction. It should be noted though that this linearization technique is limited in use to

boosted trees whose input feature vectors only contain linearizable variables [16].

Here we provide a worked example, showing how the feature contributions are calculated

for one prediction. Fig 2 depicts the decision tree, and Table 1 outlines the values of each fea-

ture for a sample iris plant, as well as the feature contribution score. Such score can easily be

calculated programmatically though the Python package eli5 package [17] provides a conve-

nient implementation which Fig 2 was derived form.

If we have a flower with the attribute values described in Table 1 (sepal length = 6.9, sepal

width = 3.1 and petal length = 4.9), the model estimates the likelihood of this being in the posi-

tive class (y = 1, an iris virginica) at 1.0 (i.e. 100%).

Since this is a simple single decision tree, we can easily follow the path through the tree (Fig

2) for this prediction and isolate the relative contribution of each feature;

Contributionpetal length ðcmÞ ¼ ð0:051 � 0:493Þ þ ð0:25 � 0:051Þ ¼ � 0:243 ð2Þ
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Contributionsepal width ðcmÞ ¼ ð0:143 � 0:25Þ ¼ � 0:107 ð3Þ

Contributionsepal length ðcmÞ ¼ ð1:0 � 0:143Þ ¼ 0:857 ð4Þ

Fig 2. Single decision tree linearized using the eli5 package. By employing a general linear equation to define the relative

contributions of each feature as decisions are made at an increasing depth in the tree, it is possible to derive feature importance values

which lead to a positive (Iris Virginica) or negative (Iris versicolor) classification. This analysis offers a unique advantage over Gini

importance, partial dependence, and permutation importance such that feature importance coefficients provide both a directionality

and magnitude for each feature in delineating data into the positive and negative classes.

https://doi.org/10.1371/journal.pone.0258658.g002

Table 1. Sample prediction and feature contribution score.

Class = 1, probability = 1.0

Contribution Feature Value

+0.857 Sepal length (cm) 6.90

+0.493 BIAS 1.00

-0.107 Sepal width (cm) 3.10

-0.243 Petal length (cm) 4.90

https://doi.org/10.1371/journal.pone.0258658.t001
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The model is telling us that sepal length of 6.9cm makes it much more likely that this is a

iris virginica (85.7% more likely, to be exact), whilst the petal length of 4.9 somewhat lowers

the chances of this being a iris virginica. This has made our single decision tree fully interpret-

able, in the sense that we can readily say exactly how each feature has influenced the

prediction.

The final prediction (probability of being in the positive class) is the sum of the feature con-

tributions towards the prediction (0.857–0.107–0.243 = 0.507) plus the bias value (= 0.493), in

this case, 1.

Since we don’t want to study feature importance at a prediction level, we can average the

contributions of each feature across all predictions to obtain a global picture of importance.

The method to achieve this involves three steps:

1. Filter out incorrect and low probability predictions.

2. Separate the feature contributions towards the positive and negative classes.

3. Sum the contributions of each feature across all predictions and normalize these values by

dividing by the number of predictions made.

After performing this process on the Iris dataset, we found the top feature for predicting

both the positive and negative classes to be petal length (Fig 2). Unsurprisingly, petal length

also had the greatest Gini importance and the second greatest permutation importance, sug-

gesting this method correctly captures feature importance within a decision model and sup-

ports the findings of alternative, less robust, analyses.

1.3 Scaling feature extraction from single tree to boosted ensembles

Ensemble trees and particularly boosted ensemble trees often provide a superior prediction

ability than single trees [12]. Unfortunately, the linearization method described above falls

short as each tree of the boosted ensemble leads to a different succession of split and group

mean for each node due to the random start for the generation of each tree used in the ensem-

ble. As a matter of fact, running the prediction function provided in the eli5 package would

lead to a different linear equation for each tree of the ensemble.

To circumvent this issue, we propose here an aggregation method across several boosted

tree instances within a model to provide directional, proportional, and interpretable feature

importance. In addition, this method has the advantage of working across multiple cycles of

cross-validation dealing more positively with boosted trees’ tendency to overfit.

2. Methods

2.1 Gradient-boosting decision trees using XGB classifier

We use XGBClassifier [2] to fit the model. Table 2 below shows the improvement in model

accuracy, ROC AUC and F1 score achieved by the Gradient boosted approach over single

Decision trees. Accuracy is the proportion of correct predictions to total predictions. Accuracy

can be represented in the following equation: Where TP is true positive predictions, TN is true

Table 2. [Iris dataset] model performance metrics.

Measure Decision Tree XGBoost

Accuracy 0.920 0.940 ± 0.075

ROC AUC 0.923 0.940 ± 0.075

F1 Score 0.917 0.939 ± 0.081

https://doi.org/10.1371/journal.pone.0258658.t002
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negative predictions, FP is false positive predictions, and FN is false negative predictions. “Pre-

dictions” refers to the number of items for which a classification was made by XGBClassifier,

for example here, the number of plants in the iris dataset.

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
ð5Þ

F1 score (or F score) is the weighted average of precision and recall and takes into account

both false positives and false negatives. Precision is a measure of the number of predictions of

the positive class that actually belong to the positive class. It is calculated as the number of true

positives as a proportion of the sum of true positives and false positives. Recall is a measure of

the number of positive class predictions out of all positive classes. It is calculated as the number

of true positives as a proportion of the sum of true positives and false negatives.

ROC AUC provides an aggregate measure of performance across all possible classification

thresholds. It is measured as the area under the receiver operating characteristic curve, which

is a plot of the true positive rate (i.e. recall) to the false positive rate.

2.2 Performing Hollow-Tree Super (HOTS)

1. For each subject, we can use eli5 explain_prediction [17] to obtain each feature’s contribu-

tion to each prediction (ignoring the bias value). Note that when extracting feature contri-

bution from a boosted tree model, the ‘weights’ become the log odds contribution of each

feature (as opposed to the probabilities shown under a single tree model).

2. We separate the weights contributing towards the positive and negative class cases.

3. Incorrect predictions, and those with a prediction probability of less than 70% are filtered

out, keeping only the subjects that were correctly predicted by the model with confidence.

4. The weights across all the remaining predictions are aggregated by feature and divided by

the number of predictions, obtaining an average weight of each feature per prediction.

5. As mentioned in (1), the weights provided are the log odds of being in the class that is ulti-

mately predicted (i.e. for positive class predictions, the weights are the log odds of being in

the positive class). Additionally, the weights are the log odds at the value of the feature cur-

rently being predicted. Thus, to extract the directionality desired here, it is necessary to

infer the sign of these log odds for each feature. This is achieved by identifying whether the

mean value for each feature in this positive class is greater or less than the mean of each

Table 3. 5-fold feature contribution average for positive and negative classification of the Iris dataset using HOTS.

Feature Classification Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Petal Length Positive -4.04 -1.54 -1.90 -2.63 -2.51

Negative +2.97 +1.69 +1.24 +2.90 +2.60

Petal Width Positive -1.09 -3.86 -2.31 -2.42 -2.26

Negative +1.61 +2.83 +2.64 +2.11 +2.20

Sepal Length Positive -0.13 -0.13 -0.11 +0.14 -0.04

Negative +0.27 +0.63 +0.25 -0.25 +0.15

Sepal Width Positive +0.02 +0.13 +0.01 +0.02 -0.25

Negative -0.12 -0.24 +0.07 -0.27 -0.08

Note that a greater positive value indicates a greater contribution towards positive (Iris Virginica) or negative (Iris Versicolor) classification.

https://doi.org/10.1371/journal.pone.0258658.t003
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corresponding feature in the negative class. The log odds of each feature in the positive

class are multiplied by the sign of the mean value for the positive class less the mean value

for the negative class, whilst the log odds of each feature in the negative class are multiplied

by the inverse sign of this same calculation. The ‘weights’ now become the log odds with a

standard view of directionality. However, it is important to note that this approach assumes

linearity between the feature values.

6. As mentioned, one challenge to this approach is the inherent instability of feature impor-

tance over different runs caused by the overfitting and random factor dependence of gradi-

ent boosted tree models. Different cuts of data for training and testing produce different

results. This problem can be solved by performing cross-validation to arrive at a stable set

of features. This allows for greater confidence when interpreting the model as it highlights

only features that are consistent across runs. Here we use 5-fold cross-validation to obtain

the mean feature importance’s, with an average accuracy across all 5 folds = 0.94.

3. Results

3.1 Iris dataset

Using HOTS, A high degree of concordance with the features determined by Gini and permu-

tation importance is maintained, with petal length and petal width both identified as the top

two most predictive features (Fig 3). Since these weights are effectively the log odds for the

respective classes, we can interpret them as such. The large negative value for petal length in

the positive class (= -0.45) indicates that as petal length increases, the odds of being in the posi-

tive class decreases. A similar conclusion can be made for petal width. Further, we can see that

the sepal dimensions had little to no predictive power.

We are also able to perform a count of how many folds each feature appears during the

cross-validation process (Fig 4a). We see that all four features of the iris dataset were used to

make predictions in each of the 5 folds (Fig 4b).

This is particularly useful when modelling on data with a large number of features, as it

highlights the features that may only appear sporadically (low fold count in Fig 4b), but which

have a large weight in those instances (large average feature importance weighting in Fig 4a).

This methodology unveils a way to achieve a similar outcome as calculating feature impor-

tance by Gini importance or improvement to F-score, whilst also making use of ensemble

methods like gradient boosting which provide a superior fit. Further, it does this in a way that

better quantifies the impact of the variable since the weights in Fig 4a represent the averaged

feature importance contributions after cross-validation towards the respective final

predictions.

This method is optimized for approximating the contribution of each feature to the classifi-

cation outcome and while it is limited to one observation at a time, it can be easily scaled.

3.2 Case study: HOTS feature importance in Schizophrenic brain data

Furthermore, we propose this method as a suitable way of tying clinically observed behaviours

to functional brain regions, or “parcellations”.

A “parcellation atlas” in simple terms is a map of the brain. It delineates regions of the neo-

cortex that exhibit similar properties across individuals, such as functional activity, structural

connectivity, or cellular composition. Thus, a ‘parcellation’ is a region of the brain that

expresses similar properties in a population, even if the exact boundaries or topological loca-

tion may differ between individuals.
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Parcellation atlases are particularly useful when analyzing functional magnetic resonance

imaging (fMRI) data, which through recording changes in blood flow over time, can produce

a representation of neural activity. This information can further be used to show functional

connectivity between regions of the brain if the activity recorded between them exhibits a sta-

tistical relationship. A parcellation atlas can be used to reduce this complexity of pairwise cor-

relations by reducing the comparisons to a finite number of regions, assumed to perform

somewhat uniform functions.

Recently, Doyen et al. (forthcoming) developed a machine learning-based technique for

parcellating the brain in a way that is both subject specific, and comparable between subjects

[2,18]. Using this technique, we are able to generate adjacency matrices representing the corre-

lation between every pair of parcellations—described for the remainder of this paper as ‘con-

nectomic features’.

The applied atlas contains 379 parcellations in Glassian nomenclature [19] equating to

71,631 input features, and so any method used to tie clinically observed behaviour to these

Fig 3. Average feature contribution weight per prediction in a single decision tree. After entering the Iris dataset into our linearized decision tree,

we found the most important feature for successfully determining positive or negative class to be ‘petal length’. Importantly, the outputs provided in

this analysis are given a magnitude and direction for their respective involvement in classification compared to other features. These metrics offer a

significant improvement on previous analyses, whilst remaining consistent with the findings of Gini and permutation importance, where ‘petal length’

had the highest and second highest weightings respectively. Note that this represents the output data from a single decision tree (fold) prior to cross-

validation.

https://doi.org/10.1371/journal.pone.0258658.g003
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functional brain areas would not only need to provide direction and magnitude, but also be

scalable to a large number of features.

Here we present a case example of the feature contribution for boosted trees method

described throughout this manuscript, demonstrating its ability to effectively tie functional

regions of the brain to clinically observed behaviours.

We performed this analysis using the SchizConnect Center for Biomedical Research Excel-

lence (COBRE) dataset [20]. The dataset consists of the necessary brain MRI data for mapping,

as well as neuropsychological assessment scores for 60 patients diagnosed with Schizophrenia.

The analysis was designed as a binary classification problem—predicting the presence or

absence of a specific symptom. Specifically, we use item N4 from the patient’s Positive and

Negative Syndrome Scale (PANSS) [21], which measures the degree to which patient’s show

“passive/apathetic social withdrawal”. Each patient recorded their response on a 7 point Likert

scale, representing increasing levels of psychopathology (1 = absent, 7 = extreme), with a sensi-

ble binarization point determined at a score of 2 (i.e. subjects with a N4 score > 2 were in the

positive class, and� 2 were in the negative class). As described above, the input features used

to predict the presence or absence of this symptom were the subject’s pairwise functional cor-

relation between the 379 regions of the brain atlas which together form a large adjacency

matrix.

As with the iris dataset, we use XGBClassifier [2] to fit the model and perform 5-fold cross-

validation with an average accuracy of 0.71. Using the same feature contribution method

described for the iris dataset, we are able to generate a list of the features (parcellations) that

were most predictive of the positive and negative class symptom (Fig 6). The positive and neg-

ative class importance’s are complementary, and so only the positive class (target) impor-

tance’s are shown here. As Fig 5 shows, the region of the brain most predictive of the presence

of ‘passive/apathetic social withdrawal’ is area 2 of the right parieto occipital sulcus (R_POS2).

Since these values are represented as log odds, the value for R_POS2 (-1.33) tells us that as the

values for this parcellation increased, the probability of being in the positive class (having

greater “passive/apathetic social withdrawal”) decreased. Conversely, we can see that increases

in the value for the dorsal aspect of the left lateral intraparietal lobule (L_LIPd) indicated an

increased probability of being in the positive class (+0.48).

Fig 4. Average feature contributions and count number over 5-fold cross validation. (a) By investigating the five

folds used for cross-validation shown in Table 3, we once again determined ‘petal width’ and ‘length’ to be the most

important features for positive and negative classification within our decision tree. (b) A count of the number of folds

each feature appeared in during the cross-validation process revealed that all four features appeared equally throughout

the decision making process—suggesting that despite being significantly less important features for positive and

negative classification than ‘petal length’ and ‘width’, sepal features are utilised equally regularly to make predictions

within the model across multiple folds.

https://doi.org/10.1371/journal.pone.0258658.g004
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Further, cross-validation revealed that the R_POS2 was used by the boosted tree model to

make predictions in 3 out of 5 folds (Fig 6). This suggests that this feature was consistently

important for making predictions towards the positive class.

4. Discussion

Throughout this manuscript we detailed and validated a novel method, “Hollow-tree super”

(HOTS), which accurately provides metrics of directionality and magnitude between features

in boosted tree models. Further, the ability to discern between a large number of features and

be scaled to large datasets makes HOTS an easily implementable method which can be utilized

by a range of data-driven disciplines. When applied to the Iris dataset, HOTS showed high

Fig 5. Predictive brain regions for passive/apathetic social withdrawal. Applying our methodology to a cohort of 60

subjects from the Schizconnect COBRE dataset revealed brain regions most predictive for item N4 of the Positive and

Negative Syndrome Scale (PANSS). Connectivity matrices were generated between 379 cortical and subcortical

parcellations using a scheme derived from Glasser and colleagues (2015), and feature importance was carried out on

connectivity measures extracted from each individual parcellation. After performing cross-validation and averaging

the weights of feature importance, we determined R_POS2, R_IFSa, R_6mp, R_FST, R_AAIC, R_1, R_PFcm, R_PGs,

and L_LIPd to be most predictive for positive classification of PANSS N4. Positive class indicates a score> 2 on item

N4 of the PANSS. X-axis values are provided in log odds to more easily visualise the features of importance on a

logarithmic scale. L_ = left side, R_ = right side, POS2 = area 2 of the parietal-occipital sulcus, IFSa = anterior inferior

frontal sulcus, 6mp = medial posterior aspect of area 6, FST = lateral occipital visual area, AAIC = anterior agranular

insular cortex, 1 = primary sensory area, PFcm = centromedian part of parietal area F, PGs = superior aspect of parietal

area G, LIPd = dorsal aspect of the lateral intraparietal area.

https://doi.org/10.1371/journal.pone.0258658.g005

PLOS ONE Hollow-tree super: A directional and scalable approach for feature importance in boosted tree models

PLOS ONE | https://doi.org/10.1371/journal.pone.0258658 October 25, 2021 12 / 16

https://doi.org/10.1371/journal.pone.0258658.g005
https://doi.org/10.1371/journal.pone.0258658


concordance with other commonly used methods for investigating feature importance: Gini

importance, partial dependence plots and permutation importance. In a neuroscientific set-

ting, HOTS was able to accurately identify between 379 features, the most responsible brain

regions for positive classification of Schizophrenia from item N4 on the PANSS. Cross-valida-

tion supported that these same features were consistently utilized throughout the decision-

making process, improving our confidence that the chosen model had an accurate fit for diag-

nosis. Modern neuroscientific investigations further bolster our findings, supporting that

abnormal activity and connectivity between occipital and parietal brain regions occurs during

Schizophrenia [22,23]. That is, our use of HOTS supports the current understanding of the

determinants of this pathology and provides neuroscientists with a novel method for investi-

gating similar pathologies of the brain.

5. Study limitations

Importantly, this study involves a few key limitations that require addressing. First, our investi-

gation involved benchmarking HOTS as a feature importance method by testing its concor-

dance with Gini Importance, Partial Dependence Plots and Permutation Importance, as we

felt those were the three most common methods used throughout the field. Whilst HOTS was

able to effectively reproduce the results of these three methods using the Iris dataset, we cannot

with certainty assert that HOTS would reproduce the results of other methodologies such as

Information Gain or Chi-squared tests for feature selection. Additionally, as with any

machine-learning model, increasing the size of the dataset would improve the ability of HOTS

Fig 6. Count of recurring features across folds. By performing a count of feature appearance during the cross

validation process, we determined that the same features (parcellations) responsible for positive class classification

were also consistently used in 2 (R_PGs, R_PFcm, R_1, L_LIPd), 3 (R_POS2, R_IFSa, R_AAIC, R_6mp), or 4 (R_FST)

out of the 5 folds, suggesting that these same features were regularly used throughout the decision making process.

Note that this plot was abbreviated to only show features with a count of greater than 1.

https://doi.org/10.1371/journal.pone.0258658.g006
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to make accurate inferences about feature contribution and classification into positive and

negative classes [24], and whilst the Iris dataset remains widely-accepted a valid tool for testing

machine-learning algorithms [25,26], our observations on the Schizophrenic brain data may

be improved with greater volumes of imaging data which we aim to collect and test in future

investigations. Finally, an inherent limitation to boosted-tree modelling extends to our method

in that instability can arise due to random factor dependence occurring between trees. Whilst

we did consider this problem, we believe the incorporation of cross-validation when perform-

ing HOTS provides an effective regulating step to best minimize this, and further promotes

this method as superior for investigating feature importance in boosted-tree models.

6. Conclusion and future directions

These results support that HOTS offers superior metrics for investigating feature importance

than previously used methodologies. At least in the case of boosted-tree models, we suggest

that HOTS could be well incorporated into the modelling process and provide thorough and

easily interpretable metrics for the most responsible features which are also consistently uti-

lized for classification. Overall, the potential to visualise directionality and magnitude of fea-

ture contribution within a single methodology streamlines the process of performing boosted-

tree modelling, and offers a unique approach which can be applied to a range of different types

of data, including high dimensional datasets such as those encountered in the study of neuro-

imaging data. Further investigations should test the applicability of this method on other data-

sets, for example in neuroscience, where HOTS could be further utilized to investigate which

brain regions are most responsible for other disorders of the brain such as Major Depressive

Disorder, Alzheimer’s and Parkinson’s disease. A longitudinal dataset of pre- and post-treat-

ment scans with corresponding symptom scores could be used to verify the results of these

neuroscientific applications. An interesting future extension of the method could include

designing an approach to deliver HOTS feature importance scores in regression models, as

well as a method for working with categorical input data.
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