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Abstract
Background: Decision analysis techniques can be applied in complex situations involving uncertainty and the
consideration of multiple objectives. Classical decision modeling techniques require elicitation of too many
parameter estimates and their conditional (joint) probabilities, and have not therefore been applied to the
problem of identifying high-performance, cost-effective combinations of clinical options for diagnosis or
treatments where many of the objectives are unknown or even unspecified.

Methods: We designed a Java-based software resource, the Clinical Decision Modeling System (CDMS), to
implement Naïve Decision Modeling, and provide a use case based on published performance evaluation measures
of various strategies for breast and lung cancer detection. Because cost estimates for many of the newer methods
are not yet available, we assume equal cost. Our use case reveals numerous potentially high-performance
combinations of clinical options for the detection of breast and lung cancer.

Results: Naïve Decision Modeling is a highly practical applied strategy which guides investigators through the
process of establishing evidence-based integrative translational clinical research priorities. CDMS is not designed
for clinical decision support. Inputs include performance evaluation measures and costs of various clinical options.
The software finds trees with expected emergent performance characteristics and average cost per patient that
meet stated filtering criteria. Key to the utility of the software is sophisticated graphical elements, including a tree
browser, a receiver-operator characteristic surface plot, and a histogram of expected average cost per patient.
The analysis pinpoints the potentially most relevant pairs of clinical options ('critical pairs') for which empirical
estimates of conditional dependence may be critical. The assumption of independence can be tested with
retrospective studies prior to the initiation of clinical trials designed to estimate clinical impact. High-performance
combinations of clinical options may exist for breast and lung cancer detection.

Conclusion: The software could be found useful in simplifying the objective-driven planning of complex
integrative clinical studies without requiring a multi-attribute utility function, and it could lead to efficient
integrative translational clinical study designs that move beyond simple pair wise competitive studies.
Collaborators, who traditionally might compete to prioritize their own individual clinical options, can use the
software as a common framework and guide to work together to produce increased understanding on the
benefits of using alternative clinical combinations to affect strategic and cost-effective clinical workflows.
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Background
Classical decision analysis is a well-established field of
primarily theoretical analytical inquiry that can shed light
either on the optimality of decision in the face of com-
plexity and uncertainty, or a series of decisions for a par-
ticular circumstance. Less commonly, it may be used to
define a fixed protocol of options to follow as general
guidelines. Decision trees are sometimes represented as
bifurcating structures where each node represents a partic-
ular decision, and the internodes represent paths to sec-
ondary decision nodes. Most decision modeling to date in
medicine has focused on the problem of identifying opti-
mal decisions of use of new healthcare technology when
confronted with alternative (usually mutually exclusive)
healthcare interventions. For a recent methodological
reviews focused on methods see [1] Philips et al., 2004,
and for an overview of methods and criteria for quality
assessment of decision modeling see [2] Weinstein, 2006.

Model inputs are usually risk preferences derived via
expert elicitation (e.g., [3], Alberdi et al., 2004). In
advanced decision modeling, all possible decision trees
are represented as a single tree, and algorithms exist (e.g.,
roll-forward, roll-back) to define an optimal decision path
based on the consideration of multiple objectives, the cost
and benefit of which are ideally expressed as a common
utility function. For a fully enumerated decision analysis,
the full joint probability matrix should ideally be speci-
fied, but is rarely available, in which case uncertainty can
be explored via sensitivity analysis.

In application, decision analysis and decision modeling
are often used to develop computer-aided decision sup-
port systems within a particular field of biomedical spe-
cialization (e.g., radiology). They have rarely been used in
studying or defining research priorities for integration of
diverse clinical options, or for the study of the integration
of new clinical options into existing clinical workflows.
The reasons for the lack of advances in modeling integra-
tion are practical; modeling clinician-patient dyad prefer-
ences ('expert elicitation') is extremely hard, and among-
site variance in preferences is high. Models have been pro-
posed that elicit input from both patients and caregivers
([4] Col, 2005).

How to weigh the same evidence varies from individual to
individual. Moreover, the reasoning used to render a par-
ticular decision or risk preferences may not in some cases
be represented accurately as an easily defined model.
Defining a useful common 'currency' in which the cost
functions all considerations can be expressed in terms of
a utility function can be difficult, especially when many
variables influencing decisions must be considered. The
construction of multi-attribute utility functions, except in
their simplest form, is an arduous process in which few

decision makers are willing to participate. Finally, collect-
ing a sufficient amount of data and uniform preferences
on all pairs of diverse proposed clinical options becomes
intractable, especially when many or newly proposed clin-
ical options are considered.

Djulbegovic et al (2000; [5]) show how evidence-based
medicine (EBM) summary measures derived from popu-
lation studies can be incorporated into the framework of
clinical decision analysis. Such approaches are immi-
nently useful in the goal of clinical decision making with
available clinical options. This area is called "clinical deci-
sion support" for which numerous academic and com-
mercial resources already exist. In contrast, our focus on
clinical decision modeling is for when too many new clin-
ical options have been proposed, as in the case of putative
biomarkers for disease detection, and no clear route exists
to establishing priorities for integrative evaluative and
translational research to determine which combinations
of clinical options might receive priority for further
research as an integrated set of options within a clinical
workflow.

As an aid to defining integrative translational research pri-
orities, our goal is not clinical decision support per se;
instead, our goal is to provide a framework for the ration-
ale discussion for clinical research's impact of integrating
diverse sources of clinical information. By providing such
an underpinning for these discussions, useful and cost-
effective combinations can be overtly explored while
other, more costly or less effective combinations can be
given lower priority. Our motivation is well-founded;
indeed, in application, a recent study found that as the
complexity of decisions made increases, the use of deci-
sion support systems decrease [6]. Thus, the use of classi-
cal decision analysis to effect integrative translational
research seems unlikely at worst, and challenging at best
(but see [7] Leal et al., 2007 for a practical computing
resource that may yield possible exceptions).

We have devised an alternative strategy that we call "naïve
decision modeling" (NDM) that accepts the intractability
of deriving a fully defined model. Beginning with the
most basic elements of risks associated with individual
decision options (performance characteristics of clinical
options), NDM requires a critically operational, but ulti-
mately testable, assumption of conditional independence
among successive clinical options.

It is assumed that the aim of the research enabled by NDM
is to define a clinical workflow that integrates a high-per-
formance, cost-effective decision tree for diagnostics that
uses ruling-in and ruling-out assays. NDM is not designed
for real-time, i.e., dynamic, clinical decision making (e.g.,
[8], Housset & Junod, 2003), but rather to derive a general
Page 2 of 17
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2007, 7:23 http://www.biomedcentral.com/1472-6947/7/23
decision tree to be studied as a potential (hypothetical)
clinical workflow, with follow-up testing being specified
by the outcome (+/-) of the previous test. NDM is
designed to facilitate the clinical research study designs
needed to establish cost-effective integrated standard-of-
care clinical options.

In the first step of NDM, performance evaluation meas-
ures of individual clinical options are collected. In the sec-
ond step, alternative hypothetical combinations of
clinical options are then characterized based on their
expected performance and cost or any other attribute that
can be specified. The resulting combinations are rank-
sorted by performance or cost, and then explored manu-
ally by experts (e.g., clinicians), who might reject specific
combinations of clinical options as unlikely (e.g., unethi-
cal) hypothetical clinical workflows. Information on crit-
ical pairs of clinical options is derived during the second
step. In a third step, the assumption of conditional
dependence among critical pairs of clinician-selected clin-
ical options should be tested with empirical (e.g., retro-
spective) data. The model is then determined to either
meet the assumption of conditional independence, or to
violate it. If a hypothetical combination is found that
meets the assumption of conditional dependence, then
further clinical study of that particular combination as
fixed clinical workflow may be warranted. If the assump-
tion of conditional independence is violated, then the
model may be updated, including estimates of condi-
tional probabilities, from the retrospective study, and the
one particular hypothetical workflow re-assessed on the
basis of the new information. A new search that uses the
revised input can then also be conducted to identify new
workflows that may, or may not, be superior to the previ-
ously selected near-optimal workflow.

In this paper, we describe our software resource, CDMS,
which implements this evidence-based strategy to deci-
sion modeling to promote collaborative integrative trans-
lational clinical research.

Implementation
CDMS is a standalone application with a user-friendly
graphic interface. Both the application and its interface are
implemented in Java. CDMS is provided as an executable
jar file. To run it, the user should download a Java Runt-
ime Environment Version 5.0 Update 6 or above. CDMS
currently works under Windows XP and 2000 operating
systems. However, since Java is a platform-independent
language, the application would work under other Java-
compatible operating systems as well.

General implementation
CDMS requires a tab-delimited text file as input and a spe-
cific prevalence for the disease or condition being studied.

After that, running CDMS is just as simple as pressing a
button. All searching results are displayed in the CDMS
interface graphically. In addition, CDMS creates two out-
put files. The first files (*.cdms) contains all graphic
results objects. The other file is a text output file that is
used to record the complete searching details, which can
be used in the future for results checking reference, for
example, to repeat a previously saved search.

Application features
Decision trees as hypothetical clinical workflows: representation & 
searching
CDMS uses a rooted bifurcating tree structure to represent
a clinical workflow. In this representation, the first clinical
option is applied to all patients in a clinical setting. At
each node, the patient population is divided into test pos-
itive and test negative partitions, with subsequent follow-
up testing or treatment indicated by subsequent nodes.

Searching among possible combinations is currently
restricted to a random tree search algorithm [see Addi-
tional file 1]. CDMS searches randomly among possible
tree topologies within a user-defined range of size (# of
clinical options), and retains the "best" clinical workflows
according to user-defined optimality constraints. The ran-
dom search is strategic, for two reasons: first, near-optimal
solutions may be more clinically realistic than computa-
tionally guaranteed optimal solutions, and second, an
exhaustive search of all possible tree topologies is implau-
sible for very large numbers of clinical options. Felsen-
stein (2004) [9] reports that there are 34,459,425 "rooted,
bifurcating, labeled trees" for 10 nodes,
8,200,794,532,637,891,559,375 for 20 nodes, 4.9518 ×
1038 for 30 nodes, 1.00985 × 1057 for 40 nodes, and
2.75292 × 1076 for 50 nodes. Those numbers are based on
assumption that the "left-right order of branching does
not make any difference" (Felsenstein, 2004 [9]). How-
ever, this assumption does not hold for decision tree. Thus
there are even more possible tree topologies. It is intracta-
ble to search all trees to find the global optimal decision
tree given large numbers of clinical options. This strategy
is undesirable anyway, as clinical researchers may reject
the globally optimal tree as unrealistic or unethical.

The total number, and size of tree topologies searched is
specified by the user through the Control Panel interface.
In the future, various tree-searching heuristics and the
branch-and-bound algorithm may be added, but it will be
important to retain near-optimal trees as the main appli-
cation of CDMS is to facilitate the visual exploration of
alternative hypothetical cost-effective combinations of
clinical options, and not necessarily to discover the set of
globally optimal combinations.
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Optimization by and reporting of expected performance 
characteristics
The retained results of a given search are presented in
graphical and tabular form in various tabs. CDMS evalu-
ates the performance of a tree or a clinical workflow by
calculating its Emergent Expected Sensitivity (EESN),
Emergent Expected Specificity (EESP), and Expected Over-
all Cost per Patient (EOCPP). The calculations of these
terms are provided in the appendix A1 [see Additional file
1]. CDMS records the best performance tree topology
found among all trees searched and presents it graphically
in the Optimal Tree Topology tab. A summary of the results
from a given tree search is also reported in the TreeSearch-
ing Summary tab. The summary includes the information

such as the total number of tree topologies searched,
number of tree topologies that satisfy the performance
and/or cost constraints.

ROC Contour Plot tab
A contour plot is displayed in the ROC Contour Plot tab.
The ROC Contour Plot displays the counts (frequencies)
of the EESN and 1-EESP among all tree topologies
searched based on their combined performance values of
EESN and 1-EESP.

Cost Histogram tab
CDMS displays the average cost per patient distribution of
all trees searched in a histogram. Both the contour plot

Table 1: The input values for clinical options for breast cancer detection derived from a literature search

Proposed Diagnostic Tests/Assays SN SP Cost($) Reference PMID

Magnetic Resonance Imaging (MRI) 0.96 0.75 100.00 Imbriaco et al. 2001 [11] 11202453
Electrical Impedance Scanning 0.38 0.95 100.00 Stojadinovic et al., 2006 [12] 16491309
electronic resonance spectroscopy of 
albumin configuration

0.85 0.91 100.00 Seidel et al., 2005 [13] 16422355

SCM Test 0.81 0.85 100.00 Klein et al., 2002 [14] 14965713
Serum TSGF 0.6386 0.9089 100.00 Liang et al., 2002 [15] 12526228
mammaglobin (cutpoint 8.8) 0.688 0.888 100.00 Bernstein et al., 2005 [16] 16166429
SELDI (serum), CART, two surfaces 0.9 0.93 100.00 Vlahou et al., 2003 [17] 14499014
scintimammography on px w/
suspicious breast mass

0.9 0.938 100.00 Polan et al., 2001 [18] 11353112

NAS bFGF, race, menopausal status + 
PSA

0.909 0.833 100.00 Hsiung et al., 2002 [19] 12184408

cytology alone, breast ductal lavage 
cells

0.67 0.93 100.00 Zhang et al., 2006 [20] 16477639

G-actin biomarker, breast ductal 
lavage cells

0.9 1 100.00 Zhang et al., 2006 [20] 16477639

DNA5cER biomarker, breast ductal 
lavage cells

1 0.93 100.00 Zhang et al., 2006 [20] 16477639

Table 2: The input values for clinical options for lung cancer detection derived from a literature and internet search

CLINICAL OPTIONS SN SP Cost($) Reference PMID

TSGF 0.869 0.911 100.00 Newland Biotech [21] N/A
NSE 0.4617 0.9323 100.00 Newland Biotech [21] N/A
CA-125 0.5643 0.8472 100.00 Newland Biotech [21] N/A
SELDI (serum) 0.869 0.8 100.00 Yang et al., 2005 [22] 16029516
TLP 0.667 0.8 100.00 Tarro et al., 2005 [23] 15389637
CA-19-9 0.333 1 100.00 Tarro et al., 2005 [23] 15389637
CYFRA 21-1 0.111 1 100.00 Tarro et al., 2005 [23] 15389637
CEA 0 1 100.00 Tarro et al., 2005 [23] 15389637
anti-Rc 0.2 0.98 100.00 Bazhin et al., 2004 [24] 15084384
LIFE bronchoscopy 0.68 0.696 100.00 Hirsch et al., 2001 [25] 11562389
WLB bronchoscopy 0.219 0.783 100.00 Hirsch et al., 2001 [25] 11562389
methylation in at least 1 of 5 
tumor suppressor genes

0.495 0.85 100.00 Fujiwara et al., 2005 [26] 15709192

CT-guided fine-needle aspirate 
biopsy

0.82 1 100.00 Wallace et al., 2002 [27] 12461267

x-ray determinate only 0.54 0.99 100.00 Gavelli & Giampalma, 2000 [28] 11147625
x-ray indeterminate 0.84 0.9 100.00 Gavelli & Giampalma, 2000 [28] 11147625
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and histogram can be displayed on logarithmic scales. The
user can do this by mousing-over the legend and right-
clicking the mouse button.

Tree Browser tab
Perhaps the most useful component of the output of
CDMS is the Tree Browser tab. In the tree browser, the tree
topologies that satisfy both performance and cost con-
straints are listed in the left side of the browser. Each tree
topology is represented by its rank, its associated confu-
sion matrix, and other specific scores such as its EESN,
EESP, Emergent Expected Achieved Classification Error
(EEACE), EOCPP, and tree size. The display includes a
button to view the tree, and a button to reject a given tree.
All rejected tree topologies are moved to the Rejected Trees
sub tab, and can be restored from the rejected tree list.

Saving and re-loading saved results and print functions
The results from a particular search can be saved to disk to
allow the user to retrieve and view them later. The user can
print all the graphical objects displayed in the interface,
including any displayed tree topology.

Input format
To use the software, the user must provide a tab-delimited
text file of potential clinical options with SN, SP, and cost
estimates for each option (Table 1 and Table 2). To make
CDMS more flexible, any number of objectives can be
added to the input file as additional columns. These addi-
tional columns are user-defined measures for each clinical
option. An example would be 'time to test result' for each
clinical option. Therefore, while the input file must con-

The Control Panel interface of the CDMSFigure 1
The Control Panel interface of the CDMS.
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tain at least 4 default columns, the input file may in fact
contain more than 4 columns.

Control Panel
Running CDMS starts with a Control Panel dialog (Figure
1). It is an interface that allows the user to input all neces-
sary information to begin searching. The Control Panel
includes two parts: the File Input Output section, where the
user can load the input file and specify the output
filename here, and the Constraints section, where the user
has to input the prevalence value of the type of disease
(e.g., cancer) or condition (e.g., drug sensitivity) under
study. The prevalence value can be derived from any valid
empirical estimate or information resource (e.g., [10], the
US national SEER database). The prevalence, and all of the
clinical options, should be relevant to the clinical popula-
tion under study.

All other parameters in this part have default values that
the user can modify to suit their study. For example, the
user can increase or decrease the values of the population
and the number of tree topologies to search.

Rooted vs. unrooted searches
The user also can select one clinical option as the fixed
root node of the tree by checking the Fixed Root Node

check box and selecting an option from the drop down
list. When this option is activated, CDMS will only search
trees that begin with the same clinical option as the first.

Including/Excluding Clinical Options
In some situations, the user may wish to conduct a tree
search using only a subset of the clinical options from the
input file. In this case, the user can select the options by
clicking the Include/Exclude Clinical Options button. A sub-
sequent dialog will appear. An example of the dialog is
shown in Figure 2. All clinical options are associated with
their parameters: SN, SP, and cost. This will allow the user
to quickly conduct sensitivity analyses by including two or
more instances of options with same name, but with dif-
ferent performance evaluation measures or cost estimate
parameters.

Stopping a search
The default number of tree topologies to search for all lev-
els of clinical options is 1,000,000. To prevent excessive
run times, CDMS has an option to allow the user to inter-
vene at any time prior to completion of the search process.
Results generated to that point are shown.

The interface to select clinical options to search for breast cancerFigure 2
The interface to select clinical options to search for breast cancer.
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Conducting the random tree search
The user starts the random tree searching process by press-
ing the Run button in the Control Panel dialog. A progress
bar appears and shows the progression of the random tree
searching process. The searching process is saved to the
*.txt file of same name as the *.cdms file.

Results
Use case #1. Breast Cancer Detection Decision Modeling
The input file [see Additional file 2] for Breast Cancer
Detection Decision Modeling is in Table 1. The SN and SP
estimates were derived from the peer-reviewed literature
by JLW. In May 2006, NCBI's Pubmed was searched for
abstracts with the keywords "breast cancer" AND "sensi-
tivity" AND "specificity". The first 200 abstracts were read
and performance evaluation measures of potentially rele-
vant studies were recorded. Because cost estimates for
these newly proposed tests are not yet available, all tests
were arbitrarily assigned a hypothetical operational cost
of $100. Figure 3(a) shows the parameters that are input
using the Control Panel. From the Figure, we see that the
prevalence for the breast cancer is 0.0013 (The prevalence
estimate was obtained from SEER [10] in May, 2006.). All
other input parameters are default values. Figure 3(b)
shows the tree search summary report. From the sum-
mary, we know that there are 12 clinical options (tests) for
this search. The second search was performed using
1,000,000 iterations. During the search, 208,824 tree
topologies were found that satisfy the performance con-
straints; 24,156 tree topologies were found that satisfy the
cost constraints; and 3,370 tree topologies were found
that satisfy both constraints.

The Optimal Tree Topology tab (Figure 4(a)) shows the best
tree topology among the 1,000,000 trees searched for the
breast cancer. It is a tree that consists of 5 clinical options.
In addition, the confusion matrix for this tree is also dis-
played. In it, P is the number of patients with breast cancer
and N is the number without breast cancer. Based on the
numbers in the confusion matrix, the expected overall
performance measure can be calculated. These perform-
ance measurements include EESN, EESP, EEACE, and
EOCPP.

The Contour Plot tab (Figure 4(b)) shows the performance
distribution of all 1,000,000 trees searched. Performance
measurements for the contour plot are the paired values
of EESN and 1-EESP within 2-dimensional bins. For
example, if one tree has an EESN = 0.9 and an EESP =
0.85, the coordination in the contour plot is (0.9, 0.15).
The contour line in the plot represents a threshold. For
example, the contour line of 0 represents 10,000.

The Cost Summary tab (Figure 5(a)) shows the distribution
of the costs of all the trees searched. The x-axis shows all

possible cost values and y-axis is number of counts. A ver-
tical line is added in the distribution to indicate the value
of the cost constraints. In the breast cancer, it is $200.00.
The cost constraint line is used to distinguish the area that
satisfies the cost constraints with the area that does not,
under the distribution curve. Different colors are used to
incorporate performance information into the cost distri-
bution. To the left of the cost constraints line, darker blue
means that all trees satisfy the cost constraints. Within the
dark blue bars, black represents the proportion of trees
that also satisfy the performance constraints. The user can
change to logarithmic scales to see these parts more clearly
(Figure 5(b)). The user only needs to move mouse above
the y-axis and right click. Normal scales and logarithmic
scales can be toggled by repeating this operation. To the
right of the cost constraint line, light blue represents trees
that do not satisfy the cost constraints. Light gray pertains
to the proportion of trees that satisfy the performance
constraints.

In the Tree Browser tab (Figure 6), all tree topologies that
satisfy both the performance and cost constraints are
listed, but with a size-limitation. In some cases, there may
be too many trees that satisfy both performance and cost
constraints that computer memory may become limiting.
A user-defined upper limit of 1,000 trees can be displayed
in the tree browser. The user can sort the trees in the tree
browser based on tree's performance (weighted 'emergent
expected achieved classification error', or EEACE [see
Additional file 1]), cost (EOCPP), size (number of nodes
in the tree), or on their own defined optimality criteria
(e.g., 'time to test result'; 'risk of harm to patient'). The
user also can view each tree graphically by clicking the
view button. If tree topologies appear nonsensical for prac-
tical and ethical clinical workflows, they may be rejected
by pushing the Reject button. The rejected trees are moved
into the Rejected Trees sub tab. In the case that some trees
are rejected incorrectly after reconsideration, they can be
restored back by pushing the Restore button. Rejected tree
can also be viewed by clicking View button in the Rejected
Trees sub tab.

Use case #2. Lung Cancer Decision Modeling
Figure 7(a) shows the Control Panel of our Lung Cancer
use case. It includes 15 clinical options (Table 2) in the
input file derived from the literature search conducted by
JLW. The Pubmed search, conducted in May 2006, terms
were "lung cancer" AND "specificity" AND "sensitivity".
The first 200 abstracts were read. Due to the small number
of applicable reports, an internet search was added, result-
ing in the finding of a report on three putative biomarkers
by Newland Biotech, Inc. Therefore, the Tree Searching
Summary tab (Figure 7(b)) reports that there are 11
options. The cost of each option was set arbitrarily at
$100.00 for this use case. 1,000,000 search iterations were
Page 7 of 17
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performed. In this case, 4 options are excluded to avoid
overly optimistic projections as very high performance
potential high-dimensional biomarker sources (e.g.,
SELDI) require further validation. The most optimal tree
topology under the classifier performance criteria, a 5-
node tree, is displayed in the Optimal Tree Topology tab
(Figure 8(a)). From the tab, we can see that the cost per
patient of this tree is $222.98, which is greater than the
cost constraint ($200.00). That is, the "best" tree does not
satisfy the cost constraints. Therefore, it is not included

into the Tree Browser (Figure 8(b)), which displays only
trees that meet both optimality criteria. It is only the
"best" tree based on classifier performance. There are 152
tree topologies that satisfy both performance and cost
constraints in the third search (Figure 7(b)), among which
13 trees are duplicated. Therefore, only 152 – 13 = 139
trees are listed in the tree browser. CDMS does not display
redundant, i.e., identical, trees in the tree browser. As in
the breast cancer use case, the Contour Plot tab (Figure
9(a)) shows the performance distribution of all 1,000,000

The input parameters and tree search summary of the CDMS for a trial run for breast cancerFigure 3
The input parameters and tree search summary of the CDMS for a trial run for breast cancer. (a) Control Panel 
of the run. (b) Tree searching summary.

(a)
Page 8 of 17
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2007, 7:23 http://www.biomedcentral.com/1472-6947/7/23

Page 9 of 17
(page number not for citation purposes)

The optimal tree topology and contour plot of the CDMS for a trial run for breast cancerFigure 4
The optimal tree topology and contour plot of the CDMS for a trial run for breast cancer. (a) Optimal tree topol-
ogy. (b) Contour plot.

(a)
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The cost summary of the CDMS for a trial run for breast cancerFigure 5
The cost summary of the CDMS for a trial run for breast cancer. (a) Normal scale. (b) Logarithmic scale.

(a)
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trees searched and the Cost Summary tab (Figure 9(b))
shows the distribution of the costs of all the trees
searched.

Discussion
Major limitation of NDM
All subsequent results are highly dependent on the accu-
racy and precision of the input performance evaluation,
cost and other parameter estimates. Studies should there-
fore be screened for possible biases, and sensitivity analy-
sis can be conducted to assess the impact of potentially
optimistic estimates.

Major applications of CDMS
The most obvious application of CDMS is the exploration
of putative combinations of clinical options for diagnos-
tics. In this application, the idea is to perform a search
under the naïve assumption of conditional dependence to
minimize searching for pairs or sets of tests for which joint

probabilities are needed. Under the assumption of condi-
tional independence, many clinical combinations are
likely to be highly optimistic. Importantly, the introduc-
tion of conditional dependence however will only lower
the EESN or EESP. The exploration of the robustness of
specific workflows to conditional dependence can be
explored empirically, and acceptable levels of conditional
dependence can be determined prior to data collection. In
the future, CDMS will allow the user to upload a sparse
matrix of conditional probabilities so the calculation of
EESN and EESP can be readily modified dynamically
using empirically derived conditional probabilities during
the tree search as needed.

Cost-neutral analyses
While the use cases we provide are cost-neutral (assume
equal cost of all clinical options, the NDM method imple-
mented by the CDMS software is capable of considering
user-provided estimates of cost. Indeed, the default data

The tree browser of the CDMS for a trial run for breast cancerFigure 6
The tree browser of the CDMS for a trial run for breast cancer.
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The input parameters and tree search summary of the CDMS for a trial run for lung cancerFigure 7
The input parameters and tree search summary of the CDMS for a trial run for lung cancer. (a) Control Panel of 
the run. (b) Tree searching summary.

(a)
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The optimal tree topology and tree browser of the CDMS for a trial run for lung cancerFigure 8
The optimal tree topology and tree browser of the CDMS for a trial run for lung cancer. (a) Optimal tree topol-
ogy. (b) Tree browser.
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The contour plot and cost summary of the CDMS for a trial run for lung cancerFigure 9
The contour plot and cost summary of the CDMS for a trial run for lung cancer. (a) Contour plot. (b) Cost sum-
mary.

(a)
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input format requires cost estimates. It may be useful run
a preliminary cost-neutral analysis to determine whether,
even under the best-case assumption of conditional inde-
pendence, any clinically acceptable high-performance
combinations exist given the available clinical options. To
conduct cost-neutral analyses, the user can specify any
common cost for all clinical options (in our use cases,
$100).

Benefits of random tree searching
There are numerous benefits to conducting a random tree
search. First, it provides a rapid answer to the question of
whether any combinations exist that are high-perform-
ance; i.e., it answers the question "Does a population of
high-performance, cost-effective putative clinical work-
flows exist?". Second, it allows the manual exploration of
near-optimal trees. Leal et al [7] cite a "gap in the literature
(that exists) between theoretical elicitation techniques
and tools that can be used in applied decision-analytic
models". Our approach places the experts (or a committee
of experts), in the position of applying their preferences to
entire competing decision models based on any number
of attributes, both formally included in the valuation, and
those inherent to a proposed series of successive clinical
steps. Finding the global optimal solution may also not be
desirable. In many cases, the theoretically optimal trees
may be clinically unacceptable because they are consid-
ered impractical, or unethical. As more information about
each of the diverse newly proposed tests become incorpo-
rated as criteria (e.g., 'risk to of harm to patient'), succes-
sive updates to the model searches will become more
refined.

Compatibility with generalized decision modeling
The main core of the NDM search strategy implemented
by CDMS is, by design, random tree searching. In the
future, additional options that increase overall utility will
be added. These include options for automating parame-
ter sensitivity analysis, and it may also include the capabil-
ity to conduct some critical aspects of standard decision
modeling. We view the integrative framework outlined in
[5] as a very promising direction to implement our strat-
egy so that each tree search result can be the product of
multiattribute functions. For the time being, we foresee
applications of the CDMS in the search for ways to inte-
grate diverse sources of clinical data in a manner that
allows clinicians to weigh in and discuss and debate their
rationale for rejecting specific putative potential work-
flows, and to identify the critical missing types of informa-
tion required to finalize decisions needed for highly
integrative clinical studies.

Use by major medical research institutions
Decisions to adopt new clinical options for patient diag-
nosis and treatment usually follow a hierarchy within an

organization, and numerous real-life factors are taken into
account. We envision that CDMS might provide impetus
for the adoption of clinical options that, when considered
in isolation, might not be adopted due to these other fac-
tors. Decision-makers at the highest levels in medical
research institutions are encouraged to adopt CDMS, and
to undertake the team-building exercise of decision mod-
eling. NDM makes the process simple, makes all of the
details of all of the factors explicit, and, most importantly,
can allow clinical research teams to state the problem of
adoption in terms of testable hypotheses (e.g., 'the adop-
tion of clinical workflow x will result in a SN of at least 0.8
and SP of at least 0.90 at a per-patient cost of at most
$1300US'), where the hypotheses are based on evidence
that the critical pairs of clinical options are, in fact, condi-
tionally independent. This type of research might prove
more amenable to expediting translational integration
than the traditional 1 vs. 1 (option x vs. option y) compar-
isons.

Scalability
The CDMS software can be used to study the integration
of thousands of clinical options; the scalability is limited
only by the RAM of the computer used. If the user wishes
to consider topologies that include many clinical options,
viewing the entire tree may be problematic. In practice,
however, most users will likely restrict their consideration
to workflows with a reasonable number of options per
tree, even when the number of possible clinical options is
very large.

Generalizability
The CDMS software can be used on numerous computa-
tional platforms. NDM is a general framework that can be
applied to various types of problems in biomedicine,
including, for example, integrative diagnostics (as in our
use cases), or drug therapy studies when there are multiple
choices with conflicting evidence. Modeling the efficacy of
various drugs in combination, however, should consider
nonlinear dependencies. While CDMS does not yet per-
mit such higher-order dependencies among the clinical
options, it could be found useful in helping to focus con-
sideration of alternative combinations of treatments, and
their order, considering factors such as cost and accumu-
lated risks associated with negative side-effects.

Conclusion
It should be recalled that any decision modeling exercise,
however implemented, can only ever produce hypotheses
that must be tested with empirical data. It is our hope that
improvements in the integration of biomarkers for the
clinical diagnostics for cancer and other debilitating dis-
eases will be found using CDMS, tested via retrospective
studies, updated as needed (for example, as Bayesian net-
works), and most importantly validated via prospective
Page 15 of 17
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clinical studies where the decision model is the instru-
ment tested, as a workflow.

Availability and requirements
Project name: Clinical Decision Modeling System

Project home page: http://www.bioinformatics.pitt.edu/
software/cdms

Operating system(s): Platform independent. Current ver-
sion tested on Microsoft Windows XP and 2000.
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Other requirements: Java JDK or JRE1.5.6 or higher

License: (C) 2007 The University of Pittsburgh, All Rights
Reserved.

Any restrictions to use by non-academics: For commer-
cial licensing, contact The University of Pittsburgh Office
of Technology Management (Brian Copple or Marc
Malandro, Tel: 412-648-2208).
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