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Keywords:
 Whole slide images contain amagnitude of quantitative information thatmay not be fully explored in qualitative visual
assessments. We propose: (1) a novel pipeline for extracting a comprehensive set of visual features, which are detect-
able by a pathologist, as well as sub-visual features, which are not discernible by human experts and (2) perform de-
tailed analyses on renal images from mice with experimental unilateral ureteral obstruction. An important criterion
for these features is that they are easy to interpret, as opposed to features obtained from neural networks. We extract
and compare features from pathological and healthy control kidneys to learn how the compartments (glomerulus,
Bowman's capsule, tubule, interstitium, artery, and arterial lumen) are affected by the pathology. We define feature
selection methods to extract the most informative and discriminative features. We perform statistical analyses to un-
derstand the relation of the extracted features, both individually, and in combinations, with tissue morphology and
pathology. Particularly for the presented case-study, we highlight features that are affected in each compartment.
With this, prior biological knowledge, such as the increase in interstitial nuclei, is confirmed and presented in a quan-
titative way, alongside with novel findings, like color and intensity changes in glomeruli and Bowman's capsule. The
proposed approach is therefore an important step towards quantitative, reproducible, and rater-independent analysis
in histopathology.
Feature extraction
Pathomics
Histopathology
Introduction

Histological images, especially high-resolution Whole Slide Images
(WSIs), contain a wealth of information that is not exploited to its full po-
tential in current clinical routine. Conventionally, trained pathologists ex-
amine histopathological slides under a microscope to identify biomarkers
and draw diagnostic conclusions. Through years of training, experts intui-
tively learn to extract visual features which aid the diagnostic process
from the images. However, visual examinations are often subjective and
may lack the support of concrete quantitative analyses. Furthermore, not
all features are easily discernible to the human eye. Such features are
often referred to as “sub-visual” features.41 Although differences in healthy
and pathological cases are studied, it is difficult to obtain a thorough quan-
titative representation of these differences in clinical routines.

Typical tasks in histological examinations include detection,4,1,46

segmentation,12,47,5 and quantification6,13,47 of tissue structures of interest,
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image registration,14 and classification.2,17,15 Quantification of tissue
structures involves the extraction of features characteristic to the data in
consideration. Most of these tasks are extremely labor-intensive and time-
demanding. However, recent advancements in the field are seeking to
address the limitations presented by manual methods. In histopathology,
digitization caused the field to grow rapidly, enabling the development of
Artificial Intelligence (AI) techniques for automatingmanual tasks. Most re-
cently, pathomics18,19 is emerging: an omics approach in digital pathology
that aims at capturing quantitative features from WSIs to characterize the
phenotypic features of tissues. In the context of the analysis of Glioblas-
toma, Lehrer et al. refer to this approach to as ‘histomics’.43 Here, they dis-
cuss the potential of discriminating between glioma subtypes with the help
of morphometric features extracted from the nuclei.

Clinical analyses of histopathology images are traditionally based on de-
scriptors obtained by domain knowledge of the experts. For instance, the
presence, appearance, and number of objects like nuclei and cells form
M. Klinkhammer), cseikrit@ukaachen.de (C. Seikrit), nbouteldja@ukaachen.de (N. Bouteldja),
mayr), pboor@ukaachen.de (P. Boor), dorit.merhof@lfb.rwth-aachen.de (D. Merhof).
2056 Aachen, Germany.

2

Pathology Informatics. This is an open access article under the CC BY-NC-ND license

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpi.2022.100097&domain=pdf
http://dx.doi.org/10.1016/j.jpi.2022.100097
dorit.merhof@lfb.rwth-aachen.de
http://dx.doi.org/10.1016/j.jpi.2022.100097
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/jpi


L. Gupta et al. Journal of Pathology Informatics 13 (2022) 100097
the basis of diagnosis criteria used to distinguish between healthy and path-
ological samples. In computer vision, traditional feature extraction methods
are broadly categorized into classical image processing methods and learn-
ing-based methods. The former include feature desciptors such as color his-
tograms, scale-invariant feature transform (SIFT),20 local binary pattern,15

and gray-level co-occurrence matrix (GLCM).21 In addition, prior domain
knowledge is utilized to obtain histopathological image representations.17,22

Learning-based methods, on the other hand, involve feature extraction
with the help of AI techniques, where raw image data is used to extract fea-
tures with auto-encoders and Convolutional Neural Networks (CNNs).16,17

However, these features are mostly neither interpretable nor easily explain-
able. In this context, it is important to understand the difference between
the terms “interpretability” and “explainability” in AI.23 “Interpretable”
models are those where the output relates directly to the input and any
changes in the input will lead to a predictable output. This is possible be-
cause the model parameters can be understood by human beings without
additional aids or techniques. However, such models are often domain-
specific and hence, constrained by domain knowledge. On the other
hand, “explainable” models are those where the model parameters are
too complicated to be understood by humans without additional aid. A sec-
ond model (posthoc) is required to explain why a certain decision has been
made by the model. Decision trees and linear regression models are exam-
ples of interpretable models while random forest and CNNs fall under the
category of explainable models.23 These characteristics of newly proposed
methods are becoming increasingly important, especially in medicine,
where trustworthy AI is crucial to progress.42 According to Hasani et al,42

AI systems in healthcare should empower physicians in making informed
decisions. This can, for example, be achieved through interpretable fea-
tures. Hence, compared to AI systems as “black box” models, an algorithm
with understandable outputs is preferable.

In this study, we will extend and follow these definitions for interpret-
ability and explainability for features. Recently, the terms “hand-crafted
pathomics” and “discovery pathomics” were proposed for feature extrac-
tion based on domain knowledge and for AI-based feature extraction,
respectively.18 In contrast to most learning-based algorithms, hand-
crafted pathomics produces interpretable features, hence this work focuses
on this approach.

State of the art

Most studies in digital histology focus on cancer tissue,26,43,44,24,25 espe-
cially breast cancer.17,19,27 This is because cancer tissue requires annota-
tions only on a specific tumor tissue, whereas non-tumor tissue presents
several variations and combinations of normal and abnormal cells.18 An-
other exceptional challenge in digital histopathology is the variability of tis-
sue types (e.g., epithelium, nervous, or connective tissue), as well the
variabilites among organs under observation. This often necessitates the de-
velopment of data-specific methods. Only a few research groups across the
world focus on renal histopathology.18 Interestingly, a high focus is given to
glomeruli detection and segmentation.1–4,7,9,10,12,46,47 Specifically relevant
to digital histology, the virtual translation of stains is also explored with
high interest.5,8,11

Feature extraction is often performed with the aim of developing effec-
tive classification approaches, where the analyses of the extracted features
themselves are limited in scope.16,28 A features-based method for the clas-
sification of pathological images showing renal cell carcinoma into differ-
ent subtypes28 includes a simple color-based segmentation followed by
morphological, wavelet, and texture analyses on the images. The analyses
are combined to develop a robust classification system based on a simple
Bayesian classifier. Although the method involves the extraction of several
kinds of features, the focus is restricted to the classification task. It does not
incorporate defining new features or explaining existing features in provid-
ing novel clinical insights about the tumor itself. Similarly, most current lit-
erature focuses on CNN features, which are highly effective for a given task,
but due to their uninterpretability, fail to aid pathologists with novel in-
sights on the tissue.16 Unlike the focus of this work, these features are not
2

interpretable. One study that takes a step closer towards interpretability is
presented with pathological images of uterine cervix.29 Here, the authors
train a network with representative pathological features in order to under-
stand the decisions made by the network.

In this shift of focus towards AI-based approaches, pathomics is still in
its infancy. It is categorized into hand-crafted or conventional pathomics
and discovery pathomics.18 While the former relies on domain knowledge
to extract digital signatures from raw data, the latter uses CNNs to extract
features from images. Unlike task orientated AI-based approaches,
pathomics focuses on feature extraction and analysis, i.e. while such AI ap-
proaches may behave as a classifier, pathomics behaves as a feature extrac-
tor providing a structured representation of the input image data.

Yamamoto et al. presented a method that exploited features to obtain an
objective measurement of pleomorphism and/or heterogeneity.13 They cal-
culated several GLCM based texture features on nuclei segmentations and
discussed their correlations with heterogeneity. Another study focusing on
glioblastoma, extracted morphological features form the nuclei to demon-
strate the correlation between phenotypic groups and clinical outcomes.44

They focused on understandable features and showed that nuclear circular-
ity and eccentricity were strongly correlated with the oligodendrocyte gene
expression. The authors also proposed a tool, HistomicsML, to support simi-
lar histology analyses.45 In another study,9 the authors segmented glomeru-
lar compartments and extracted features with the aim of classifying diabetic
nephropathy. The authors extract color, textural, morphologic, containment,
interstructural, and intrastructural distances as features. These studies are
similar to our work, but with some limitations. While Yamamoto et al and
Kong et al13,44 are restricted to nuclei segmentations and Ginley et al9 to a
specific kidney compartment, namely the glomerulus, we extract features
from several important compartments in the kidney. Moreoever, Yamamoto
et al13 is limited in scope only to heterogeneity, Ginley et al9 in the classifi-
cation of diabetic nephropathy, and Kong et al and Nalisnik et al44,45 in the
classification of tumor regions. While we are interested in finding general
differences between any two tissue types under observation. Hence, we
extract several categories of features in this work.

Contribution

The contribution of this work is two-fold: (1) a novel pipeline for the
extraction of features that allow meaningful analysis for pathologists and
(2) a detailed case-study on kidney histopathology.

(1) We propose a pipeline to extract a large variety of interpretable fea-
tures from renal WSIs. Specifically, we extract several first-order statistical
(intensity), shape, color, textural, and task-specific morphological features.
The features are extracted from important kidney compartments, including
glomerular tuft, Bowman's capsule, tubule, interstitium, artery, and arterial
lumen, of pathological as well as contralateral kidneys of mice. A compara-
tive study enables us to highlight how individual compartments are af-
fected by the pathology. We perform statistical analysis to understand the
relation of the extracted features, both individually, and in different combi-
nations, with the underlying tissue morphology and pathology. We also
define feature selection methods to extract the most informative and dis-
criminative features to obtain clinically relevant information about the
data. As such, our contribution to the field does not lie in providing WSI-
level features that are as discriminative as possible (as neural networks
would do). Instead, we highlight the potential of extractingmeaningful fea-
tures that can aid pathologists in understanding kidney pathologies inmore
detail. Moreover, the pipeline is generic and can be applied to any histopa-
thological datasets.

(2) As a case study, we evaluate the pipeline on amurine kidney disease
model, Unilateral Ureteral Obstruction (UUO). Here, the induced patholog-
ical condition can be assessed in comparison with the non-manipulated
healthy contralateral kidney in individual mice. We show that pathologies
have a clear influence on certain features confirming expert workflows in
diagnosing the condition. Particularly, we analyze how UUO affects indi-
vidual compartments and provide a comprehensive list of individual fea-
tures that are affected in each compartment. With our pipeline, we
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confirm the prior biological knowledge that inUUO, amodel used to induce
tubulointerstitial damage, tubules and the interstitium are the most
strongly affected compartments. We also find significant differences in cer-
tain features from glomerular tuft and Bowman's capsule. Specifically, we
find significant differences (p ≤ 0.005, with p denoting the Bonferroni-
corrected p-value for n=5 comparisons48) for intensity, color, and texture
features in these two compartments. These findings prove that the features
and analyses proposed in this study enable us to the identify pathological
alterations caused by the disease, providing novel insights.

Methods

The individual processing steps of our pathomics approach comprise
pre-processing, feature extraction, feature selection, and evaluation (see
Fig. 1). The steps are outlined in more detail in the following subsections.
Fig. 1 shows the proposed pipeline in a schematic manner with a glomeru-
lus as an example of a segmented compartment. Henceforth, wewill refer to
kidney compartments as “objects”.

Image data

The image data used in the study comprises 10 WSIs obtained from
5 resected mouse kidneys. The samples were taken from previously pub-
lished animal experiments performed according to the regulations of the
local and national ethical committee for animal welfare (Landesamt für
Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV
NRW))30,31 and the study is reported in accordance with ARRIVE guide-
lines. LANUV NRW provided the ethical approval. In short, C57BL/6N
mice (Charles River, Germany) were housed under SPF-free conditions
with constant temperature and humidity under a 12-h phase light-dark
cycle with free access to drinking water and food. The UUO surgery was
performed under anesthesia by ketamine (14 g/kg body weight) and
xylazine (8 g/kg body weight) following analgesia with Temgesic
Fig. 1. Schematic representation of the proposed pipeline. Pre-processing includes auto
based on the labels of the WSIs. Several types of features are extracted from the segme
healthy and pathological samples.

3

(0.05 mg/kg) until 72 h post-OP. On day 7, animals were sacrificed and
perfused with saline, and kidney tissue was processed for histological
examination.

Tissue was fixed in methyl Carnoy's solution and embedded in paraffin.
Paraffin sections (1 μM) were stained with Periodic Acid-Schiff (PAS) re-
agent and counterstained with hematoxylin. For digitization of the slides,
whole-slide scanners NanoZoomerHT2with 20×objective lens (Hamama-
tsu Photonics, Hamamatsu, Japan) were used. Details on the tissue preser-
vation method are as described previously by Boor et al.32 The obtained
WSIs have sizes of around 50,000×40,000 pixels each.

UUO is a commonly used experimental model to cause renal fibrosis,
the common pathway for most progressive renal diseases. The general pro-
gression of disease with time in case of UUO is clinically well-known,33

making this model suitable for the evaluation of novel features. Further-
more, this model affects only one kidney, allowing the other contralateral
kidney to serve as the healthy control from the same subject, minimizing
inter-subject variations.

Pre-processing

In the following, we describe the pre-processing steps, namely instance
segmentation and labeling.

Instance segmentation
As a prerequisite to feature extraction from individual kidney compart-

ments, we obtain a complete segmentation of the healthy and the contralat-
eral kidneys. In particular, we segment the following kidney compartments:
glomerular tuft (glomerulus), Bowman's capsule (BMC), tubule, extra-
cellular matrix (interstitium), arterial blood vessels, and their lumen.
Considering the large resolutions of theWSIs, it is infeasible to obtain man-
ual segmentations. Hence, for this purpose, we use an existing deep
learning-based method.6 The authors used a U-Net34-based method and re-
port high accuracies in the segmentation of structures not only for healthy
matic segmentation of renal structures, color deconvolution, and instance labeling
nted objects and after feature selection, feature analyses are carried out based on
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WSIs, but for UUOWSIs as well. For the former, they achieve instance seg-
mentation accuracy of above 94% for glomerular tuft, BMC, and tubule in
healthy WSIs, and around 90% in UUOWSIs. They report scores of around
88% and 80%, for arteries and arterial lumen, respectively, in case of
healthyWSIs and around 75% and 82%, respectively, in case of UUOWSIs.
Instance labeling
The second step is labeling the obtained instance segmentations as

‘healthy’ or’UUO’. To keep the manual efforts minimumwherever possible,
we adopt a simple approach to obtain instance labels automatically: we as-
sign each object instance the same label as that of the WSI from which it is
segmented. These instance labels serve as ground truth for all analyses. Al-
though some objects or object instances may not reflect the global WSI
label, it is expected to be the case for the majority of them. This means
that not all instances of a given object in a pathologicalWSImay be affected
and some may still be in a healthy condition. This also applies to healthy
WSIs as some object instancesmay not be completely healthy due to natural
degeneration, for instance. However, in case of UUOat day 7, the pathology
affects most objects quite significantly, allowing our label assignment
method possible. In the case of healthy WSIs, on the other hand, normally
only a few instances can be expected to be in pathological condition
(outliers).
Feature extraction

We extract several features from the objects segmented in the pre-
processing step and group them into the following types. The exact number
of features in each feature type is indicated in brackets.

1. Intensity features (19)
2. Textural features (75)
3. Shape features (10)
4. Morphological features (13)
5. Color features (8)
6. Nuclei-related features (7)

For thefirst 3 feature types, we rely on the PyRadiomics implementation35

for 2D images with default parameters. It consists of a comprehensive and
largely standardized set of features that capture information related to the
intensity distribution of Radiology images, the shape of the objects of interest,
as well as their texture.

Based on expert domain knowledge, we additionally propose a set of
data-specific features that capture clinically relavant characteristics,
often employed in the diagnosis of renal pathologies. These comprise
morphological, color, and nuclei-related features. These features are
typically investigated by pathologists either qualitatively or quantita-
tively. A complete list and definitions of all the data-specific features
are provided in Supplementary Tables 1 and 2.
Stain deconvolution

PyRadiomics is designed to extract features from radiology images,
which are typically gray scale images. Hence, we adapt our images to ben-
efit from the standardized features provided by PyRadiomics by perfoming
stain deconvolution as described below.

In histological images, stains play an important role and carry relevant
clinical information. To extract meaningful features for such images, we
firstly perform stain deconvolution and separate the images into their con-
stituent stain components. For this purpose, we rely onMacenko'smethod36

although several other methods exist, such as Ruifrok and Johnston.37 This
is because Macenko's method provided excellent results in preliminary ex-
periments. The method performs color deconvolution using the following
4

fixed optical density matrix (Q) for separating Hematoxylin, PAS and
residual color channels, respectively.

Q ¼
0:6443 0:7167 0:2669
0:1754 0:9273 0:1546

0 0 0

2
64

3
75

Fig. 2(a)–(c) show a small patch from a WSI deconvolved into the con-
stituent PAS and Hematoxylin stains.

Intensity and textural features

Intensity and textural features are calculated on each of the two stain
channels separately. Intensity features comprise first-order statistical infor-
mation that describe the distribution of pixel intensities within the object.
Each object instance is extracted as a bounding box image and is overlayed
with the segmentationmask to calculate featureswithin themasked region.
75 textural features are calculated from matrices including gray level co-
occurrence (GLCM), neighborhood gray tone difference (NGTDM), gray
level dependence (GLDM), run length (GLRLM), and size zone (GLSZM)
matrices.

Shape and morphological features

As shape descriptors are independent of gray value, shape, andmorpho-
logical features are extracted from the object mask. The shape and size of
each object instance may vary, resulting in varied shape and sizes of the ob-
ject mask itself. Hence, here the image sizes are not consistent, rather vary
according to the bounding box of the object instance. We extract 10 shape
and 13 morphological features. We differentiate between shape and mor-
phological features in the way they are calculated. While shape features
are based on the PyRadiomics implementation, we define the following ad-
ditional morphological features: area and perimeter of the segmented con-
tour as well as its convex hull. The calculation of convex hull of an object
instance also allows us to define features including solidity and convexity, de-
fined as the ratios between the instance area and perimeter to their respec-
tive convex area and perimeter, respectively. Furthermore, we also define
features based on the minimum ellipse enclosing the segmented contour
of the object mask. These include the lengths of the major and minor axes,
object eccentricity, and elongation. Similarly, a feature rectangularity is
defined based on the minimum enclosing bounding box as the ratio of the
object area to the area of the box. Equivalent diameter is calculated as the
diameter of the circle with the same area as the object. Lastly, compactness
is defined as the ratio between the object area to the area of a circle with
equal perimeter.

Color features

To calculate color features, we further sub-divide the PAS stain into
light and dark magenta color components, as light magenta and dark ma-
genta stain are known to dye different tissue components, such as the cyto-
plasm and cell membranes, respectively.

We obtain the following four colors for calculating color-related fea-
tures: light magenta, dark magenta (PAS), blue (hematoxylin), and white
for the unstained regions (see Fig. 2(d)–(h)). A clean separation of light ma-
genta and dark magenta is not possible by means of stain deconvolution.
For this purpose we compared two methods, a naive Otsu thresholding-
based approach and a k-means clustering approach. Both methods are
“trained” on a set of similar images not used in further experiments to ob-
tain suitable thresholds or cluster centers, respectively. These are fixed
and used to perform the color separation, ensuring consistent results across
all images. Preliminary experiments showed superior performancewith the
k-means clustering approach, so we follow this approach for color segmen-
tation. As color features, we calculate the number of pixels of a given color



Fig. 2. Example images showing stain deconvolution (a)–(c) and color segmentation using k-means clustering (d)–(h). An original image (a) is deconvolved into the
consitituent stain components namely, PAS (b) and hematoxylin (c). Color segmentation is shown with the example of a glomerulus (d), where four color components are
obtained, namely the dark PAS (e) and light magenta (f) stained regions, the regions stained with hematoxylin (g), and the unstained regions (h). Figure (g) is
subsequently used in nuclei segmentation (i) using the watershed algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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and the color density in the object instance. In total, this provides eight fea-
tures with two features per color. Furthermore, we use the blue channel ob-
tained as such for performing nuclei segmentation to calculate seven nuclei-
related features as described in the following section.

Nuclei segmentation and related features

To extract nuclei-related features, we firstly perfom a nuclei segmen-
tation on all the objects. For nuclei segmentation, we use the hematox-
ylin stain image obtained by color segmentation using k-means
clustering (see Fig. 2(g) and Fig. 2(i)). The image is first pre-processed
with morphological operations whereby small holes are filled and
noise is removed. We use the watershed algorithm38 to ensure effective
segmentation of overlapping objects, such as nuclei. For this, we com-
pute the Euclidean distance transform to find the local peaks, followed
by H-Maxima transformation and any local maxima smaller than a cer-
tain threshold (maximum of distance transformation) are suppressed.
The maxima serve as markers for applying the watershed algorithm,
whereby the individual nuclei, represented by the local minima, are
segmented and labeled. Only in rare cases over- or undersegmentation
could be observed, however, this is handled implicitly in the statistical
analysis. Although this is a rather simple approach for the segmentation
of nuclei, the focus in this work lies in the integration of this important
sub-cellular organelle in a pathomics pipeline.

Nuclei-related features are then calculated, which include the number
and density of nuclei in a given object instance. As the number of nuclei
within each object varies highly, we calculate statistical features about nu-
clei neighbors. For a given nucleus, the neighbors of this nucleus are de-
fined as the nuclei within a certain radius r around it (see Supplementary
Fig. 2). The radius r is defined as two times the average major axis length
of all nuclei in the given object instance. As the number of such neighbors
is determined for each nucleus in the given object instance, statistics can
be derived. In this case, the minimum, maximum, mean, medium, and
5

standard deviation of the number of neighboring nuclei over all nuclei in
the object are used.

As explained earlier, the nuclei segmentation approach deployed here
does not yield a segmentation accuracy suitable for pixel-level features,
such as texture and morphological features. Hence, morphological and tex-
ture features are not calculated for the nuclei.

Feature selection

Feature selection is an important step in determining the most discrim-
inating features that highlight the differences between healthy and patho-
logical data. We extract a number of features per object, which may only
be partly useful in discriminating between the healthy and pathological
samples. In fact, it may be the case that each object has a different set of
discriminating features and non-discriminating ones. In such a case, the
non-discriminating features may be misleading in the understanding of
the effects of pathology andmust be eliminated before the feature set is em-
ployed for further analysis. To select the best-suited features which carry
the most discriminative information per object, we propose to use a combi-
nation of the following selection methods.

Statistical tests

With the help of statistical tests, we retain only those features which
have significant differences between the healthy and the pathological
WSIs. For this purpose, we compare values from individual features ex-
tracted from the pathological and the contralateral kidney of the same sub-
ject. It is important to note that we compare feature from the same subject
to prevent inter-subject variations. To this end, we first determine whether
our samples have equal variance using Lavene Equal Variance test. If this
test shows equal variance,weperform a Student's t-test with the assumption
of equal variance, otherwise with the assumption of unequal variances.
We define significance level of p ≤ 0.005 to best note the differences
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(as compared to p ≤ 0.05, for instance). Note that p refers to the
Bonferroni-corrected p-value with n=5 comparisons, where n is the num-
ber of WSI-pairs. We follow this definition throughout this paper.

Trend analysis

In addition to statistical tests, we also analyze the relative trend between
the healthy and the pathological samples. For a feature to distinguish reli-
ably between the classes, it must consistently show the same effect. For ex-
ample, if a feature is typically higher in one WSI of class “healthy” as
compared to the class “pathological”, it must be higher in all other healthy
WSIs as compared to the corresponding pathological ones. This ensures mi-
nimization of inter-subject variations. For this purpose, we calculate the dif-
ference in medians of the individual features from the two classes. If the
difference is always positive or always negative for all WSIs of one class,
this feature is selected for further analysis.

Hence, in this step, we only select those features which exhibit a consis-
tent trend across all WSIs aswell as show statistically significant differences
(p ≤ 0.005) for at least three WSIs.

Experimental setting

We describe the experimental setup and several measures for the evalu-
ation of the presented pipeline in the following:

Comparison of individual features

First of all, we evaluate the discriminativeness of individual features by
comparing the distribution of feature values obtained from similar objects
from individual subjects. This means we compare whether a feature
shows differences between the pathological and the contralateral kidneys
of the same subject with respect to an object. For visual inspection and to
provide a statistical representation, we use boxplots. These plots show de-
tailed information on the differences between individual objects which
could provide important clinical insights. Since the features are interpret-
able, the differences can also be characterized qualitatively.

Here, we rely upon WSI pairs for comparisons. This means we compare
the pathological and healthy contralateralwithin same subjects only.We do
not aggregate the healthy WSIs into one class and the pathological into an-
other to avoid intra-class variations, i.e. the differences in trends of feature
values within the same class. A statistically representative aggregation
would only be possible with higher number of WSIs per class.

We employ the feature selection techniques introduced under
Section Feature selection to eliminate the least informative features. This
also facilitates a more efficient analysis.

Standard score

In order to evaluate the discriminativeness of the selected features, we
use the standard score, or the z-score, which is a measure of the deviation
from the mean in terms of standard deviation. More specifically, here we
define the z-score as follows:

z � score ¼ p � h
σh

where, p and h indicate the arithmetic means of individual features and ob-
jects for the pathological and the healthy WSIs, respectively, and σh indi-
cates the standard deviation of the healthy WSI.

We calculate the z-score per object and per feature for each pair ofWSIs,
i.e. each subject. This yields 5 z-score values per feature per object. Of these
5 values, themean and standard deviation are computed, denoted asmzand
sz, respectively, and they indicate the discriminativeness of that feature for
the given object. This allows us to make a comparison among all objects as
well as all feature types at the same time.
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Visualization of feature discriminativeness

For a visual analysis of the discriminativeness of the features, we per-
form dimensionality reduction on the selected features to obtain two-
dimensional (2D) representations. For this purpose, we make use of the
Uniform Manifold Approximation and Projection (UMAP) method.39 It is
a method for dimensionality reduction that improves upon the state-of-
the-art method t-Distributed Stochastic Neighbor Embedding (t-SNE)40 by
preserving the global structure while having faster run time performance.
Due to the limited dataset size in this study, we adopt the supervised
UMAP approach, whereby the labels of the objects are available during
the clustering process.

Results

In all thefigures (except in Fig. 4), the healthy data is presented in green
and the pathological (UUO) in red. The 5 subjects are labeled from 1 to 5.

Selection of the most discriminative features

The most discriminative features are selectedwith the help of 2 criteria,
namely the statistical significance and the trend between the healthy and
UUO kidneys from the same subject. An example of a feature that was elim-
inated in the feature selection step is shown in Fig. 3(c). The figure high-
lights the inter-subject variation between the healthy and pathological
WSIs. For instance, higher median values are observed in the healthy tissue
for WSIs 1 and 4 as compared to the pathological WSIs, while a reverse
trend is observed for subjects 2, 3 and 5. Features which did not exhibit
the same trend across all WSIs were considered unreliable and were
hence eliminated during the feature selection step. Table 1 provides an
overview of the selected and the total number of features for all the objects.

In the Supplementary Material, the features extracted from all objects
are presented (see Supplementary Figs. 3–12). Features per object are high-
lighted in purple color if they are found to be significantly different (p ≤
0.005) between the healthy and the pathological WSI. If no significant dif-
ferences (p≤ 0.005) are found between them, they are highlighted in light
blue. In addition, the highlighted cells are numbered either −1 or 1 de-
pending on the trend they exhibit. If the median of the features from a
healthyWSI is higher than that of the corresponding UUOWSI, it is marked
as 1, otherwise as −1. Finally, the features that are selected according to
the feature selection method are outlined within black boxes. A feature is
selected if it is significantly different for at least 3 of the 5 subjects as well
as if all the 5 subjects exhibit the same trend for the feature, i.e. if the indi-
cated values are either all positive, or all negative. These are considered as
themost discriminating and reliable features. Hence, a detailed information
about each feature per object is provided. Further observations are dis-
cussed under Section Discussion.

Object-specific assessment of individual features

Individual features from every segmented object are compared across
the 5 subjects. Examples of discriminative and non-discriminative features
chosen from the various feature types for different objects are shown in
Fig. 3. In Fig. 3(a), the morphological feature surface area of tubules is
shown. The plot shows significantly higher values and higher inter-
quartile range for the healthy WSIs as compared to the pathological WSIs.
Another tubule feature, namely the color feature percentage of dark PAS is
shown in Fig. 3(i). The figure shows higher values of the feature in UUO
WSIs compared to the healthy ones. Fig. 3(b) shows how the nuclei feature
nuclei count compares in the interstitium of healthy and UUOWSIs. The plot
shows a significant difference (p ≤ 0.005) with a much higher number of
nuclei in UUOWSIs. Furthermore, the inter-quartile range and the standard
deviation are visibly higher in UUO. In both these features, the trend com-
paring the two classes is the same for allWSIs, thismeans themedian values
in all the 5 WSIs in Fig. 3(a) is lower for UUO as compared to healthy WSIs
and in 3(b), the median values are higher for UUO. However in Fig. 3(c),



Fig. 3. Individual features per object. The X-axis shows the 5 WSIs and the corresponding feature values are shown on the Y-Axis, with green representing healthy and red,
UUO. Examples are taken of the tubule surface area as morphological feature (a), number of nuclei in the interstitium (b), unstained area in glomeruli as color feature (c),
mean PAS intensity in the glomeruli (d), glomeruli circularity as morphology feature (e), area occupied by light magenta color in BMC as color feature (f), nuclei density
within BMC (g), mean PAS intensity in the BMC (h), and the percentage of dark PAS area in tubule as color feature (i). Note that while all other examples show
statistically significant differences (p ≤ 0.005), (c) is an example where no consistent significant differences (p ≤ 0.005) were found and was ultimately rejected in the
feature selection step. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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which shows the color feature unstained area for glomeruli, this is not
the case.

Fig. 3 shows more examples of individual feature analysis, which
include intensity, color, morphological and nuclei-related features for the
objects glomeruli and BMC. The morphological feature circularity for glo-
meruli in UUO shows higher maximum and minimum values for UUO
WSIs in comparison to healthy ones (see Fig. 3(e)). This means the former
are more spherical than the healthy ones. This observation is supported
by BMC shape features, which show significantly lower maximum diame-
ters in UUO (see Supplementary Fig. 1). In UUO, glomeruli consistently
have lower intensity values for the PAS stain as indicated by their first
order stastistics including maximum, mean, median, 10th and 90th percen-
tile (see Fig. 3(d) and Supplementary Fig. 1). This means that UUO glomer-
uli have more areas showing darker PAS stain than the healthy ones, which
have comparatively more lighter PAS stain as well as unstained regions.
BMC color features also show significantly smaller areas of light magenta
color in UUO as compared to the healthy ones (see Fig. 3(f)). This is also ev-
ident by the lower mean values for the PAS intensity in UUO (see Fig. 3(h)).
In addition, the nuclei density in healthy and UUO within BMC also
changes significantly (see Fig. 3(g)) withmuch higher values in UUOWSIs.
7

Feature visualization and dimensionality reduction

In order to visualize and compare the different types of features and the
objects, the standard score was defined. In Fig. 4, the absolute mean z-
scores (mz) across all WSIs are plotted on the X-axis and the standard devi-
ation (sz) on the Y-axis for all feature types and objects. Feature types are
represented by different marker shapes and objects by different marker
colors. The dotted gray lines indicate isolines with the relation mz/sz =
const, where const takes the values from 1 to 10 as we move from the
upper left corner to the bottom right corner of the plot. A high const value in-
dicates that the difference between the classes is on average large compared
to the standard deviation of this difference. All the features lying below a
given isoline have the same relationship between their means and standard
deviations. Here, only those features are shown that fulfilled the feature se-
lection criteria. According to the definition of z-score, the most discriminat-
ing and reliable features are represented with higher values on the X-axis
and lower values on the Y-axis, i.e. with higher const values.

In Fig. 4, some markers are annotated with numbers. These serve as
examples to highlight differences between individual objects as well as
feature types. For instance, the markers numbered 2–5 clearly show that
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intensity features are highly discriminative for tubules because these have
high mean values with a relatively low standard deviation. Uniformity
(2) and entropy (3) measure the homogeneity of the hematoxylin intensity.
Both indicate strong texture variations between healthy and UUO tubules.
This observation is further supported by robust mean absolute deviation
(4) and inter-quartile range (5). The high mean values on the X-axis for
these features indicate a high difference in the intensity distribution of
the hematoxylin stain in tubules between the 2 classes. While the unifor-
mity of the PAS intensity (1) is also useful, a lower X-axis value indicates
smaller differences between healthy and pathological samples as compared
to (4).

The figure further shows nuclei-related features of the interstitiumwith
large differences betweenhealthy and pathological samples, represented by
large mean values on the X-axis. Examples are median (6), maximum (7),
and mean (8) of the number of nuclei neighbors as well as the number of
nuclei (9) in the region. Marker 10 represents the light magenta color
area in the interstitium and marker 11, the percentage of the area of this
stain in a tubule instance relative to the area of whole object instance.

The results of dimensionality reduction using the UMAP method are
shown in Fig. 5. For dimensionality reduction, features only from the two
most discriminative objects, namely the interstitium (Fig. 5(a)) and the tu-
bule (Fig. 5(b)) are considered, and only the relevant features obtained
after the feature selection step are used.While the former shows2 separable
clusters for the healthy and the pathological classes, the latter shows insep-
arable clusters.

Discussion

UUO is an experimental model with known pathological modifications
and the study confirms the prior knowledge that tubules and interstitium
are highly affected in UUO.33 We provide a comprehensive set of features
that are affected in these renal structures. Interestingly, we also find some
significant differences (p ≤ 0.005) in the Glomeruli and BMC which have
so far not been reported in clinical literature to the best of our knowledge.
These include some intensity features which show differences in light ma-
genta or dark PAS stain, as well as in the unstained areas. Although further
research is necessary to confirm the pathological causes, but an explanation
for the lower unstained regions in UUO could be due to the pressure from
the expanding tubulo-interstitium on these objects. In addition, in glomer-
uli, there is less perfusion of the glomerular capillaries since most of the fil-
tration on day 7 of UUO occurs in the contralateral (healthy) kidney. This is
also true for BMC and accounts for the smaller size of the objects in UUO as
compared to the healthyWSIs. However, we also noted high standard devi-
ations in the BMC features which justify the lack of clinical findings for this
object. This could be accounted for by the possibility that not all glomeruli
may be affected in pathological tissue. If only a few object instances exhibit
an altered pathological condition, it is difficult to obtain reliable results
without instance labelling, i.e. without the label of “healthy” or “UUO”
per object instance. In such a case, further analysis based on object-level an-
notations is necessary.

Some commonly known effects of UUO in the renal structures are
clearly represented via the extracted features. The percentage of dark PAS
stain is consistently higher in the pathological tubules, which could be ex-
plained by the thickened tubular basement membrane in case of UUO. Tu-
bular atrophy could result into prominentflattening of the tubules, which is
explainable by the lower morphological area of the pathological class as
compared to the healthy one. The nuclei count in the interstitium of patho-
logical tissue is significantly higher than in healthy tissue. This is very likely
due to inflammation and accumulation of interstitial fibroblasts and
myofibroblasts.

A comparison of the feature types shows that while most of these cate-
gories have some highly discriminative features, the category of textural
features contains the most relevant features. This is particularly the case
for tubules and interstitium. For the latter, nuclei-related features and for
tubule, intensity features are highly discriminating between the healthy
and UUO WSIs. Surprisingly, shape features are only marginally



Fig. 4. Comparison of feature types across all objects. Feature types are represented by different marker shapes and objects by different colors. Z-score of a feature is the ratio
of the difference between its pathological and healthy cases to the standard deviation of the healthy feature. The X-axis shows themean z-scores (mz) across all WSIs and the
Y-axis their standard deviation (sz). The dotted lines represent isolines with the relation mz/sz = const.

Fig. 5. Visualization of feature discriminativeness via dimensionality reduction using UMAP method. Features from healthy WSIs are indicated in green and those from
pathological ones in red. Clustering of relevant features from the interstitium (a) and tubule (b). Interstitium features form separable clusters while tubule features show
some overlap. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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informative. However, since they can be easily defined and calculatedman-
ually, a high focus is given to these by pathologists during manual analysis.
Texture features, on the other hand, which are more relevant, are difficult
to define and extractmanually, and are hence neglected inmanual analysis.

The proposed pipelinemakes it possible to extract several types of inter-
pretable and clinically relevant features, as well as the selection of the most
discriminative features for automatic and manual analyses. The pipeline is
easily applicable to new datasets and domains, such as cancer pathology. A
holistic comparison of the several feature types across all objects provides
additional insight into the modifications caused by pathologies. Hence,
the pipeline can assist pathologists in improving diagnosis by increasing
their understanding of the pathology.

An important information obtained by analyzing the individual features
perWSI was the high inter-slide variability. For several features, the 5WSIs
showed varying trends in the behavior between the features extracted from
the healthy and pathological kidneys. As the data in this study was limited,
this behavior accounts for the lack of a classification model trained on the
extracted features.

As UUO is an experimentally established model with well-known path-
ological changes in the tissue,we chose it to validate the effectiveness of the
pipeline and the features extracted in this study. The quantitative analyses
perfomed in thiswork confirm the prior knowledge about UUO that tubules
and interstitium are the most highly affected anatomical structures in this
pathological model. The majority of the features extracted from tubule
and interstitium have significant differences (p ≤ 0.005) between classes
with low standard deviations. This finding acts as a proof-of-principle for
the extracted features as clinical studies confirm this outcome for UUO at
day 7.

Limitations and future work

The pipeline could also be effectively used to study the progression of
diseases by analyzing the differences among features extracted from images
acquired at different disease stages. It would also be highly interesting to
obtain other features, such as texture and morphological features, from
the nuclei, which requires the availability of pixel level segmentations
and should be the focus of future studies.

A limitation of this work is that it uses a small set of images obtained
from a pre-clinical animal model. This is because it is aimed as a proof-of-
concept study motivated by applications on preclinical models. Thus, the
primary intention was to develop a pipeline for this use case with the aim
of proving that an object level analysis has the potential to increase biolog-
ical knowledge. Another limitation is the prerequisite of pixel level annota-
tions for individual objects. For instance, due to the lack of nuclei
segmentations, we were unable to extract all feature types from this object.
An additional limitation is that we have not deployed and tested this ap-
proach on observational human data, which are much more variable and
for which we do not have a sufficiently performing segmentation network.

The presented features could potentially also be used for classification
problems. This, however, requires an aggregation of object-level features
into WSI level features, or meta features, which requires higher number
ofWSIs. Thesemeta-features, e.g. statistics likemean ormaximumof object
feature values, could then be employed to discriminatively describe an en-
tire kidney or a biopsy section.

Conclusion

In this study, we extracted interpretable and quantitative features from
renalWSIs of mice kidneys, including intensity, texture, shape, morpholog-
ical, color, and nuclei-related features. While some of these features are
data-specific, most of them are generic and applicable to most datasets.
To the best of our knowledge, such a large-scale analysis of feature extrac-
tion has not been done before, especially on all the important compart-
ments of renal WSIs. We also perform comprehensive feature analysis
that identify novel phenotypes for improved diagnosis by increasing
our understanding of pathological alterations. In addition, we provide
10
statistical and visual comparisons of several feature types along with the
comparison of the different components of the kidney. These developments
could potentially serve as a framework for improving histopathological
analyses of other tissues and organs aswell as in other domains, such as can-
cer pathology.

The study clearly highlighted tubules and interstitium to be the anatom-
ical structures that are affected inUUO, serving as a proof-of-concept for the
pipeline in identifying themost discriminative features for a pathology. The
dataset with paired healthy and pathological kidneys from the same subject
allowed a detailed evaluation of features without influence of inter-slide
and inter-subject variations. This enabled us to provide a fair evaluation
on the discriminativeness of the features.
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