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Studies about hypoxia-induced oxidative stress in human health disorders take advantage from the use of unicellular eukaryote
models. A widely extended model is the fermentative yeast Saccharomyces cerevisiae. In this paper, we describe an overview
of the molecular mechanisms induced by a decrease in oxygen availability and their interrelationship with the oxidative stress
response in yeast. We focus on the differential characteristics between S. cerevisiae and the respiratory yeast Kluyveromyces lactis, a
complementary emerging model, in reference to multicellular eukaryotes.

1. Introduction

Interest in hypoxic and oxidative stress studies is increasing
in recent years, mostly in relation to aging or diseases such
as neurodegenerative disorders or cancer. These processes
in human cell lines show a very complex regulation, and
therefore the availability of simple models is extremely
useful. Yeasts have demonstrated to be suitable unicellular
eukaryotic models since, in addition to generalized culture
facilities, global “omic” analysis is fully developed and molec-
ular mechanisms are generally well conserved. For instance,
although obviously without nervous system, most of the
molecular signaling pathways and the proteins involved in
human neurological diseases are functionally conserved in
yeasts [1]. Besides, functional characterization of human
genes is sometimes achieved by means of their heterologous
expression in mutant yeasts.

Most studies about the hypoxic and oxidative stress
responses and their connections have been carried out
hitherto on Saccharomyces cerevisiae, a yeast model with a
predominantly fermentative metabolism [2]. In the same
way, S. cerevisiae mutants have been frequently used as
research models in aging [3] and in human pathologies
[4]. Frequently, the mechanisms discovered with this yeast
proved to be conserved in multicellular eukaryotes. However,
human tissues such as the neuronal network have oxidative

metabolism, and therefore the use of alternative yeast models
has been suggested [5]. We analyze Kluyveromyces lactis
from the perspective of an alternative eukaryote model
in these studies or similar studies, since this yeast has a
predominantly respiratory metabolism.

Molecular mechanisms that support the metabolic dif-
ferences between S. cerevisiae and K. lactis and the specific
responses to hypoxia or oxidative stress have been studied.
Redox metabolism is a key differential point between S.
cerevisiae and K. lactis, both thiol-redox and NAD(P)H-
redox reactions. K. lactis is characterized, opposite to S.
cerevisiae, by a higher glucose flow through the pentose
phosphate pathway (PPP) than through glycolysis [6] and
as a consequence by a higher production of NADPH in
the cytosol. In fact, one of the molecular keys supporting
the difference in the Crabtree phenotype (inhibition of
respiration by fermentation) of the two yeast species lies
in the mechanisms involved in the re-oxidation of the
NADPH [7, 8]. A significant part of this reoxidation is
carried out in K. lactis by mitochondrial external alternative
dehydrogenases (NDEs), which use NADPH, the enzymes
of S. cerevisiae being NADH-specific. Unlike S. cerevisiae,
transcription of NDEs genes in K. lactis is not regulated by
the carbon source. Since NDEs may compete with alcohol
dehydrogenases for the cytosolic NADH, their repression
at high glucose concentrations, as it occurs in S. cerevisiae,
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correlates with an increase of reoxidation of glycolytic
NADH by the alcohol dehydrogenases and therefore with the
prevalence of aerobic fermentation and the Crabtree-positive
phenotype [9]. Interestingly, NDEs have been reported to
influence ROS production and life span in S. cerevisiae [10,
11]. Moreover, the NADPH-dependent pathways of response
to oxidative stress also contribute to NADPH reoxidation. In
S. cerevisiae, they play a main role together with glutamate
dehydrogenase and also operate, although to a lesser extent,
in K. lactis, [8, 12, 13].

In this paper, we focus on the complex interdependence
of multiple mechanisms, which arise as a consequence of
the decrease of oxygen availability and on the responses
elicited to compensate this stress. A general overview of all
the subjects analyzed is shown in Figure 1. Along the text,
special reference is made on the differences found between S.
cerevisiae and K. lactis, looking for the potential advantages
and disadvantages of these models in reference to each other
and in comparison to multicellular eukaryotes.

The first intracellular signal sensing low levels of oxygen
is the heme content. The biosynthesis of heme includes
enzymes that directly use oxygen as electron acceptor during
the catalysis, and, besides, several steps are regulated by
oxygen availability. Other important pathway that directly
uses oxygen is the biosynthesis of ergosterol, which is also
regulated by oxygen availability. The intake of ergosterol
from the media through the membrane is also regulated
by oxygen levels. Downstream in these sensing strategies
is heme and ergosterol dependent transcriptional factors,
which act in the nucleus to regulate the transcription of
more than 100 genes, those conditioning the “hypoxic
response” and improving the use of the low levels of
oxygen. Hypoxia signals the activation of mechanisms that
regulate the transcription of genes involved in the oxidative
stress response. Simultaneously, the decrease in oxygen levels
causes a complete rerouting of nutrients through different
metabolic pathways. This principally affects glucose and
other sugars, which can follow fermentative or respira-
tory transformations and, in turn, condition the systems
of redox exchange between cytoplasm and mitochondria
and the mechanisms that produce ROS. Reoxidation of
reduced NAD(P)H also has regulatory effects on the diverse
metabolic routes that need the oxidized coenzyme forms to
function. ROS also elicit other mechanisms of cell defense,
including reoxidation of NAD(P)H and life span adjustment,
programmed cell death, and mitophagy (Figure 1).

2. The Hypoxic Response in K. lactis

During hypoxia, it is advantageous for cells to adapt the pat-
tern of gene expression in order to improve oxygen utiliza-
tion. The hypoxic response is well documented in the model
yeast Saccharomyces cerevisiae, whose cells sense oxygen via
the levels of heme and sterols [14–17]. The response of S.
cerevisiae to hypoxia produces increased expression of genes
related to ergosterol synthesis, cell wall composition, and
glycolytic genes and reduced expression of components of
the respiratory chain, ATP synthesis, and the citric acid cycle

[14, 18, 19]. However, this knowledge is not directly applica-
ble to other yeasts, even to those close-related in phylogeny,
which became evident in the last years with the advances in
the study of the hypoxic response in K. lactis and other yeasts.
It has been proposed that a whole-genome duplication
(WGD) contributed to yeast evolution from strict aerobes to
facultatives/fermentatives [20–22]. Functional specialization
between duplicated genes explains the existence in S. cere-
visiae of homologous genes (COX5a/COX5b; CYC1/CYC7;
HYP2/ANB1; AAC1/AAC2/AAC3) differentially expressed in
aerobic and hypoxic conditions [14, 23–25]. Kluyveromyces
lactis does not present duplication of genes with specialized
aerobic, hypoxic transcription, but the unique copy is
regulated by oxygen availability [26]. Probably, K. lactis and
S. cerevisiae are diverged from one common ancestor yeast
previously to the WGD event and this could explain the
multiple differences observed when comparing the response
to hypoxia in both yeasts, as explained below.

Although K. lactis is unable to grow under strictly anoxic
conditions [27], probably due to the absence of expression of
genes related to the import of sterols in this condition [28],
this yeast ferments sugars and grows in hypoxic conditions
defined as oxygen availability below 1% of fully aerobic levels
[7, 29]. Several reports of genes upregulated during hypoxia
in K. lactis have been published. A K. lactis heme-deficient
strain, obtained by KlHEM1 disruption, was used to assess
the functional significance of heme-directed regulation in K.
lactis; KlHEM13, encoding the coproporphyrinogen oxidase
(EC 1.3.3.3), an oxygen-requiring enzyme that catalyzes
the sixth step of heme biosynthesis, was the first hypoxic
gene functionally characterized in this yeast [30, 31]. Other
gene from the heme biosynthetic pathway, KlHEM1, is
upregulated during hypoxia in K. lactis [32]. The KlPDC1
gene, encoding for the enzyme pyruvate decarboxylase, is
also induced by hypoxia [33]. After the completion of the
Génolevures sequencing project [34], the availability of the
complete sequence of the K. lactis genome allowed the design
of specific DNA arrays containing selected DNA probes
putatively related to the aerobic-hypoxic response by their
similarity to the orthologs in S. cerevisiae [26]. The nature of
the hypoxic transcriptional response in K. lactis, as revealed
by using these arrays, differed notably from S. cerevisiae,
but confirmed the existence of hypoxic upregulated genes
in K. lactis such as KlOYE2 (KLLA0A09075g), KlGSH1
(KLLA0F14058g) and KlOLE1 [26]. Besides KlOLE1, the
transcription of other lipid biosynthetic genes like KlERG1,
KlFAS1, and KlATF1 is also induced by hypoxia [35].

In S. cerevisiae, adaptation to hypoxia requires the
transcriptional induction or derepression of multiple genes
organized in regulons controlled by specific transcriptional
regulators. Considering that in K. lactis the hypoxic response
exists but the target genes are not coincident and are not
equally regulated, the question arose about the functionality
of sensors and transcriptional regulators. The principal sen-
sors in the yeast response to hypoxia are heme and ergosterol.
The heme biosynthetic pathway is well conserved in different
organisms throughout evolution [36], and this is also true
between S. cerevisiae and K. lactis. Both yeasts have eight
highly homologous genes necessary for the biosynthesis of
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Figure 1: A panorama of the multiple connections between hypoxia, metabolic rerouting, oxidative stress response, and cell defense
mechanisms. Erg: ergosterol; PPP: pentoses phosphate pathway; TF: transcriptional factors.

heme. For the three genes of the heme biosynthetic pathway
characterized in K. lactis to date (KlHEM1, KlHEM12,and
KlHEM13), functional equivalence with their S. cerevisiae
homologs has been confirmed experimentally by cross-
complementation [31, 32, 37]. As it happens in S. cerevisiae,
the transcriptional regulation of KlHEM12 is not a key point
for regulation of heme synthesis in K. lactis [38] and its
transcriptional regulation in different carbon sources [38] is
also similar to that reported for its homolog in S. cerevisiae
[39, 40]. However, notable differences exist in the regulation
of the other two characterized genes. In S. cerevisiae, the
expression of HEM1 is constitutive [41], but in K. lactis the
first step of the heme biosynthesis is under double-feedback
regulation by heme, at the level of gene transcription [37]
and mitochondrial import of the protein [42]. Although in S.
cerevisiae the aerobic repression of HEM13 is mediated by the
transcriptional regulator Rox1p, diverse data indicate that
the mechanism is different in K. lactis and a similar repressor
does not operate [43, 44].

In S. cerevisiae, intracellular levels of heme regulate
the activity of the transcriptional regulator Hap1 [14].
The CCAAT-binding complex Hap2/3/4/5, an evolutionarily
conserved multimeric transcriptional activator in eukaryotes
[45], is also necessary for the activation of many genes
involved in respiratory metabolism [45], although its direct
activation by heme has not been demonstrated. Targets
of Hap1 include genes required for respiration and for
controlling oxidative damage [46–48] and also the aerobic
repressor Rox1. When the oxygen levels drop, heme does not
bind to Hap1. Then, the interaction with Ssa1, Ydj1, and
Sro9 maintains to Hap1 inactive [49, 50]. As a result, ROX1
is not expressed and no longer represses aerobic expression
of genes involved in the hypoxic response. Moreover, Mot3

collaborates in the repression exerted by Rox1 in target
promoters [51], and Ixr1 has been related to the hypoxic
response of S. cerevisiae in cross-regulation with ROX1 [52–
54]. Although several homologs to the components of the
Hap2/3/4/5 complex have been cloned in K. lactis [55–
57], the respiratory system of K. lactis, escapes from HAP2
control [56]. Contrary to data previously described for the
homologous gene of S. cerevisiae, the function of the KlHAP1
gene does not affect growth in media with carbon sources
used by fermentative or respiratory pathways in K. lactis and
KlHap1 is not a transcriptional activator of the expression
of genes related to respiration or sterol biosynthesis [58]
but represses the expression of the major glucose transporter
[59]. In a similar way, KlROX1 does not regulate the hypoxic
response in K. lactis [60] and the KlROX1 promoter is
not regulated by KlHap1 or KlRox1 in response to changes
aerobiosis/hypoxia [44].

Parallel, Hap1-Rox1-independent, oxygen response
pathways exist in yeast. For instance, in S. cerevisiae,
the transcription of the hypoxic gene OLE1 depends on
cytochrome c oxidase [61] and requires the transcription
factor Mga2 that is functional in hypoxia [62]. In K.
lactis, this regulatory circuit is also different and, although
KlMGA2 shows homology to the MGA2 gene from S.
cerevisiae, KlMga2does not regulate KlOLE1 hypoxic
expression [35]. Sut1 and Sut2 are also involved in the
transcriptional induction of hypoxic genes and in sterol
uptake and synthesis in S. cerevisiae [63, 64].

Another sensing pathway includes the regulators of sterol
biosynthesis Upc2 and Ecm22 [65]. Sterol depletion leads
to activation of the paralogous genes UPC2 and ECM22
[16], which control expression of a subset of hypoxic
genes. Both bind to a sequence motif known as the sterol
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Figure 2: Homologies (percentage of identity calculated according to BLASTp in Génolevures) between K. lactis and S. cerevisiae proteins
related to the pathways summarized in Figure 1. Red, 100–70% identity; green 69–40% identity; blue, <40% identity. (A) heme biosynthesis;
(B) ergosterol biosynthesis and supply; (C) NAD(P)H consuming oxidative defense reactions; (D) other oxidative defense reactions; E,
NAD(P)-dehydrogenases from the inner membrane of mitochondria; (F) heme/respiration-related transcriptional factors; (G) sterol-related
transcriptional factors; (H) peroxide-related transcriptional factors; (I) life span-related proteins; (J) mitophagy-related proteins.

regulatory element (SRE) in the promoters of their target
genes, but Ecm22 is an aerobic repressor and Upc2 an
anaerobic activator, which is upexpressed during hypoxia.
They regulate expression of ergosterol biosynthesis genes
and the DAN/TIR family of cell wall proteins [65–67]. This
regulatory circuit remains unstudied in K. lactis, although
analysis of the genome sequence shows that the hypoxic
genes from the sterol biosynthetic pathway are conserved in
the two yeasts [26].

Quantitation of the homology between proteins trans-
lated from verified or putative orthologous genes of K. lactis
and S. cerevisiae reveals that, with few exceptions, the pro-
teins related to biosynthetic routes producing intracellular
changes in heme and ergosterol are more conserved than
the transcriptional factors, which are regulated by their levels
and produce the hypoxic response (Figure 2).

3. Oxidative Stress Response in K. lactis

The oxidative stress response in K. lactis is a mostly
unexplored field. The number of published works is less
than 1.5% compared to S. cerevisiae. Several studies based on
comparative genomics have been performed, combining in
silico and experimental approaches [26, 68, 69]. The search
in the K. lactis genome of putative S. cerevisiae orthologs
related to the oxidative stress response (genes coding for
superoxide dismutases and their chaperones, catalases and
peroxidases, proteins of the glutathione, and thioredoxin
systems) has suggested that pathways and proteins are
generally conserved, with a few exceptions mainly affecting
gene redundancy or predicted subcellular location of the
proteins [69]. These exceptions comprise the groups of genes

encoding thioredoxin peroxidases, thioredoxin reductases,
thioredoxins, glutaredoxins, and glutathione transferases
(Figure 2). However, several functional differences affecting
mainly connections between redox pathways related to car-
bohydrate metabolism, respiratory functions and oxidative
stress response are observed [69]. In support of these results,
a recent study about glutathione transferases, and synthetases
in yeast species representatives of fermentative, respiratory,
and oxidative metabolism [70] found significant differences
in homology and predicted intracellular sorting.

Among the reported differences, it is remarkable to
outline the role of the thiol-redox pathways, specifically
glutathione reductase (GLR), the enzyme that catalyzes the
interconversion of oxidized (GSSG) and reduced glutathione
(GSH) using NADPH as reducing power. Whereas in S.
cerevisiae the expression of GLR increases in response to
oxidative stress produced after addition of peroxides by
a Yap1-mediated mechanism, this effect is absent in K.
lactis [26, 71, 72]. Surprisingly, both S. cerevisiae and K.
lactis GLR depletion mutants are more sensitive to oxidative
stress [12, 13]. In such K. lactis GLR mutants, increase in
ROS production, catalase, and thioredoxin reductase (TRR)
activities are observed and the expression of a pool of other
antioxidant enzymes and oxidoreductases is also upregulated
[73]. It is likely that TRR and other NADPH-dependent
oxidoreductases might replace GLR in maintaining the
GSH/GSSG ratio. In fact, purified K. lactis TRR shows GLR
activity in vitro (our unpublished results). In support of this
explanation, it has been reported that the thioredoxin-TRR
system can reduce GSSG in S. cerevisiae [74]. Other reported
functional differences affecting the OS defense enzymes of
K. lactis and S. cerevisiae are regarding the mechanism of
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cation handling of the superoxide dismutase Sod1 [75] and
the transcriptional regulation of the SOD1 gene after a shift
to hypoxia [26, 76]. Also the transcriptional regulation of
the genes encoding catalases [12, 26, 77, 78] and glutathione
synthetases [26, 79] under aerobic/hypoxic conditions and
under peroxide-treatment is different in the two yeasts.
About comparative analyses between the transcriptional
factors related to the oxidative stress response in S. cerevisiae
and K. lactis, Yap1 and Snk7 share, respectively, 33% and
50% identities (Figure 2), and KlYap1 has been functionally
characterized in relation to the oxidative stress response
induced by metals and peroxides [80].

Several evidences support that in K. lactis the OS
response has a regulatory role upon fermentation/respiration
balance. Thus, there is a positive correlation between the
increase of GLR activity and the glucose-6-phosphate-
dehydrogenase activity (from PPP) when oxygen levels
increase [12]. Besides, the glucose respiration rate, in K.
lactis cells that metabolize all the monosaccharide through
the PPP, increases upon GLR depletion and decreases upon
GLR overexpression [13]. Proteome analysis reveals that
there is a different response to H2O2-treatment, which
is dependent on GLR in such a way that the expression
of several enzymes of the glycolysis and the Krebs’ cycle
decreases in the wild-type strain, while enzymes of these
pathways and the PPP increase in the GLR depleted mutant
[73]. Other indirect evidence is that K. lactis GLR activity
decreases in a Gcr1-mutant [13] being Gcr1 at the same
time a positive transcriptional regulator of KlNDI1 [9];
KlNDI1 is the gene encoding the internal mitochondrial
alternative dehydrogenase (NDI), the enzyme that replaces
the respiratory chain complex I found in other eukaryotes
[81]. GLR depletion mutants grow better in glucose than the
wild type, overall when all the glucose is metabolized through
the PPP, which might be explained by rerouting the oxidation
of the NADPH produced in the PPP from GLR to NDEs, thus
increasing ATP production in the respiratory chain [12, 13].

Yeasts alternative dehydrogenases of the mitochondrial
inner membrane are also related to OS and are other point of
connection with the response to metabolic changes produced
by oxygen availability. The transcription of the two K.
lactis genes encoding NDEs decreases when cells are under
oxidative stress and the NADPH-related defense mechanisms
are activated [9, 82]. Regarding K. lactis NDI, we have proved
that the transcription of the KlNDI1 gene is induced in
nonfermentable carbon sources through a process mediated
by the factor Adr1 and that the expression of the gene did
not decrease after an hypoxic shift [9]. The homologous
S. cerevisiae enzyme has been more widely studied and its
role in aging and ROS production has been reported [83].
Differences found in yeasts NDI are of clinical interest since
they have been used in gene therapy of diseases [84] such as
Parkinson’s disease [85] or hereditary optic neuropathy [86,
87]. Heterologous expression of the S. cerevisiae NDI1 gene
reduces the overproduction of ROS caused by mitochondrial
complex I defects in multicellular eukaryotes [88].

These connections between thiol-redox OS reactions
and carbohydrate metabolism described above in K. lactis
are also supported in other organisms. Ralser et al. [89]

discovered that S. cerevisiae cells with reduced activity of the
key glycolytic enzyme triose-phosphate isomerase exhibit an
increased resistance to the thiol-oxidizing reagent diamide.
This phenotype is conserved in Caenorhabditis elegans and
the underlying mechanism is based on a redirection of
the metabolic flux from glycolysis to the PPP, altering
the redox equilibrium of the cytoplasmic NADP(H) pool.
Another key glycolytic enzyme, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), is known to be inactivated in
response to various oxidant treatments, and this causes a
similar redirection of the metabolic flux [89].

4. The Hypoxic-Induced Oxidative Stress
Response in K. lactis

A connection between the hypoxic and oxidative stress
responses has been reported in the fermentative yeast S.
cerevisiae. Several S. cerevisiae genes that are induced during
hypoxia are related to the oxidative stress response. CUP1
and CUP2, which are necessary for the removal of superoxide
radicals, are upregulated 11.6-fold during hypoxia in a Rox1
and Srb10-dependent mechanism [18]. Other genes related
to oxidative stress (HSP12, FMP46, and GRE1) DNA repair
(ALK1) or mitochondrial genome maintenance (MGM1)also
increase their expression during hypoxia [18]. The level
of mitochondrial and cytosolic protein carbonylation, the
level of mitochondrial and nuclear DNA damage measured
by 8-OH-dG modification, and the expression of SOD1,
encoding superoxide dismutase, increases transiently during
a shift to anoxia [76]. Besides, the specific proteins, which
become carbonylated during the shift to anoxia, are the
same proteins that become carbonylated during peroxidative
stress. These results demonstrate that yeast cells exposed to
anoxia experience transient oxidative stress and suggest that
ROS generated could also signal the variation in oxygen
levels and trigger the nuclear response to hypoxia affect-
ing transcription [76]. However, the specific connection
between ROS production, protein, or DNA modifications
and transcriptional regulation has not yet been elucidated
in yeasts. The question about whether mitochondrial or
cytosolic proteins, which are specifically oxidized in cells
exposed to anoxia, play a role in signaling pathways from
the mitochondrion to the nucleus that function to induce
hypoxic genes remains unanswered.

In K. lactis, after analyzing 30 genes related to oxidative
stress, only two (KlGSH1 and KlOYE2) increased their
expression after the hypoxic shift [26]. However, a whole-
genome approach has not been carried out in this yeast
and, therefore, a direct comparison of these data with those
reported from S. cerevisiae is not accurate. An interesting
observation, which suggests that also in K. lactis the hypoxic
response might be triggered by ROS production, is that
the hypoxic response is highly dependent on the relative
flux of glucose through glycolysis or the pentose phosphate
pathway (PPP). The predominant use of PPP versus glycolysis
is accompanied by a higher expression of mitochondrial
cytochrome c [7], which might be associated with the mito-
chondrial chain activation and changes in ROS production.
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Indeed, in a rag2 mutant, lacking phosphoglucose isomerase
and committed to reroute the glucose-6-phosphate through
PPP, in order to bypass the blocked glycolytic step, a more
intense hypoxic response than the wild-type strain, and that
affects the genes of heme metabolism and the oxidative stress
response, is observed [26].

A new link between oxidative stress and hypoxia comes
from the analysis of multiple functions attributed to tran-
scriptional regulators initially characterized in the aero-
bic/hypoxic response. In S. cerevisiae, Hap1 not only acts
as an aerobic activator but has a regulatory function during
hypoxia [17, 90]. Hap1 also controls the expression of genes
related to sterol biosynthesis [14, 91–94] and SOD2, involved
in the oxidative stress response [95].

Although putative homologues of two of the principal
regulators of the aerobic/hypoxic response in S. cerevisiae
(Hap1 and Rox1) have been characterized in K. lactis, their
sequence and function diverge notably from those described
in S. cerevisiae [44, 58]. Remarkably, their functions in K.
lactis are somehow related to the metal-induced oxidative-
stress response. Deletion of KlHAP1 increases the resistance
to oxidative stress or cadmium [58]. Moreover, the induction
by 0.5 mM H2O2 of two genes related to the oxidative stress
response, KlYAP1 and KlTSA1, is repressed by KlHap1p [58].
KlROX1 mediates the response to arsenate and cadmium
[44]. KlRox1p binds to the KlYCF1 promoter, a gene related
to cadmium detoxification, and causes its activation [44].

5. Adjustment of Cell Survival and the
Oxidative Stress Response

Besides the transcriptional, proteomic, and metabolomic
reorganization caused by the oxidative stress, ROS also elicit
other mechanisms of cell defense, including life span adjust-
ment, programmed cell dead, autophagy, and mitophagy.
Mitochondria, being the major intracellular source of ROS,
are involved in aging and life span regulation [96] Yeasts have
been proved to be good models for studying these processes.
In S. cerevisiae, a cross-regulation between glycolysis and
PPP has been proposed in order to prevent oxidative stress
when cells switch from anaerobic to oxidative metabolism.
Low activity of the glycolytic enzyme pyruvate kinase causes
accumulation of PEP and blocks the pathway diverting
the glucose flux into the PPP [97]. This mechanism helps
to balance the increased ROS production during oxidative
metabolism [97]. Also in mammals, during oxidative damage
in cancer cells, a similar redirection of metabolic fluxes con-
tributes to ROS clearance [98]. Therefore, it is possible that
the hypoxic and the oxidative stress responses, influenced by
the reorganization of the utilization of different metabolic
pathways, also contribute to modulate these cell defense
mechanisms in yeasts and other cells.

Studies pioneered in S. cerevisiae by measuring life span
have revealed several molecular mechanisms underlying
cellular aging and which are well conserved in eukaryotes.
Two basic experimental approaches have been applied in
unicellular organisms. Replicative life span (RLS) is defined
as the number of daughters a single cell produces during

its life [99]. Chronological life span (CLS) is defined as
the time a population of cells survive in stationary phase
[100]. In S. cerevisiae, a Crabtree-positive yeast, calorie
restriction by glucose limitation increases both RLS and CLS,
a feature that coincides with increased cytochrome content,
and NADH-cytochrome c reductase activity [101]. In. K.
lactis, a Crabtree-negative yeast for which glucose limita-
tion does not promote an enhancement of the respiratory
capacity [2], the increase in CLS by glucose limitation is not
produced [102]. These results suggest that calorie restriction-
dependent increase in longevity may be due to mitochondrial
control and more particularly the regulation of oxidative
phosphorylation activity.

An additional nexus between aging and the redox cell
balance came from the discovery of sirtuins. They are NAD+-
dependent enzymes and they belong to a highly conserved
family of proteins that in yeasts, invertebrates, and mammals
act in diverse functions related to longevity [103]. In S.
cerevisiae, Sir2 is induced in cells treated with 4 mM H2O2 or
10 mM menadione [104] and these data suggest a connection
between oxidative stress, Sir2 activation and longevity. The
existence of complexes of Sir2 with other metabolic enzymes
NAD+-dependent, like those formed with the glycolytic
enzyme glyceraldehyde-3-phosphate dehydrogenase Tdh3
or the alcohol dehydrogenase Adh1 [105], might indicate
that the ratio NAD+/NADPH in the microenvironment
surrounding Sir2 could act as its modulator. Recently, a third
complex of Sir2 with Mdh1, the mitochondrial malate dehy-
drogenase, has been proposed based on multiple common
network interactions involving also the proteins Rad53, Aat1,
Fob1, and Hst1 [106], although not yet proved by physical
interactions. Since Mdh1 is overexpressed under conditions
of calorie restriction [107] and it causes extension of Sir2-
dependent RLS [108], further investigation is promising. In
K. lactis sirtuins or its regulators have not been studied but
there is an ORF (KLLA0F14663g) with 62% identities to
S. cerevisiae Sir2 (Figure 2). Considering the importance of
sirtuins and their modulators in the etiology and treatment
of human pathologies such as metabolic, cardiovascular, and
neurodegenerative diseases or cancer [104, 109] and the
similarities found between the high respiratory metabolism
of K. lactis and certain human cell types like neurons [5],
sirtuins and related proteins from K. lactis are good targets
for study.

About the signaling pathways that affect life span in
yeast (reviewed in [103]), the serine threonine kinases Tor1,
Sch9, and PKA that control nutrient signaling pathways
also regulate aging in yeasts, and their homologs in animals
share conserved functions in aging. Depletion of Tor1 kinase
increases both RLS and CLS in budding yeast, flies, and
C. elegans. Likewise, PKA kinase activation lengthens life
span in budding yeast and longevity in mice. The kinase
S6K1, which is known to be related to the control of
aging in mice, Drosophila, C. elegans, and the yeast Sch9
kinase that controls RLS and CLS in yeast represent other
group or orthologous genes. Purification of TOR from yeast
and human cells revealed that TOR can exist in at least
two multiprotein complexes, termed TORC1 and TORC2
[110]. Interestingly, it has been found that superoxide anions
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Table 1: Putative main actors of aging and its signaling pathways in K. lactis and S. cerevisiae. Degree of identity (%) between homologs is
indicated in Figure 2.

Protein
ORF

K. lactis

ORF
S. cerevisiae

Function

Sir2 YDL042C KLLA0F14663g NAD+ -dependent histone deacetylase

Tpk1 YJL164C KLLA0B12716g PKA catalytic subunit

Tpk2 YPL203W KLLA0D03190g PKA catalytic subunit

Tpk3 YKL166C KLLA0B07205g PKA catalytic subunit

Bcy1 YIL033C KLLA0E04181g PKA regulatory subunit

Ypk3 YBR028C KLLA0F24618g
An AGC kinase phosphorylated by cAMP-dependent protein kinase (PKA) in a
TORC1-dependent manner

Asa1 YPR085C KLLA0D09086g Subunit of the ASTRA complex involved in the stability or biogenesis of PIKK∗s such as TORC1

Tor1 YJR066W KLLA0B13948g
PIK-related protein kinase and rapamycin target, subunit of TORC1, a complex that controls
growth in response to nutrients by regulating translation, transcription, ribosome biogenesis,
nutrient transport, and autophagy, involved in meiosis

Tor2 YKL203C KLLA0B13948g
PIK-related protein kinase and rapamycin target, subunit of TORC1 and TORC2, a complex that
regulates cell-cycle dependent polarization of the actin cytoskeleton, involved in meiosis

Nnk1 YKL171W KLLA0A06776g Protein kinase, implicated in proteasome function, interacts with TORC1, Ure2, and Gdh2

Tco89 YPL180W KLLA0E18855g Subunit of TORC1 (Tor1 or Tor2-Kog1-Lst8-Tco89)

Kog1 YHR186C KLLA0A09471g Subunit of TORC1, it may act as a scaffold protein to couple TOR and its effectors

Tti1 YKL033W KLLA0F25762g
Subunit of the ASTRA complex, involved in chromatin remodeling, telomere length regulator
involved in the stability or biogenesis of PIKK∗s such as TORC1

Tti2 YJR136C KLLA0B04026g
Subunit of the ASTRA complex, involved in chromatin remodeling, telomere length regulator
involved in the stability or biogenesis of PIKK∗s such as TORC1

Sch9 YHR205W KLLA0B03586g

AGC family protein kinase and functional ortholog of mammalian S6 kinase, phosphorylated by
Tor1p and required for TORC1-mediated regulation of ribosome biogenesis, translation
initiation, and entry into G0 phase, integrates nutrient signals and stress signals from
sphingolipids to regulate life span

Maf1 YDR005C KLLA0E17535g
Negative regulator of RNA polymerase III, binds to the N-terminal domain of the Rpc160 subunit
of Pol III to prevent closed-complex formation, localization and activity are regulated by
phosphorylation, mediated by TORC1, protein kinase A, and Sch9

Tel2 YGR099W KLLA0D15158g Subunit of the ASTRA complex, involved in the stability or biogenesis of PIKK∗s such as TORC1

Sfp1 YLR403W KLLA0B03047g
Regulates transcription of ribosomal protein, response to nutrients and stress, G2/M transitions
during mitotic cell cycle, and DNA-damage response and modulates cell size, regulated by
TORC1 and Mrs6 prion

Npr2 YEL062W KLLA0D01067g Npr2/3 complex mediates downregulation of TORC1 activity upon amino acid limitation

Npr3 YHL023C KLLA0F18238g Npr2/3 complex mediates downregulation of TORC1 activity upon amino acid limitation
∗
PIKK phosphoinositide 3-kinase related kinase.

regulate the TORC1 complex and its ability to bind the
Fpr1-rapamycin complex [111], thus establishing another
link between OS and aging. In S. cerevisiae, 15 genes are
functionally related to TORC1 function and Tor, Sch9, and
PKA signaling are interconnected (Table 1). In S. cerevisiae,
the genes TPK1 (alias PKA1, SRA3; ORF, YJL164C), TPK2
(alias PKA2, YKR1, PKA3; ORF, YPL203W), and TPK3
(YKL166C) encode for three forms of the cAMP-dependent
protein kinase catalytic subunit of the cyclic AMP-dependent
protein kinase (PKA) and BCY1 (YIL033C) for the reg-
ulatory subunit. In K. lactis, homologous genes of main
participants in these signaling pathways are present (Table 1)
and homology (recorded using BLASTp in Génolevures at
http://www.genolevures.org/) is summarized in Figure 2 The

most remarkable observation is that in K. lactis, there is only
one ORF (KLLA0B13948g), which encodes for a protein with
71% identity to S. cerevisiae Tor2 and 68% identity to S.
cerevisiae Tor1. This opens a question about the existence
and composition of two TORC complexes in K. lactis as
previously reported in S. cerevisiae [110] and outlines this
issue as a differential point to study in relation to divergences
in life span signaling. Besides, the K. lactis proteins in this
group with less than 40% identity to their S. cerevisiae
counterparts are also good targets for further studies.

Apoptosis is one type of programmed cell death (PCD)
with great importance for the development and homeostasis
of multicellular organisms. Basal apoptosis machinery exists
also in yeast, unicellular fungus, and in some filamentous

http://www.genolevures.org/
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fungi [112]. Regarding the respiratory yeast K. lactis, once
more the number of studies performed hitherto is very scarce
[113]. A mutant in the essential gene KlLSM4, an ortholog
to LSM4 of S. cerevisiae, which encodes an essential protein
involved in both pre-mRNA splicing and mRNA decapping,
shows phenotypic markers of apoptosis such as chromatin
condensation, DNA fragmentation, accumulation of ROS,
and increased sensitivity to different drugs. Mechanisms
of Bax-induced [114, 115] and lactose-induced [116] cell
death have also been described in K. lactis. We have recently
investigated PCD in K. lactis, using the drugs staurosporine
(STS) and phytosphingosine (PHS), which induce PCD in
other organisms, and found that glutathione and GLR played
an important role. While K. lactis seemed to be insensitive to
STS, PHS induced PCD. The insensitivity of K. lactis to STS
might be dependent upon the higher levels of GSH found in
cells treated with STS. In human cells, PCD induced by STS
causes GSH efflux, but GSH exporter proteins are absent in
K. lactis. In addition, GLR appears to be involved in PHS-
triggered PCD because cells lacking this enzyme are more
resistant to the drug than the wild-type strain. Moreover, the
addition of GSSG or GSH to the medium partially restores
growth of the wild-type K. lactis strain on PHS [117].

The strictly regulated removal of oxidized structures is
a universal stress response of eukaryotic cells that targets
damaged or toxic components for vacuolar or lysosome
degradation. Autophagy stands at the crossroad between
cell survival and death. It promotes survival by degrading
proteins and organelles damaged during oxidative stress, but
it is also activated as a part of death programs, when the
damage cannot be overcome. Evidence is accumulating that
the cellular sites of ROS production and signaling (including
mitochondria) may be primary targets of autophagy [118].
The surplus ROS damage the mitochondria themselves and
the damaged mitochondria produce more ROS in a vicious
circle, ultimately leading to mitochondrial DNA deletion,
a form of the so-called petite-mutant phenotype [119].
Selective mitochondria autophagy is called mitophagy and
contributes to the maintenance of mitochondrial quality
by eliminating damaged or excess mitochondria [120].
Although little is known about the mechanism, glutathione
influences mitophagy [121, 122]. The interplay between
mitochondria and autophagy seems to be evolutionarily
conserved from yeast to higher eukaryotes. Defects in one
of these elements could simultaneously impair the other,
resulting in risk increments for various human diseases
[123]. Autophagy is associated with tumor genesis, neurode-
generative diseases, cardiomyopathy, Crohn’s disease, fatty
liver, type 2 diabetes, defense against intracellular pathogens,
antigen presentation, and longevity [121, 122, 124].

Recent studies in yeast identified several mitophagy-
related proteins, which have been characterized with regard
to their function and regulation, allowing to compare
the similarities and differences of this degradation process
between yeast and mammalian cells [120]. Up to our
knowledge, no studies at all about mitophagy or even
autophagy have been published at present in K. lactis. We
have performed a custom Blastp in Génolevures for the
main actors of mitophagy [125] and its signaling pathways

[126] in S. cerevisiae versus K. lactis and we found sequences
with different degrees of similarity as shown in Table 2
and Figure 2. Further research is required to analyze if the
sequence similarity corresponds to similarity of function
or not. This is a new field of research in the respiratory
yeast K. lactis. As occurs with other pathways, it is likely
that functional differences exist according to fermentative
or respiratory predominant metabolism in yeasts. K. lactis
proteins in this group (Figure 2) are good targets for
comparative studies in mitophagy.

6. Conclusions and Perspectives

K. lactis is proposed as a respiratory eukaryote model,
complementary to the fermentative S. cerevisiae, for the
study of the pathways of hypoxia-induced oxidative stress.
The experimental studies carried so far reveal that there are
many differences in all the steps analysed from a comparative
perspective, even when high homology exists between the
acting proteins from the two yeasts. Some of these differences
are briefly summarized in Table 3, although they are probably
much wider than here exposed and they will increase
with future studies. Besides, in silico analysis reveals that
transcriptional factors and several actors from the cell-
defense response (life span and mitophagy) are among the
poorly homologous proteins, and therefore those become
good candidates for functional characterization.

Many yeast genes related to the hypoxic, oxidative, and
cell-defense responses are related to human diseases [127].
Although most of the studies performed hitherto about K.
lactis physiology are focused on the respiro-fermentative
metabolism, and much less is known about other pathways,
there are representative examples of differences between K.
lactis and S. cerevisiae that might be of interest for their
applications in therapy of human health disorders and in the
potential use of K. lactis as a model for this research. Among
the potential genes or proteins of interest, SOD1 is homolog
of the human gene involved in amyotrophic lateral sclerosis
[128]. NDI is involved in gene therapy of complex I defects
[88, 129] and is important in neurological diseases [84–
86]. Several genes of ergosterol biosynthesis are targets to
look for pharmacological drugs (anticholesterol, antifungal,
anticancer, etc.) [125]. Diamine oxidases and catalases have
been used as therapeutic approaches for the treatment of
inflammatory bowel diseases, intestinal cancers, or pseudoal-
lergic reactions [130]. Hereditary coproporphyria (HCP), an
autosomal dominant acute hepatic porphyria, results from
mutations in the gene that encodes coproporphyrinogen III
oxidase [131]. Sirtuins have been associated to diabetes type
2 [132] and Huntington disease [104] as well as cardiopathies
or cancer [109].

Neither S. cerevisiae nor other currently used models,
even multicellular, manifest the complex set of alterations
associated to each health disorder in humans. This makes
necessary the combination of the information obtained from
several models, as representative as possible of the diversity of
human cell types (S. cerevisiae, K. lactis, and others), in order
to advance in puzzling out the molecular basis of the diseases
and in developing new preventive and therapeutic tools.
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Table 2: Putative main actors of mitophagy and its signaling pathways in K. lactis and S. cerevisiae. Degree of identity (%) between homologs
is indicated in Figure 2.

Protein
ORF

K. lactis
ORF

S. cerevisiae
Function

Atg1 KLLA0C17160g YGL180W Autophagy-dedicated protein serine/threonine kinase

Atg11 KLLA0B12133g YPR049C Cytoplasm-to-vacuole targeting (Cvt) pathway and peroxisomal degradation (pexophagy)

Atg32 KLLA0A00660g YIL146C Mitochondrial receptor specific to mitophagy

Atg33 KLLA0A02695g YLR356W Detects or presents aged mitochondria for degradation at the stationary phase

Atg8 KLLA0E20593g YBL078C Component of autophagosomes and Cvt vesicles

Aup1 KLLA0F06985g YCR079W Mitochondrial protein phosphatase

Bck1 KLLA0F14190g YJL095W MAP kinase kinase kinase acting in the protein kinase C signaling pathway

Dnm1 KLLA0F12892g YLL001W Dynamin-related GTPase

Fmc1 KLLA0F04081g YIL098C Assembly at high temperature of mitochondrial ATP synthase

Hog1 KLLA0F20053g YLR113W MAP kinase involved in osmoregulation

Mdm38 KLLA0B11748g YOL027C Mitochondrial distribution and morphology

Mkk1 KLLA0D07304g YOR231W MAP kinase kinase acting in the protein kinase C signaling pathway

Mkk2 KLLA0D07304g YPL140C MAP kinase kinase acting in the protein kinase C signaling pathway

Pbs2 KLLA0E15313g YJL128C MAP kinase kinase in the osmosensing signal-transduction pathway

Pkc1 KLLA0E06447g YBL105C Protein kinase C

Rtg3 KLLA0E06513g YBL103C Transcription factor to activate the retrograde (RTG) and TOR pathways

Slt2 KLLA0B11902g YHR030C MPK1 MAP kinase

Uth1 KLLA0E14939g YKR042W Regulator outer membrane protein

Whi2 KLLA0F15972g YOR043W Full activation of the general stress response

Wsc1 KLLA0D14377g YOR008C Sensor transducer of the stress-activated PKC1-MPK1 kinase pathway

Yme1 KLLA0E06711g YPR024W
Protease catalytic subunit for degradation of unfolded or misfolded mitochondrial gene
products

Ynt1 KLLA0C06534g YDR394W Subunit of the 26S proteasome

Table 3: Main differences reported hitherto between K. lactis and S. cerevisiae, two alternative unicellular eukaryote models for hypoxic and
oxidative stress responses.

K. lactis S. cerevisiae

Crabtree effect Negative Positive

Glucose catabolism in aerobic conditions Mainly respiratory Mainly fermentative

Ratio PPP/glycolysis for glucose catabolism High Low

Reoxidation of NADPH from PPP
Mainly by mitochondrial alternative
external dehydrogenases

Mainly by cytosolic NADPH oxidoreductases

Catabolic repression of respiration Low High

Respiratory capacity Unlimited Limited

Petite phenotype
Positive in specific mutant genetic
backgrounds

Positive

Caloric restriction increases longevity No Yes

Aerobic/hypoxic gene pairs Absent Present

Upregulated by hypoxia

Genes related to ergosterol synthesis, cell
wall composition, and glycolytic genes.
OS genes: CUP1 and CUP2, HSP12,
FMP46 and GRE1, and SOD1.

Genes from the heme biosynthetic pathway,
pyruvate decarboxylase, and lipid biosynthesis.
OS genes: KlOYE2, KlGSH1.
This response is highly dependent on the
relative flux of glucose through glycolysis or
PPP

Transcriptional regulators Hap1 and Rox1
Not related to heme-mediated oxygen
response

Related to heme-mediated oxygen response
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“Genome-wide analysis of Kluyveromyces lactis in wild-type
and rag2 mutant strains,” Genome, vol. 47, no. 5, pp. 970–
978, 2004.
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