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SUMMARY
The high fragmentation of nuclear circulating DNA (cirDNA) relies on chromatin organization and protection or
packaging within mononucleosomes, the smallest and the most stabilized structure in the bloodstream. The
detection of differing size patterns, termed fragmentomics, exploits information about the nucleosomal
packing of DNA. Fragmentomics not only implies size pattern characterization but also considers the posi-
tioning and occupancy of nucleosomes, which result in cirDNA fragments being protected and persisting
in the circulation. Fragmentomics can determine tissue of origin and distinguish cancer-derived cirDNA.
The screening power of fragmentomics has been considerably strengthened in the omics era, as shown in
the ongoing development of sophisticated technologies assisted by machine learning. Fragmentomics
can thus be regarded as a strategy for characterizing cancer within individuals and offers an alternative or
a synergistic supplement to mutation searches, methylation, or nucleosome positioning. As such, it offers
potential for improving diagnostics and cancer screening.
INTRODUCTION

Fragmentomics is a new field studying circulating DNA (cirDNA),

especially with regard to cancer screening. Ivanov et al.1 first

used the term to refer to the study of cirDNA fragment size pro-

files. The term fragmentomics was initially suggested by Za-

myatnin2 referring to the study of the structure and functions of

a set of molecular fragments; calling the whole set of biomole-

cule fragments the ‘‘fragmentome.’’ For some proteins, hun-

dreds of fragments have been studied in detail, identifying

functions related to specific protein fragment structures. With

respect to the application of cirDNAs to oncological studies,

cirDNA sequences needed to be investigated for potential

applications as a companion test, particularly for targeted

therapy.3–8 Subsequently, the detection and quantification of

mutant cirDNA led to its use in the detection of residual disease,

clonal heterogeneity/treatment resistance, and surveillance for

tumor recurrence.5,9,10

When cirDNA is detected in the blood, the DNA molecule is

highly fragmented11–14 with a characteristic size profile.15–18

This offers the potential to determine cirDNA tissue-of-origin,

and to contribute to the development of a pan-cancer screening

or early detection test. cirDNA-associated fragmentomics can

involve non-sequencing technologies, sequencing, or a mixture

of both methods. The characterization of cancer cirDNA topol-

ogy has benefited from work performed on cirDNA derived

from healthy subjects (especially during the development of a

non-invasive prenatal test [NIPT]), notably, Denis Lo’s group’s

studies of the size distribution of fetal cirDNA, initially performed

using qPCR,19,20 then with whole-genome sequencing.15,21–27

Similarly, non-omic (qPCR, AFM, capillary electrophoresis,

etc.)11–13,28 and subsequently omic methods14,16,17,29–32 identi-
C
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fied differences in the fragment size distribution of cirDNA

deriving from healthy individuals and cancer patients.

cirDNA SHOWS A CHROMATIN ORGANIZATION
PATTERN

Non-omics observations
A fraction of cirDNA is composed of extracellular DNA released

during cell death, in particular during necrosis, phagocytosis,

or apoptosis.33–36 DNA fragments longer than 10,000 base pairs

(bp) are likely to originate from necrotic cells, whereas DNA frag-

ments shorter than 1,000 bp, particularly of 180 bp ormultiples of

this size, are reminiscent of the oligonucleosomal DNA ladder

observed in apoptotic cells.37–39 DNA nucleosomal fragmenta-

tion is a hallmark of apoptosis. Thus, analyses of the size of

the DNA fragments may enable the source of cirDNA to be

discerned.

Early studies of cirDNA utilized gel electrophoresis,38 and

described cirDNA as consisting of fragments of approxima-

tively 100–500 bp.37,38,40 Lo’s team19 analyzed the size distri-

butions of maternal and fetal DNA in maternal plasma using a

qPCR assay with primer sets that amplify sequences from

105 to 798 bp, enabling more precise size profiling. They sug-

gested that ‘‘most of the ctDNA molecules were in the range

of 145–201 bp,’’19 which is approximately the size of a nucleo-

some. However, a nested qPCR system method (N-qPCR)

showed11–13,28 that a significant proportion of cirDNA is smaller

than 100 bp and that targeting 60–100 bp sequences optimizes

cirDNA quantification.12,13 This observation enhanced the re-

covery of ctDNA, for clinical implementation.41–43 Note that

the cirDNA fragment distribution may also be determined with

methods, such as atomic force microscopy,41,44 microfluidic
ell Genomics 3, 100242, January 11, 2023 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:alain.thierry@inserm.fr
https://doi.org/10.1016/j.xgen.2022.100242
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2022.100242&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transcription factors Fragment ends
Genome-wide

nucleosomes occupancy

2016

Differences in fragment lengths of cirDNA is 
exploited to enhance sensi vity for detec ng the 
presence of mutant cirDNA58

The level of cirDNA fragmenta on correlated
posi vely with decreased overall survival and
appeared as a strong independent prognos c factor55

2016

Preferred end coordinates signatures of cirDNA
derived from hepatocellular carcinoma correla ng 
with the tumor DNA frac ons 63

SSP sWGS enables dis nc on cancer vs healthy 
Plasma. Comparing DSP and SSP sWGS analysis 
revealed differences between cancer and healthy 30

Assessing accessibility of TF binding sites from
cirDNA fragmenta on pa erns, enabling 
detec on of early-stage colorectal carcinomas 57

.
Fragmenta on features could be used to iden fy the 

ssue of origin of the cancers.in a large cohort 56

The diversity of cirDNA end mo fs significantly 
increased and preferen al pa ern of 4-mer end
mo fs was observed in cancer pa ent plasma 25

The size distribu on profile of cirDNA fragments can
be used to discriminate between healthy and cancer
subjects given the observa on by qPCR of  shorter
fragment lengths in total cirDNA amount, and
specifically of mutant fragments in cancer plasma 12

2012

2015Massively parallel sequencing revealed at single-
base resolu on that tumor-associated CNA are 
preferen ally in short cirDNA fragments 14 2016

Nucleosome occupancy correlates with the nuclear
architecture. Short cirDNA fragments harbor footprints 
of transcrip on factors. Nucleosome footprints can be 
used to infer cell types contribu ng to cirDNA in
cancer 16

2017

2018

2018

2019

2019

2020

Fragment size profile

Figure 1. Milestone studies revealing quantitative differences in the cirDNA size distribution between cancer patients and healthy subjects

CNA, copy number alterations; qPCR, quantitative polymerase chain reaction; sWGS, shallow whole-genome sequencing; SSP, single-strand DNA library

preparation; DSP, double-strand DNA library preparation; TF, transcription factor.

Review
ll

OPEN ACCESS
single-molecule spectroscopy,45 or viscoelastic lift force capil-

lary technology.46 This variety of options may offer further pos-

sibilities for comparing cirDNA plasma extracts or origins.

The mononucleosomes as the preponderant structures

associating cirDNA

Depending on tissue-of-origin and physiological or patholog-

ical conditions (including apoptosis, necrosis, or NETosis),

only a small number of the structures are stable enough to

be detectable in blood as cirDNA. Those structures are:

mono-nucleosomes, the smallest and most stable structure

in the blood stream; tightly packed long double-stranded

DNA (dsDNA); and, to a lesser extent, di-nucleosomes. Minor

structures associated with cirDNA include: short-sized

(<70 bp) transcription factor-binding dsDNA; long- and short-

sized DNA-associated micro-particles; apoptotic particles;

short-sized lipo-proteo-nucleic complexes; and, cells or cell-

part associations.

Two opposing theories of cirDNAmechanisms of release have

been proposed. One points to the prominence of mononucleo-

somes as an indication that apoptosis is the principal release

mechanism.38,47 The alternative theory proposes that short-

sized nucleosomal structures ensue from the progressive

nuclease degradation of longer cirDNA, which derive frommicro-

particle-containing DNA, necrosis, phagocytosis, or active

release resulting from lymphocytes or neutrophils (NETs).48,49

The data to date on cirDNA fragment size profiling suggest a dy-

namic process that relies on both the rapid rate of chromatin de-

condensation and inter-nucleosomal DNA fragmentation, and
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the slower rate of intra-nucleosomal fragmentation by nuclease

activities. While this full process appears highly homogeneous

in healthy individuals, it varies in cancer14,30,50 and in preg-

nancy,15,19,27 as discussed later.

Despite the range of topological information provided by

whole-genome sequencing (WGS)-based sizing, this analytical

approach can only detect cirDNA fragment lengths below

�1,000 bp. Using qPCR or capillary electrophoresis, studies50–53

report a significant fraction (10%–25%) of fragments in the 1,000–

8,000 bp range in healthy individuals. By combining double-

stranded DNA library preparation-based sequencing (DSP-S),

single-stranded DNA library preparation-based sequencing

(SSP-S), and N-qPCR analysis, cirDNA associated in mono-nu-

cleosomes, di-nucleosomes, and chromatin of higher molecular

size (>1,000 bp) was estimated as 67.5%–80%, 9.4%–11.5%,

and 8.5%–21.0%, respectively.

Omics observations
While various analytical non-omics methods have revealed frag-

ment sizes corresponding to mono-nucleosomes47,54; subse-

quently, sequencing allowed for in-depth observations that

greatly enhanced fragmentomics. Cancer screening relies on

precise characterization, high reproducibility, and stringent stan-

dardization of control parameters. WGS has increased the

analytical power and resolution of fragmentomics. Several mile-

stone reports12,14,16,25,55–59 illustrated in Figure 1 have paved the

way for developing a cirDNA-based cancer screening test,

further empowered by bioinformatics advances.17,60–64



Figure 2. Consistency of healthy individual cirDNA fragment size profiles

cirDNA plasma extracts of 17 healthy individuals were subjected to sWGS fromDSP. The frequency of each read is plotted and expressed in percentages for each

plasma. The 17 size profiles were generated from four different sets of plasma DNA (n = 7, 4, 3, and 3) at four different times (n = 7, 4, 3, and 3) and with two

different platforms and different bioinformatics systems (n = 3), and are represented as curves of various superimposed colors. Overall, this results in a major

population associated with chromatosomes/mononucleosomes (large peak between 141 and 181 bp), and a minor population associated with dinucleosomes

(small peak between 301 and 381 bp). No reads above the background are detectable between 661 bp and the limit of �1,000 bp (the WGS readout limit).

Subpeaks with a periodicity of �10 bp detectable between 40 and 177 bp are the result of exposition to nuclease activity at the DNA molecule’s minor groove at

the surface of the chromatosome/mononucleosome structures. Arrows indicate the position of the minor groove at which nicks may occur, and also offer a

schematic view of the nucleosome structures associated with cirDNA, from which cirDNA fragment length can be inferred. Also highlighted are the structures

most frequently associated with cirDNA: the chromatosome with a 166 bp DNA fragment (�3%) and the nucleosome core particle devoid of H1 containing

147–160 bp fragments (0.8% to�1.5%) are the structures which most frequently associate cirDNA.17 The figure is adapted from the data from a recent report.17

Images of the crystal structure of chromatosome and nucleosome, shown at 3.5 Å resolution, were obtained from the NIPDB databank (4QLC and 5ONW,

respectively). NIPDB, Nucleic Acid-Protein Interaction Database, https://npidb.belozersky.msu.ru.
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cirDNA fragment size profile characteristics

Nuclear cirDNA fragmentation is dependent on chromatin organi-

zation.1,65 cirDNA sizes typically correspond to the fragment

sizes of mostly mono-nucleosomes, a low fraction of di-nucleo-

somes, with traces of tri-nucleosomes. cirDNA exhibits a

�10 bp periodicity footprint detectable down to 31 bp1,15–17,66

(Figure 2). This is indicative of nucleosome-derived degradation,

likely ascribed to cleavage, occurring in nucleotides that remain

accessible at every helical turn where DNA wraps around the

core and is farthest from the histone core surface.1,15,16 Yu

et al.15 first revealed that the size profile of maternally derived

cirDNA exhibits a �10 bp periodicity below 143 bp. Overall, the

majority of detectable cirDNA in the blood exhibits a footprint re-

sulting from the association between DNA and the nucleosome

structure, which provides stability for cirDNA.1,15,16,18,24,30,50

While a small proportion of cirDNA fragments are associated

with di-nucleosomes they are identified by the�10 bp periodicity

footprint within the 300–360 bp range, reflecting the conforma-

tion of DNA wrapped about a di-nucleosome.

The detected cirDNA fragments exhibiting the highest fre-

quency are derived from trimmed mono-nucleosome, also called
the chromatosome. The chromatosome, theoretically condensing

166 bp length DNA, comprises a histone octamer ((H2A-H2B)2

(H3-H4)2) and the histone monomer linker H1 (Figure 2). Since

there are only 2%–3% of cirDNA with 166 bp, the cirDNA mole-

cule appears substantially nicked, revealing nuclease activity on

the nucleosomal structure.17 Consequently, the nucleosome

core particle structure, which is lacking the histone monomer

linker H1 and condenses merely 147 bp DNA (the mononucleo-

some), is also present in a high proportion of the cirDNA structural

forms (Figure 2). sWGS (shallow or low pass WGS) identifies

cirDNA fragments where a single nick is present in both strands

within the same area, resulting in a nucleosomal footprints of

smaller cirDNA-sized fragments down to 30–40 bp.

The majority of cirDNA molecules shorter than non-degraded

nucleosomes (<167 bp) are derived either from double-stranded

nicks at the extremity of the nucleosomeor at one of the 14 points

at the nucleosome’s surface where DNA is exposed on the minor

groove DNA structure (Figure 2). It is also possible that double-

strandedbreaks canoccur at two separate positions of the nucle-

osome surface (Figure 2). The rarity of observations of cirDNA

fragments shorter than 41 bp is due to limitations in technical
Cell Genomics 3, 100242, January 11, 2023 3
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sensitivity. The smaller the size of the DNA molecule, the weaker

the forces binding it to the nucleosome, and the lower the fre-

quency of short fragments. This may be caused by DNA peeling

off the nucleosome edge,17 followed by rapid degradation.

Size profile determined from DSP-S vs. SSP-S

The conventional DSP-S method detects double-stranded

breaks in the DNA molecule. In contrast, SSP-S size profiling re-

veals nicks on both strands. Since SSP implies DNA denatur-

ation and strand separation prior to sequencing, it can result in

an unrealistic quantification of single-stranded cirDNA fragment

length. Thus, data collected via DSP-S and SSP-S sizing offer

clues as to the position of the cirDNAmolecule on proteo-nucleo

complexes, as well as the means by which a DNA molecule is

protected from degradation within the blood.

SSP-S revealed a higher proportion of shorter cirDNA frag-

ments (30–145 bp range) compared with DSP-S. This is because

of the fact that when a DNA molecule has only a single nick on

one of its two strands it remains wrapped around the nucleo-

some and, consequently, does not peel away.17,30 Detailed anal-

ysis of cirDNA sizing by SSP-S also showed an �10 nucleotide

(nt) periodicity footprint detectable to 31 nt within the 31–166

nt size range. In this case, the two strands exposed at the nucle-

osome surface are shifted by 3 bp, with a stagger of 30.16,17,30,50

Therefore, the size of molecules detected by DSP-S and SSP-S

revealed a shift of 3 bp; this observation confirms both the

�10 bp periodicity and the fact that cirDNA are wrapped around

the nucleosome.15,16

SSP-S enables the detection of the shorter cirDNA fragments

resulting from nicks dynamically occurring in blood in one or

both DNA strands packed in the mono-nucleosome. While

overall size distribution values obtained from DSP-S differ

slightly from data obtained by N-qPCR, those determined by

both SSP-S and N-qPCR agree because the denaturation

step employs single-stranded DNA as an initial template30 in

both methods. Nevertheless, given that the same peak of

�166 bp was observed in both SSP-S and DSP-S, we hypoth-

esize that a substantial, but small, fraction (2%–3%) of the

cirDNA fragments within this size range are free of nicks in at

least one strand.

Homogeneity of healthy individual cirDNA size profile

The reproducibility of the cirDNA size profile from healthy

plasmas is evident fromsuperimposedprofile curves (Figure 2).17

In both the major peak and all subpeaks, the maximal frequency

and size varied by no more than 2%–20% and 1 or 2 bp, respec-

tively (Figure 2).17 We therefore postulate that (1) in healthy sub-

jects, the post cell release DNA degradation dynamic is consis-

tent; (2) this results in consistent specific chromatin structures in

the blood, mainly mono-nucleosome/chromatosomes, and a

low proportion of di-nucleosomes; (3) the nicks/breaks on those

structures rely on dsDNA molecule position/packaging, and on

nuclease accessibility; (4) this homogeneity may be due to the

homogeneity of the cirDNA cell-of-origin, especially with respect

to immune cells, as in healthy individuals17; and (5) jagged

cirDNA on nucleosomal structures are preponderant,50 with their

proportion on mono-nucleosome structures depending on their

length. Length impinges on the electrostatic interaction between

DNA and nucleosomes, which impacts cirDNA fragment

maintenance.
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Transcription factor association pattern
Shendure’s group16 provided evidence that, besides binding to

DNA wrapped around a histone octamer, cirDNA may also

bind to transcription factors, typically proteins that protect

DNA from nucleases in the blood.16,62 Maps of genome-wide

in vivo nucleosome occupancy revealed the presence of shorter

(35–80 bp) fragments associated with cleavage adjacent to tran-

scription factor-binding sites, and harboring DNA motifs associ-

ated with specific transcription factors.16

DIFFERENCES BETWEEN CANCER AND HEALTHY
INDIVIDUALS REVEALED BY cirDNA FRAGMENTOMICS

The comparison of cirDNA fragment lengths from both healthy

people and individuals with cancer was first carried out with

transmission electron microscopy.36 Because of contamination

from intracellular DNA deriving from white blood cells in the

DNA plasma extract (more than 50% of fragments were over

1,000 bp), it was not possible to perform a quantitative assess-

ment of the differences in cirDNA between individuals with can-

cer and healthy subjects.36 This was also the case in other

studies.4,7,8,38,67,68

Similarly, cirDNA mutation detection has been performed as a

companion test with a flow cytometry-assisted qPCR method.

In this test, small fragments from cancer samples are enriched,

but only in quantities ranging from 0.01% to 1.7% of the total

cirDNA molecules.6 Although these studies could not provide

a quantitative assessment or a defined size range difference,

they were the first to suggest (albeit without adequate demon-

stration) that cancer-derived fragments are generally shorter

than control-derived fragments. qPCR was applied to differen-

tially quantify shorter (100–150 bp) or longer (200–380 bp) length

cirDNA fragments relative to the DNA contained in a mono-

nucleosome. In studies of two different cancer types, Ellinger

and co-workers reported both a lower69 and a higher70 cirDNA

integrity compared with that of healthy subjects. In light of these

findings, divergent conclusions have been made, with cirDNA

integrity being described as lower,11,13,69,71 equivalent,72,73 or

higher70,74,75 in individuals with cancer. These discrepancies

are mainly due to reported confounding pre-analytical (plasma

isolation, volume sampling, freezing, etc.) and analytical

factors (qPCR targeted sequences, detection method, standard

curves, etc.)74,76

On the basis of early findings, we postulated that ‘‘the size dis-

tribution profile of cirDNA fragments can be used to discriminate

between healthy and cancer patients.’’12 Employing a N-qPCR

assay, which amplified nine sequence sizes from 60 bp upward,

the number of fragments in the 60–145 bp range was �3-fold

higher in cancer-patient-derived cirDNA than in that of healthy

individuals.13,17 Few cancer-derived cirDNA fragments were

over 400 bp (�1%), in contrast to healthy subjects with �24%

larger cirDNA fragments.11,13,17 In addition, fragments contain-

ing a specific mutant oncogene sequence were more frag-

mented (especially below 138 bp) than the fragments containing

the same counterpart wild-type sequence.28

Early studies disagreed on the size profiles of cirDNA in

cancer patients. This was resolved by standardizing pre-ana-

lytics.67,76–80 First, mutant cell-free DNA (cfDNA) fragments



Figure 3. Compared with that of healthy indi-

viduals (blue), the cirDNA size profile of can-

cer patients trends toward shorter fragments

(black)

The figure presents an illustrated comparison of the

fragmentome of a metastatic colorectal cancer

(mCRC) patient with a mutation allele frequency

(MAF) of 68.5% (black line) and that of the mean of

17 healthy individuals (blue line) as determined by

sWGS from DSP. Vertical lines indicate fragment

lengths where the mean size profile curve of cirDNA

from healthy individuals crosses that of the cancer

patient cfDNA. Inset: zoom on the 240–480 bp

size range corresponding to the DNA fragments

associated with dinucleosomes. Compared with

the healthymean, the cancer patient size profile has

an increased number of fragments in the 40–151

and 218–320 bp ranges, a decreased number of

fragments in the 151–218 and 320–440 bp ranges.

In addition, the cancer patient cirDNA size profile specifically shows (1) fragment levels plateauing between 145 and 156 bp; (2) lower fragment levels at 166 bp

length; and (3) shorter corresponding peak at the dinucleosome (300 vs. 330 bp). The figure is adapted from data reported previously.17
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were shown to be shorter than the corresponding wild-type

sequence.12,13,28 Thus, differences in size profile can be accu-

rately observed with sequencing at fragment-level resolution

(Figure 3). Comparing the frequency of sWGS reads of fragment

size at 1 bp, resolution on the cirDNA size profile from plasma

from subjects with cancer vs. healthy subjects, Thierry and San-

chez29 defined a list of parametrics to distinguish cancer vs.

healthy individual cirDNA extracts. Overall, cancer patient

cirDNA shows subtle but reliable differences relative to healthy

subjects (Figure 3). In individuals with cancer, cirDNA differences

include a higher number of fragments below 150 bp, as well as a

lower number of fragments between 151 and 218 bp; with di-

nucleosome corresponding fragments peaking at �300 vs.

�330 bp. In addition, N-qPCR in combination with sWGS identi-

fied a lower proportion of fragments >1,000 bp in cancer

patients, compared with healthy people.17 Whereas sWGS pro-

vides accurate and precise size determination of cirDNA frag-

ments below �1,000 bp, cirDNA of higher molecular weight

has diagnostic utility. For instance, the dynamic degradation of

high-molecular-weight DNA or chromatin in the bloodstream,

due to NETs, can be associated with cancer.48 However, the

quantification of such long fragments is currently subject to

bias, by factors discussed above. Further research on long

cirDNA fragments is required to more fully decipher their diag-

nostic value.

More precise parametrics enabling us to highly distinguish be-

tween cancer patients and healthy individuals based on cirDNA

size profile have been determined as being frequency at a single

fragment length, frequency of unique reads at single-base reso-

lution, the difference of frequency of two single fragment lengths

at 1 bp resolution, the size range fraction frequency, or the differ-

ence of size range ratio17,29 (Figure 2). The higher the composition

of mutant or malignant cell-derived cirDNA content (quantified as

mutation allele frequency [MAF]), the greater the differences

between the cirDNA size profiles of the plasma of metastatic

colorectal17,29 and hepatocellular14 cancer patients and healthy

individuals. However, this correlation has not been observed to

be directly proportional.
ADVANCED OMICS APPROACHES UNDER
DEVELOPMENT TO SCREEN CANCER

Chromatin organization along the genome is not random, and

may be specific to cell gene regulation and cell types81,82 (Fig-

ure 2). Consequently, fragment length is not the only parameter

that needs to be investigated for the purpose of differentiating

cirDNA fragments of different origins. Other analytical signals

from the cirDNA fragmentome include a non-random fragmenta-

tion pattern, transcription factor occupancy, DNA GC content,

and end motif pattern.

Genome-wide map of nucleosome occupancy
Deep sequencing of cirDNA allowed the identification of the

genome-wide map of the nucleosome occupancy, confirmed the

chromatin/nucleosome occupancy related patterns, with short

cirDNA fragments revealing the footprint of transcription factor

occupancy16 (Figure 1). This method can infer which cell types

contribute to cirDNA inpathological states, particularly cancer (Ta-

ble1).Almostall shortcirDNAfragmentsareassociatedwithnucle-

osomes with mutant alleles commonly occurring as shorter frag-

ments.62 Bioinformatics isolation of a specific subset of fragment

lengths62 aids in the detection of mutant cirDNA. This approach

has been exploited58,83 (Figure 1) to enhance sensitivity in detect-

ing the presence of cirDNA with in vitro and in silico methods to

enrich cirDNA in fragment sizes between 90 and 150 bp. In a large

cohort, this size selection improved the identification of cirDNA

from patients with glioma, renal, and pancreatic cancer.58,83

Nucleosome depletion regions
From initial observations with micrococcal nuclease digestion, in

which nucleosome patterns at promoters were identified,90 Ulz

et al.57,91 showed that analysis of nucleosome-depleted regions

(NDR) provides functional information about cells releasing their

DNA into the blood. In particular, fragmentomic patterns from

healthy donors reflected the expression signature of hematopoiet-

ic cells. Machine learning analyses of the plasma from individuals

with cancer revealed cancer driver genes associatedwith somatic
Cell Genomics 3, 100242, January 11, 2023 5



Table 1. Fragmentomics-based clinical assays toward early detection of cancer

Methods Analytical approach Tested population Characteristics summary Reference

Large-scale

chromatin

organization

DELFI: genome-wide

cell-free DNA

fragmentation

sequencing at 5 Mb

resolution

multiple early-stage

cancers

needs deep sequencing;

large retrospective cohort (n = 236);

discriminate various cancer types;

potential confirmed by subsequent report

Cristiano et al.56

Mathios et al.84

Local genomic

bins

orientation-aware

cirDNA fragmentation

analysis (OCF)

sequencing at 1 kb

resolution

early-stage

hepatocellular

carcinoma

small size cohort retrieved from the EGA (n = 90);

informs tissue of origin compared with pregnant

women and organ transplantation recipients

Sun et al.85

DNA fragmentation

hotspot

sequencing at 1 kb

resolution

early-stage

hepatocellular

carcinoma

small size cohort retrieved from public datasets

(n = 60);

informs some elements of tissue of origin;

fine-scale fragmentation at open chromatin

regions

Zhou et al.86

TFBS: assessing

TF-binding site

accessibility

sequencing at

1 kb resolution

early-stage

colorectal cancer

large retrospective cohort (n = 213);

more advanced method following fragment

coverage near transcription-start sites

Ulz et al.57

Fragment level preferred end sequencing at

fragment level

(<1,000 bp)

resolution

early-stage

hepatocellular

carcinoma

need deep sequencing;

small size cohort (n = 90);

informs tissue of origin as compared with

cirrhotic patients;

no sensitivity or specificity level reported

Jiang et al.59

end motif and

diversity score

sequencing at

fragment level

(<1,000 bp)

resolution

early-stage

hepatocellular

carcinoma

needs deep sequencing;

small size cohort (n = 34);

global and local analysis;

no sensitivity or specificity level reported

Jiang et al.25

jagged end sequencing at

fragment level

(<1,000 bp)

resolution

early-stage

hepatocellular

carcinoma

small size cohort (n = 34);

followed 2008 observation on protruding

forms of double-stranded DNA in plasma

Suzuki et al.87

Jiang et al.59

LIQUORICE

algorithm: epigenetic

signatures based on

cirDNA fragmentation

patterns

sequencing

at multiple

resolutions

Ewing sarcoma

and pediatric

sarcomas.

small size cohort (95 patients with Ewing

sarcoma and 31 patients with other pediatric

sarcomas);

no reported patient stage;

no sensitivity or specificity reported;

assistance of machine learning classifiers

Peneder et al.88

MITEST algorithm:

nuclear and mitochondrial

origin and signatures

based on cirDNA

fragmentation distribution

N-qPCR multiple early- and

late-stage cancers

large size cohort (N = 983);

assistance of machine learning classifiers

Tanos et al.89

This table illustrates most of the various technologies employed to date with observed data. However, it does not attempt to compare their respective efficacy, since in most studies machine

learning algorithms are not indicated, and some studies have carefully selected samples that may have their biases. For instance, AUC (area under curves) values cannot be compared precluding

assessment of the performance values. OCF, orientation-aware plasma cell-free fragmentation signals; TF, transcription factor; TFBS, transcription factor-binding sites; AUROC, area under

receiver operating characteristic curve; MDS, end motif diversity score; N-qPCR, nested qPCR; European genome archives, EGA.
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Figure 4. cirDNA fragmentation and frag-

mentomics variables enabling discrimination

between cancer and healthy individuals

toward a cancer screening test

qPCR, quantitative polymerase chain reaction;

sWGS, shallow whole-genome sequencing; SSP,

single-strand DNA library preparation; DSP, double-

strand DNA library preparation; AFM, atomic force

microscopy.
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copy number gains.92 Thus, NDR analysis at transcription start

sites and exon junctions could offer a quantitative and cost-effi-

cient approach to track tumor cirDNA dynamics and progression.

DELFi genome-wide cirDNA fragmentation
While the first machine learning-assisted cancer screening test

using cirDNA was reported in 2016,91 DELFI (DNA evaluation of

fragments for early interception) is the first test to employ frag-

mentomics (Figure 1). DELFI exploits information regarding frag-

ment length in 5 Mb windows along the genome in bins from the

ratio of short (100–150 bp) over long (151–220 bp) fragments;

similar to the parametric revealed by N-qPCR.12,13,29 This test,

alongwithmutation-basedcirDNAanalyses,56 clinical risk factors,

and carcinogen embryonic antigen levels, enabled the detection

of cirDNA in 91% of subjects and in 94% of subjects with cancer

across all stages and subtypes, including 91% of stage I/II and

96% of stage III/IV, at 80% specificity.84 This study confirmed

that fragmentomics analysis utilizing transcription factor binding

sites to distinguished between individuals with small cell lung can-

cer and those with non-small cell lung cancer (AUC = 0.98).84

cirDNA fragment ends
cirDNA fragment ends from hepatocellular carcinoma (HCC)

typically map to specific genomic coordinates, which can be
C

quantitatively assessed, and are correlated

with the amounts of mutant- or liver-

derived cirDNA (Figure 1)25 This shows

promise as a cost-effective approach

for improved theragnostic or potential

cancer screening. In providing the proof

of concept that end motifs may charac-

terize cancer-derived cirDNA, Lo’s group

confirmed the importance of analyzing

cirDNA fragment ends. In addition, the

CCCA motif is less abundant in HCC pa-

tients,25,63 and the profile of cirDNA end

motifs may depend on tissue-of-origin.

On the basis of these observations, it

has been proposed that cirDNA may be

used to identify biomarkers in other clinical

areas, such as transplantation moni-

toring25,85 and NIPT.63

Combining sWGS analysis from
DSP-S and SSP-S
SSP-S has previously been employed in

the field of paleontology to generate
high-resolution genomes of ancient and generally highly

degraded (short) DNA.93 It reveals a higher proportion of short

fragments (<168 nt) relative to DSP sequencing.17,29,93,94

Note, SSP-S analysis better harmonized the fragment size

distribution determined by sequencing and N-qPCR analysis

compared with DSP-S.30 SSP-S revealed a higher proportion

of shorter cirDNA fragments in the �40–152 nt range in cancer

patients compared with cirDNA derived from healthy individ-

uals17,29,30 (Figure 1). Since SSP-S-based size profiles provide

enrichment of fragment number of short size, SSP-S might

therefore be better suited to cancer screening.17,29,30 In addi-

tion, SSP-S detects fragment size due to different DNA strand

breaks.

CombiningDSP-S andSSP-S, Sanchez et al. 17 inferred that the

DNA molecule packed on the chromatosome is double stranded

and exhibits various structures due to nuclease activities. These

structures are various: intact/blunt dsDNA, dsDNA with one or

more nicks in one strand, and dsDNA with one or more nicks in

both strands, the latter DNA ends are mostly jagged, implying

that they bear single-stranded protruding ends17 (Figure 4). More-

over, SSP-S provides more sequence information than DSP-S,

since it retains the exact 50 and 30 protruded endpoints of each

input DNA fragment, improving the performance of methods

based on cirDNA fragment end motifs.25
ell Genomics 3, 100242, January 11, 2023 7
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Combining qPCR and sWGS fragmentomics
The combination of sWGS from DSP and SSP with N-qPCR en-

compasses the full cirDNA fragment size distribution.30,50 This

combinatory approach accurately revealed differences between

cancer and healthy cirDNA. For example, differences were iden-

tified when comparing the cirDNA frequency either at a specific

single size with 1 nt resolution, or at selected size ranges, or at

selected size fraction ranges ratio below �1,000 bp and over

1,000 bp.50 The lower and upper size limits of fragment detection

by conventional sequencing is estimated as 20–30 bp and

�1,000 bp. By contrast, analysis combining N-qPCR and

shallow WGS revealed that 10%–20% of fragments were over

1,000 bp in healthy individuals, whereas in individuals with can-

cer only approximately 1% of fragments were that size.

Mappingtumor-specifictranscriptionfactorbindingsites
cirDNA transcription factor profiling along with nucleosome oc-

cupancy levels of expressed and silent housekeeping genes

can inform upon copy number alterations in cancer. The expres-

sion of genes affected by such genome modifications typically

differs in particular genes in instances of cancer. Applying ma-

chine learning-assisted gene classification to the data identified

a hematopoietic expression signature in the plasma of healthy in-

dividuals. In contrast, metastatic cancer patients’ plasma ex-

pressed cancer driver genes exhibiting somatic copy number

gains. This strategy was validated by mapping tumor-specific

transcription factor binding sites (TFBS) in more than a thousand

cirDNA samples from both healthy individuals and cancer pa-

tients.57 The ability to map tumor-specific transcription factor

binding in vivo from blood samples aids in clinical analysis of

the noncoding genome. Utilizing data from cirDNA fragmentation

patterns and the accessibility of TFBS, Ulz et al. distinguished

patient-specific and tumor-specific patterns with a high level of

accuracy, permitting the detection of early-stage cancer.57

cirDNA jagged end analysis
The ability to detect jagged ends59 also enables the detection of

cancer86 (Figure 4). Analyses of double-stranded plasma cirDNA

that carries single-stranded protruding 50 ends identified an un-

even proportion of C and G cirDNA fragments at 50 and 30 ends
and also revealed 50 protruding forms of dsDNA in plasma.87

The presence of jagged ends was inferred by directly comparing

DSP-S- and SSP-S-derived size profiles.17,30,50 A higher per-

centage of jagged ends was observed in HCC cirDNA fragments

compared with control individuals.59 Further development of a

CC-tag technology based on the use of methylated cytosine

for the end repair reaction, given the usually unmethylated

non-CpG cytosine in the human genome, was later reported.

This technological advance helped in the identification of urinary

cfDNA from bladder cancer patient plasma has been identified

by the analysis of jagged ends using bisulfite paired-end

sequencing (termed Jag-seq).86

Computational analysis and machine learning
assistance applied to fragmentomics
cirDNA fragmentomics generally produced counts of cirDNA

from sequencing at low depth (termed low-pass or shallow

sequencing, 2–103). This contrasts with high depth (�50,0003)
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sequencing of small regions (2 Mb), which are used for detecting

mutations in a ‘‘liquid biopsy’’ approach. Computational analysis

is based on sequencing conventional workflow including (1)

quality control and reads pre-processing; (2) alignment and visu-

alization; and (3) statistical analysis and interpretation.95 Refer-

ence-based or reference-free deconvolution algorithms enable

the recovery of the original signal from a mixture of signals, and

appears to help in mitigating tumor heterogeneity issues.

WGS analysis applied when searching for disease-relevant

patterns requires unbiased methods. Machine learning enables

the identification/classification of features that can be relevant

for the general screening population in an assay with many

measurable variables. Thus, classification from a large cohort

of patients with and without early-stage cancer can be imple-

mented by computational approaches assisted with learning as-

sociations between cirDNA profiles and cancer status.96 Various

machine learning methods, such as artificial neural networks,

Bayesian networks, support vectormachines, and decision trees

were developed for the application of predictive models. In the

case of cancer screening, in assay-based methods, which rely

on cirDNA analysis, the decision tree approach appears to be

the most frequently used.56,61,89

OTHER STATE-OF-THE-ART HIGH-THROUGHPUT
APPROACHES

Fragmentomics-based technology may prove useful for

screening plasma from cancer patients (Table 1). An exciting

development is the utilization of the fragmentation pattern to

characterize open chromatin regions (OCR).85 This technology

provides a means to determine the tissue-of-origin for specific

cirDNA fragments. The bioinformatics pipeline, OCRDetector,

enables the detection of OCRs by combining cirDNA sequencing

coverage with the number of DNA fragments spanning a 120 bp

genomic window, minus the number of fragments with an

endpoint within that same window.97

Thousands of unique plasma extrachromosomal circular DNAs

(eccDNAs) in normal and cancer subjects have been reported.98

These microDNAs, first discovered in cell nuclei, originate from

the chromosomal genome and exhibit longer sequence lengths

(30–60% > 250 bp) than linear cirDNA, as determined by NGS.

We see promise in the exploration of extending cirDNA fragmen-

tomics to include eecDNAs for diagnosis, the scrutiny of gene

regulation, and better understanding intercellular communication.

cirDNA fragmentation hotspots may characterize early-stage

cancer patients. Hypo-fragmentation in specific genomic regions

have identified hotspots in early-stage HCC. These findings sug-

gest the possibility of detecting gene-regulatory aberrations in

early-stage cancers. Finally, we see promise in incorporating

the 3D genome status in analysis of cirDNA co-fragmentation

patterns deriving from two spatially close regions inside the nu-

cleus with the fragmentation evaluation of epigenetics from

cfDNA sequencing61 method.

THE NUCLEASIC ACTIVITY

cirDNA fragmentation is a dynamic process30 and depends

upon nuclease activity within the circulatory system. This
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influences analytical signatures, such as structure, frag-

mentation pattern, length, and cirDNA fragment end

sequence.23,24,61,99 DNASE1L3, DNASE1, and DNA fragmen-

tation factor B all have a role in the fragmentation pro-

cess.23,63,99 A model of the cirDNA fragmentation process

postulates that DNA fragmentation factor B and DNASE1L3,

as well as apoptotic nucleases, intracellularly generate

DNA fragment plasma, and that plasma DNASE1L3 is

responsible for extracellular nuclease activity. While A-end en-

riched cirDNA are predominantly produced intracellularly,

DNASE1L3 generates C-end enriched cirDNA in plasma.99 It

is assumed that the nucleosome is then further degraded

concomitantly by DNASE1 and by proteolysis to the point

of complete digestion. A wider perspective on cirDNA frag-

mentation has been proposed49: in addition to an apoptotic

mechanism of release, mononucleosomes in circulation may

derive from nucleases through the dynamic degradation of

chromatin or high-molecular-weight DNA deriving from

various biological processes, in particular from NETs. Despite

the fact that, subsequent to induced apoptosis, mono and

di-N-associated fragments have the same pattern as cirDNA

found in the blood, this similarity alone is an insufficient

reason to consider all cirDNA the product of apoptosis. Two

NETs markers, myeloperoxidase and neutrophil elastase,

have a catalytic capacity on HMW DNA, indicating that

NETs have auto-catabolic properties.100 The suggested

primary cirDNA cells-of-origin are megakaryocytic and

neutrophilic.101 This was identified through cell-free chromatin

immunoprecipitation followed by sequencing (cfChIP-seq) in

individual who are healthy and those that have cancer. This

experiment showed that low sequencing depth (sWGS) can

obtain systemic and genome-wide information from blood

samples, opening a range of opportunities for diagnosis and

the interrogation of physiological and pathological processes

generating cirDNAs.101

NETs are constitutively formed in an unproblematic and unob-

trusive manner, but their formation can be elevated during the

progression of cancer,48,102 where they manifest as an inflam-

matory disease. N-qPCR or capillary electrophoresis can detect

HMW cirDNA over 1,000 bp, especially between 2,000 and

10,000 bp,50 which may originate from necrosis and NETosis

(Figure 4). However, cancer-derived cirDNA have a low fre-

quency of HMW cirDNA compared with cirDNA derived from

healthy individuals.30,50

Fragments below 140 bp, in particular below 70 bp,14,30,50,56,60

points to a difference in the cirDNA fragmentation process prob-

ably due to a difference in nuclease activity. Such phenomena

have, to date, been poorly described. Despite this, we speculate

that this fragmentation processmay bedue to the specific genetic

and epigenetic features found in the DNA ofmalignant cells. Alter-

natively, this might be explained by the tumor microenvironment,

since tumors are composedofmalignant, stromal, endothelial and

immunological cells, within a specific milieu (characterized by

ROS, hypoxia, minerals, pH, nutrients, etc.). Despite much study

needed, overall, fragmentomics has enabled the identification

that cancer derived cirDNA exhibit lower level of HMW cirDNA,

and the higher frequency of short cirDNA relative to healthy

individuals.
LIMITATIONS OF FRAGMENTOMICS TOWARD A
ROUTINE SCREENING TEST

For clinical use, cirDNA fragmentomics is a nascent approach

within the emerging field of cirDNA markers. As with any

emerging biomarker, numerous hurdles remain.

Technical/analytical
Pre-analytics

As noted, size profile differences between cirDNA derived from

tumor vs. healthy tissue are significant but small. A potential

confounder includes the potential contamination of the cirDNA

extract by blood cell genomic DNA due to improper blood sam-

ple handling and storage before plasma isolation.76 High-molec-

ular-weight DNA released from the genome of blood cells

following degradation is subject to nuclease activity, and results

in the detection of DNA fragments whose sizes correspond to

their packaging in tri- or quadri-nucleosomes (of 440–500 and

600–700 bp ranges, respectively), which are not observed

following sWGS analysis of a nearly pure plasma DNA

extract.50,56 To estimate this confounder, the proportion of frag-

ments less than 260 bp should not be below 70% of the total

cirDNA.76 Quality control may be also performed with Agilent

capillary electrophoresis or using sWGS.

Computational

While bioinformatics has considerably improved the analytical

power of sequencing/WGS approaches, unfortunately it

also presents potential limitations. First, the NGS-based meth-

odology developed for the assessment of fragmentomics

calls for the use of significant computational resources, high-

throughput NGS platforms, complex bioinformatics analysis,

and high-speed data processing; these requirements can

significantly augment the cost and time needed to produce

the analytical data. The provision/implementation of multi-

modal analysis from cirDNA is currently challenging, given its

reliance on standard high-throughput sequencing, which re-

quires specific protocols for the investigation of different clas-

ses of biomarkers. Multiple factors make the identification of

fragmentome characteristics particularly challenging, including

mapping and sequencing bias, inadequate read depth, GC

content, PCR amplification, the choice of reference genome,

and k-mer composition; these elements all can result in a

misleading result from the computational model.64,97 However,

methods of correcting and normalizing coverage and size-

derived technical artifacts have been described.103,104 In addi-

tion, computational problems can arise in the detection of spe-

cific fragmentome characteristics, such as Jagged ends or

OCRs. Since typical sequencing protocols take advantage of

several DNA repair steps to maximize the amount of analyz-

able DNA, information as to the state of the DNA ends may

be lost.

Controlled-access repositories

There is currently no publicly available centralized database with

uniformly processed cirDNA datasets. In addition, ‘‘batch ef-

fects’’ due to the quality of reads, length, andmapping approach

affect mapping locations of paired-end short-read sequencing,

and consequently the downstream computational inference

and data analysis. There has been a recent attempt to propose
Cell Genomics 3, 100242, January 11, 2023 9
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a comprehensive database to host cirDNAWGSdatasets across

different pathological conditions.105

Biological limitations
With the field of fragmentomics still in its infancy, the lack of

known biological confounders limits the implementation of

most technological approaches. One biological limitation to the

use of cirDNA as a tool for pan-cancer screening is the level of

detection sensitivity,50,106–108 irrespective of the genetic, epige-

netic, or fragmentomics approaches used. Early detection of

cancer before any signs of illness is a major objective. Therefore,

cirDNA relies on its capacity to track tumor cirDNA from small tu-

mors. Numerous studies have reported difficulties in detecting

cirDNA derived frommalignant cells in early-stage cancer, espe-

cially in tumors of low volume.6,8,109 This is, first of all, due to the

cirDNA amount being limited by the tumor size; and, second, by

the cirDNA MAF often being low, making it difficult to distinguish

cirDNA bearing genetic or epigenetic alterations relative to

the preponderance of wild-type cirDNA. Tumors larger than

10–15 mm in diameter could probably be predictably detected

by analyzing mutant cirDNA (cir-mutDNA). However, cirDNA

with a MAF below 0.1%110 is below the sensitivity level of most

omics technologies.

The practical application of sWGS-based fragmentomics is

currently limited in early-stage cancer screening. For instance,

the sensitivity of most cirDNA-based methods in detecting stage

I or II cancer has been low (<30%).56,110,111 This is only true, how-

ever, when relying solely on cir-mutDNA. Our group speculates

that cirDNA fragment size may also depend on cirDNA derived

from the tumor microenvironment, which may produce cells

with cancer-specific cirDNA fragmentation characteristics. Bio-

logical factors due to the presence of tumor cells might affect

the fragmentation of a fraction of the wild-type cirDNA.89 For

instance (1) the nuclease activity of tumor microenvironment

cells, such as the endothelial, stromal, or immune cells, might

be modified compared with normal cells; and (2) cirDNA deriving

from the degradation of cancer-induced NETs from stimulated

neutrophils at the surface or inside a tumor might have a specific

fragmentation process.

Necrosis is associated with tumor development, as are

apoptosis and phagocytosis (Figure 4), which are in turn associ-

ated with defense mechanisms. Necrosis causes the destruction

of malignant as well as tumor microenvironment cells, and of

adjacent, non-tumor tissues.39 In addition, tumorigenesis and tu-

mor progression elicit a strong immune response, and lympho-

cytic cells in the tumor microenvironment may be a source of

cirDNA release.16,62 Thus, the tumor microenvironment, espe-

cially the immune cells, are now considered a major source of

cirDNA in healthy individuals.16,101,112 Understanding these pro-

cesses could help determine the respective ratio of the propor-

tion of cirDNAderiving fromamalignant or a non-malignant tumor

microenvironment or from germinal cells. We can therefore

postulate, first, that a comparison of the mutation or variant allele

frequency (MAF or VAF) determined from tumor tissue cannot be

compared with that of cirDNA; and, second, that any comparison

of cancer patients with the same RECIST criteria with respect to

the value of the MAF or methylation level as determined from

cirDNA must be done with caution, since immune response is
10 Cell Genomics 3, 100242, January 11, 2023
specific to each patient. This highlights how the cell-of-origin

may confound analysis of cirDNA.

Strategies that rely onmachine learning classification, which is

often used to analyze the data, can be biased by the quality of the

control cohort. Thus, cautious standardization of the pre-analyt-

ical and analytical procedures for both the control cohort and the

tested subjects are required. While the growing role of machine

learning in therapeutics and diagnostics shows promise,88 it also

has limitations, such as the requirement for a large number of

samples to train, batch effects, and classification bias due to

imbalance in training dataset.95

High reproducibility of the size profiles (Figure 2) is thus impor-

tant since even a slight variation in a tested individual’s cirDNA

may distinguish a cancer-based cirDNA from the cirDNA size

profile of a healthy subject. Such reproducibility therefore needs

to be tested against individual epidemiological factors that might

potentially generate bias. Finally, while a large independent pro-

spective cohort offers advantages relative to retrospective

studies, cancer diagnostic power needs to be evaluated through

cohort cross-validation.

Mechanisms behind cirDNA fragmentomics
To date, knowledge of the mechanisms behind cirDNA fragmen-

tomics remains limited. Numerous potential factors have a direct

or indirect role in cirDNA fragmentation, including epigenetic fac-

tors, such as DNA methylation or histone modifications. The

impact of epigenetics on cirDNA fragmentation would appear

to be strong, but remains poorly delineated. Understanding the

mechanisms underlying cirDNA fragmentomics, may contribute

to our understanding of the biology of non-cancer diseases.

Currently, themost important questions arising from the obser-

vation of cirDNA fragmentation concern its origin in gene regula-

tion. Thus far, research has been done only on a small number of

genes, notably silenced genes or housekeeping genes. However,

this might lead to bias, in particular with respect to the mainte-

nanceof geneexpression levels. Furthermore, theextent towhich

gene regulation effects the cirDNA fragmentation pattern may be

impacted by physiological confounders, such as an individual’s

physical activity, drug treatment, cancer comorbidity, ethnicity,

menstruation, chronobiology, and other factors. Furthermore,

as investigated by Lo’s24,99 and Watanabe’s113 groups, over- or

underexpression of nuclease activitymay affect cirDNA fragmen-

tation. Numerous studies have reported that cancer or other pa-

thologies show an association of NET formation and cirDNA

levels, supporting that cirDNA are NET byproducts.49,100,102

Finally, cirDNA fragmentomics lacks a gold standard experi-

mental model, especially a cell culture model, which would allow

for the pooling of data obtained by various teams.

Comparing methods performance
Although evidence suggests a diagnostic potential of some char-

acteristics of fragmentomes, any comparison of their perfor-

mance tends to be difficult to assess when directly comparing

them to healthy controls. Thus, their screening power is currently

more descriptive than quantitative. The observations from repli-

cated studies cannot currently be pooled, as most observations

cannot be validated, given the variation in experimental models

used by different labs. So far, only Velculescu’s group has
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confirmed its striking earlier observations on genome-wide frag-

mentation.56,84 They used both the short:long ratio and select

copy number variation events as a feature in a principal-compo-

nent analysis prior to machine learning-based gradient boosted

trees. The establishment of a cirDNA fragmentomics database to

be used by all researchers in the fragmentomics field, as

described,105 would be invaluable. Efforts toward a better

ranking test performance are likely in the coming years and will

help to evolve fragmentomics.88,89,114

Current observational analyses to correlate cirDNA with as-

sessments of survival to evaluate cancer diagnostic perfor-

mance may result in bias, since this could vary over calendar

time and across populations.115 Relative survival estimates can

be affected by lead-time bias, due to any delays between the

diagnosis of cancer via screening and cancer diagnosis due to

symptoms.115 The impact of lead time on survival has not yet

been evaluated with reference to the development of a fragmen-

tomics assisted cancer screening test.

Limitations in the context of cancer screening
requirements
A fragmentomics-based screening test remains far from a prac-

tical reality. An ideal cancer screening test would discriminate

perfectly between individuals with and without cancer. In reality,

all screening tests sometimes give both false-negative and false-

positive results.

To adequately judge a screening test’s performance, selecting

the appropriate clinical study target population is crucial. Various

options may be taken into consideration, but all should be opted

for when evaluating a cancer screening test: healthy vs. at-risk vs.

high-risk populations, symptomatic patients vs. patients with

indeterminate physical or radiographic findings. Indeed, along

with a screening test’s results, it is necessary to conduct a blind

study and associate the results with previously diagnosed indi-

viduals and at-risk populations. As indicated above, no clearly

defined standardized control cohort has yet been established.

Any cancer screening test must have positive results confirmed

with other techniques.107 In addition, sensitivity in the detection

of early-stage cancers (stage I or II) is needed. Another obstacle

to establishing the value of a screening test’s performance is the

lack of a gold standard universal screening test. Clinical work-

flows are needed, especially in cases of a positive result, with

respect to: (1) its interpretation; (2) guiding its evaluation toward

diagnostic resolution; and (3) monitoring patients with no cancer

diagnosis. Furthermore, the question arises whether it would be

preferable to initially target specific cancer types to compare a

fragmentomics-based test with specific biomarkers currently

used in the routine management care of that cancer type.

Finally, cirDNA fragmentomics studies should be extended

with respect to non-cancer pathologies, in particular inflamma-

tory diseases, which potentially may produce cancer screening

test non-specificity.48

Conclusion
Fragmentomics constitutes a potentially powerful tool for the

assessment of cirDNA, although it remains in its infancy. While

fragmentomics may be limited in application as a stand-alone

cancer screening test, a multianalyte/multimodal approach
might provide the reliability required to exploit fragmentomics

signatures (Figure 4). A combination of the detection of mutant

cirDNA, based on the number of informative reads sequenced

across multiple patient-specific loci, and signal-enrichment ap-

proaches might be used to screen individuals for a specific

cancer type.116 The combination with an approach unrelated

to fragmentomics, such as the determination of genetic alter-

ations, cellular or protein cancer markers, or methylation-based

methods,109,111,117,118 should be effective. Methylation is a

strong candidate as a cancer screening analyte, since changes

to interactions between DNA methylation, chromatin structure,

and gene transcription can cause the repositioning of nucleo-

somes and carcinogenesis.111,119,120 In addition, advances in

cirDNA quantification, identification of the structure- or origin-

based indicators, as determined by advanced qPCR methods,

might be added to an omics approach.30,50,89,121 Since physio-

logical changes, such as tissue injury in human disease, could

individually impact cirDNA fragmentation, fragmentomics could

also guide clinicians during patient follow-up.

We speculate that fragmentomics would help in themonitoring

of cancer patient treatment following early detection of the dis-

ease.Apart fromcirDNAobtained fromthecirculation/bloodsam-

ples, we foresee the possibility of applying fragmentomics to

extracellular DNA derived from other sources, depending on the

specificcancer inquestion: urine26 for prostateorbladder cancer,

LCR for brain cancer, pleural effusion supernatant or saliva for

lung cancer, for example.122Given that the fieldof fragmentomics

remains at an early stage, many significant issues must be

resolved before envisaging its clinical implementation. Neverthe-

less, current technological innovations promise a strategy with

strong potential, and we are convinced that recent advances in

this field will help to overcome most of its current limitations.
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