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Ovarian cancer is the leading cause of death among gynecological neoplasms, with an
estimated 14,000 deaths in 2019. First-line treatment options center around a taxane and
platinum-based chemotherapy regimen. However, many patients often have recurrence
due to late stage diagnoses and acquired chemo-resistance. Recent approvals for
bevacizumab and poly (ADP-ribose) polymerase inhibitors have improved treatment
options but effective treatments are still limited in the recurrent setting. Immunotherapy
has seen significant success in hematological and solid malignancies. However,
effectiveness has been limited in ovarian cancer. This may be due to a highly
immunosuppressive tumor microenvironment and a lack of tumor-specific antigens.
Certain immune cell subsets, such as regulatory T cells and tumor-associated
macrophages, have been implicated in ovarian cancer. Consequently, therapies
augmenting the immune response, such as immune checkpoint inhibitors and dendritic
cell vaccines, may be unable to properly enact their effector functions. A better
understanding of the various interactions among immune cell subsets in the peritoneal
microenvironment is necessary to develop efficacious therapies. This review will discuss
various cell subsets in the ovarian tumor microenvironment, current immunotherapy
modalities to target or augment these immune subsets, and treatment challenges.
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INTRODUCTION

Ovarian cancer presents a unique tumor microenvironment (TME) with its predilection to
metastasize in the peritoneal cavity and generate malignant ascites. The cancer spreads by direct
shedding into the ascites and movement throughout the peritoneal cavity. Common sites of tumor
deposits are on the mesenteric and serosal surfaces of the abdominal organs. The immune
microenvironment in this location is characterized by interactions among the tumor cells,
myeloid and lymphoid immune cells, as well as fibroblasts and adipocytes in the peritoneum that
promote tumor growth. Growth factors, such as fibroblast growth factor and vascular endothelial
growth factor (VEGF), promote angiogenesis and direct fibroblast differentiation towards cancer-
associated fibroblasts that promote metastases (1). Adipocytes in the omentum can also provide
energy for tumor growth and metastases (2). Little is known about how these cells interact with
immune cells and if they promote immunosuppression. Additional information is therefore needed
about cellular interactions and trafficking in the peritoneal TME in order to better develop
immunotherapies for ovarian cancer.
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Advances in immunotherapy, such as immune checkpoint
inhibitors and chimeric antigen-receptor T cells (CAR-T), have
demonstrated efficacy in various cancers. However, performance
in ovarian cancer patients has remained poor. Multiple studies
have demonstrated that the highly immunosuppressive TME and
low mutational burden of ovarian cancer is a barrier to effective
treatment (3). Inhibitiory cells in the TME, such as regulatory T
and B cells, myeloid-derived suppressor cells (MDSCs), and
tumor-associated macrophages (TAMs) inevitably contribute
to tumor growth through a milieu of inhibitory effects (4–7).
In this review, we discuss key subsets of adaptive and innate
immunity that play a role in the ovarian TME and current efforts
to target or augment these populations (Figure 1).
ADAPTIVE IMMUNITY

Tumor-Infiltrating T Lymphocytes
T cells play a significant role in anti-tumor processes by
recognizing tumor neoantigens and facilitating and directly
inducing apoptosis of tumor cells. CD3+ tumor-infiltrating T
lymphocytes (TILs) were shown to be correlated with improved
clinical outcome in ovarian cancer (8). Of 186 tumor samples,
102 samples were identified to have CD3+ cells within the tumor
and 72 did not have any. Between these two groups, the 5-year
overall survival (OS) for patients with TILs was 38% while those
without TILs was 4.5%, suggesting a beneficial effect of TILs in
women treated with standard chemotherapy. Interestingly, the
absence of TILs correlated with increased levels of VEGF.

TILs, CD3+, can be further divided into CD4+ and CD8+ cells.
In brief, CD4+ T cells, also known as helper T cells, recognize
MHC class II and shape the adaptive immune response while
Frontiers in Oncology | www.frontiersin.org 2
CD8+ T, also known as cytotoxic T cells, recognize MHC class I
and mediate direct killing Studies looking at patient survival have
shown increased CD8+ T cells within the tumor predict better
prognoses (9). An increase in intra-tumoral CD4+ T cells have
also shown to be correlated with increased survival (10).

ACT/CAR-T
To boost the tumor-specific T cell response, adoptive cell therapy
(ACT) has been used to increase the number of T cells that can
recognize a tumor-associated antigen (TAA). ACT requires
apheresis of a patient’s T cells and expanding them ex vivo to
suitable levels after stimulation with lysed tumor cells. Recent
advances in autologous therapy now include genetically
modifying the T-cell receptor (TCR) or generating chimeric
antigen receptor T-cells (CAR-T) to engineer a stronger, more
precise, immune response to pre-determined tumor neoantigens (11).

Briefly, CAR-T cells are T cells that have been transfected to
express a transmembrane protein with 1) a single chain fraction
variable, also known as the antigen-recognizing domain, and 2) a
TCR zeta chain, allowing for intracellular signaling. Since then,
new generations have modified the CAR for improved immune
responses. Second generation CAR-Ts added in either CD28 or
4-1BB as a costimulatory gene, third generation CAR-Ts allowed
for two downstream signaling domains and the possibility of
using OX40, and fourth generation CAR-Ts further improved
effector functions by giving the receptor the ability to induce
cytokines, such as IL-12 (12).

ACT and CAR-T have shown great promise in hematological
tumors. However, they have demonstrated poor efficacy in
solid tumors (13, 14). Part of this has been attributed to a lack
of tumor specific antigens, a highly immunosuppressive TME,
and a lack of persistence in the tumor. Some CAR-Ts that have
FIGURE 1 | Driving Immune Responses in the Ovarian Tumor Microenvironment. Immune cells are present intratumorally and in the ovarian tumor
microenvironment. Strategies discussed throughout the paper have been summarized above the corresponding cell type. Attempts to improve T cell functionality in
the ovarian TME include Immune checkpoint inhibitors, such as anti-PD-1, anti-PD-L1, and anti-CTLA4, which have been used in clinical trials to reduce inhibitory
signaling. Similarly, T cells with chimeric antigen receptors (CAR-Ts) against folate receptor-alpha (FRa), MUC-16, and mesothelin have been tested in clinical trials in
order to recognize tumor-associated antigens. CAR-Ts have been tested in vitro against novel antigens. CAR-T: Chimeric antigen receptor T-cell. ICI, Immune
checkpoint inhibitor; CAR-NK, Chimeric antigen receptor-Natural Killer cell; Mj, Macrophage; I.p., Intraperitoneal; GM-CSF, Granulocyte-monocyte colony stimulating
factor; ApoE, ApolipoproteinE; MDSC, Myeloid-derived suppressor cell. Created with Biorender.com.
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made it to Phase 1 clinical trials for ovarian cancer include those
targeting folate receptor, MUC-16, and mesothelin (Figure 1).
Other examples in pre-clinical testing are also discussed.

Folate Receptor
Folate receptor-a (FRa) is one of a number of high affinity
receptors that facilitates the uptake of folate into the cell (15).
While it is rarely found in normal tissues, its overexpression has
been identified in multiple malignancies, including ovarian
cancer (16). When overexpressed in ovarian cancer, FRa has
been correlated with a poor response to chemotherapy (17–20).
Interestingly, correlation with survival has been inconclusive.
Studies on FR overexpression have ranged from negatively
prognostic to having no impact on survival to even an
improvement in survival (19–22). Additional studies will be
needed to determine the prognostic value of FRa.

In the first CAR-T treatment against FR, 14 patients with
recurrent epithelial FR+ ovarian cancer were enrolled. Cohort 1
was given interleukin-2 (IL-2) and generic T cells transfected
with a first generation anti-FR CAR while Cohort 2 was given
T cells that were endogenously specific to FR (23). Cohort 1 was
given 3 × 109 T cells, with possible dose escalation to 1 × 1010 and
3 to 5 × 1010 cells, with a dose of 720,000 IU/kg IL-2 each cycle.
Cohort 2 was given 2 × 109 to 4 × 109 T cells. Most common
Grade 1-2 drug-related side effects in Cohort 1 were fatigue and
nausea compared to erythema at the site of injection for Cohort
2. Cohort 1 also experienced some Grade 3–4 side-effects, such as
hypotension and dyspnea, that were attributed to the addition of
IL-2. Unfortunately, no reduction in tumor burden or
improvement in survival was seen in either cohort. A noted
issue was the lack of persistence of these improved autologous T
cells in circulation.

As a means of increasing persistence, investigators have
added the co-stimulatory molecule CD137, or 4-1BB, to the
CAR in order to improve cytokine secretion and the antitumor
response in vivo (24). Intravenous (i.v.) injection of these CAR-
Ts into NSG mice, inoculated subcutaneously with FR+ SKOV3,
showed improved antitumor effects and reduced tumor volume.
These T cells also showed improved persistence in circulating
blood. Upon waiting 30 days for metastases in their model,
only mice treated with the CAR-T cells were devoid of
malignant ascites.

Although a thorough discussion is outside the scope of this
review, a number of monoclonal antibodies (mAbs) have also
been designed to target FR expression in ovarian cancer. In brief,
farletuzumab was evaluated in a Phase 3 clinical trial, but did not
reach the primary endpoint of PFS. Mirvetuximab soravtansine,
an anti-FR coupled to tubulin-targeting agent DM4, was shown
to be well-tolerated when given as a monotherapy or with
bevacizumab (25–27).

MUC-16
Cancer antigen 125 (CA-125) is cleaved from the cell surface and
is commonly used as a circulating serum marker for ovarian
cancer relapse. MUC-16 is the remnant of the protein that is
retained on the cancer cell membrane after cleavage. It is known
that there is some overlap in MUC-16 expression with derivates
Frontiers in Oncology | www.frontiersin.org 3
of the fetal coelomic epithelia, such as the uterus, fallopian tubes,
and the trachea (28).

Chekmosova et al. demonstrated that second generation
CAR-Ts against MUC-16 were able to lyse MUC-16+ cells in
vitro (29). These CAR-T cells were subsequently injected into
SCID mice, inoculated i.p. or i.v. with MUC-16+ OVCAR3, and
showed significant survival improvement when compared to
untreated mice or those given anti-CD19 CAR-Ts. Later
improvement to MUC-16 specific CAR-T cells included the
ability to secrete IL-12 and an “elimination” gene to improve
immune signaling and minimalize off-target effects (30). This
“elimination” gene is a truncated portion of epidermal growth
factor receptor (EGFR) that does not signal, but retains the
ability to be bound by cetuximab and induce antibody-
dependent cellular cytotoxicity or complement-mediated
cytotoxicity against cells expressing this chimeric receptor.
Mice inoculated i.p. with SKOV3 and treated with this novel
CAR-T showed enhanced survival compared to CAR-Ts without
the IL-12 domain. Interestingly, i.p. administration was found to
be more effective than an i.v. route. A phase 1 clinical trial was
proposed to test its efficacy in recurrent platinum-resistant
ovarian cancer (31).

Similar to FR, mAbs have also been developed against CA-
125. One of the leading antibodies, oregovomab, enhanced anti-
cancer activity when given with carboplatin and paclitaxel,
although oregovomab did not show clinical efficacy when
treating patients with ovarian cancer as a monotherapy (32,
33). The combination significantly improved PFS to 41.8
months, when given front-line, compared to 12.2 months for
patients given standard carboplatin-paclitaxel (34). Interestingly,
patients who had better survival outcomes had lower levels of
HLA-DR-CD14+ MDSCs and a lower neutrophil-and-monocyte
to lymphocyte ratio (35).

Mesothelin
Mesothelin is a surface antigen found overexpressed on
malignant mesothelioma as well as pancreatic, ovarian, and
lung cancers (36). However, it is also found expressed at low
levels on other mesothelial surfaces, such as the pleura,
pericardium, and peritoneum.

In ovarian cancer, a mesothelin-specific CAR-T was
developed using mRNA transfection in order to minimalize
off-target toxicity due to CAR-T persistence (37, 38). Five
patients with ovarian cancer were inoculated i.v. with second-
generation CARs against mesothelin in a phase 1 clinical trial
(39). Up to 1 to 3*108/m2 CAR-T cells were given with or
without lymphodepletion by 1.5 g/m2 cyclophosphamide. Only
one patient demonstrated a sizable reduction in tumor burden,
but did not qualify as a partial reduction per formal criteria
for objective response. This may have been due to a lack of
persistence of CAR-Ts by day 28 in most patients and the single-
chain variable fraction being murine-based. There were also no
significant changes in cytokine levels during the first month
post-infusion. The most common low-grade adverse events
(AEs) included fatigue, nausea, and emesis, while development
of Grade 3 ascites was the most common high-grade AE.
A similar Phase 1 trial is evaluating MCY-M11, a mRNA-based
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anti-mesothelin therapy, when given intraperitoneally (i.p.) for
platinum-resistant OC patients, with or without cyclophosphamide
(NCT03608618). Another clinical trial evaluating anti-mesothelin
CAR-T cells, but generated using a lentiviral delivery system, is
ongoing (NCT03054298).

Recently, Hassan et al. published the first in-human clinical
trial evaluating anetumab, an anti-mesothelin mAb in a Phase 1
clinical trial (40). Sixty-four patients were enrolled with
ovarian cancer, and of those, they noted 1 CR, 4 PRs, and 29
patients with SD. Interestingly, all patients who responded
had high mesothelin expression, defined as ≥60% by
immunohistochemistry staining. A Phase 1b clinical trial is
currently ongoing (NCT02751918).

Other Tumor-Associated Antigens
Other surface antigens have been identified in pre-clinical
studies as possible neoantigens with anti-tumor activity and
high specificity for ovarian cancer. Hong et al. showed that L1-
CAM was overexpressed in a wide panel of ovarian samples
(41). Administration of second-generation anti-L1-CAM CAR-
Ts, to NSG mice, inoculated i.p. with SK-OV3, improved
median survival time to 104.5 days when compared to mock
(50 days) or anti-CD19 CAR-T cells (56.5 days). Similar tissue
expression, in vitro, and in vivo studies can be seen with 5T4,
B7-H3, TAG-72, and MISIIR (42–45). Interestingly, Du et al.
demonstrated the addition of 4-1BB to the anti-B7-H3 CAR
mediated lower expression of PD-1 in transfected CD8+ T cells,
possibly enabling them to better enact effector functions. In this
pre-clinical study, i.p. administration of CAR-T cells was
shown to have improved survival benefit when compared to
an i.v. route.

Immune Checkpoint Inhibitors
Other mechanisms of promoting immune cell activity are
immune checkpoint inhibitors that target surface proteins such
as cytotoxic T-lymphocyte-associated protein 4 (CTLA4),
programmed cell death protein 1 (PD-1), and its ligand (PD-
L1; Figure 1). These proteins normally function to prevent
autoimmunity, but their upregulation on a tumor prevents an
appropriate immune response. CTLA-4 competes with B7
(CD80) in binding to CD28 on T cells, inducing a suppressive
phenotype rather than activating. PD-1 and PD-L1 belong to the
CD28 and B7 family of receptors on T cells, respectively, and
have been shown to induce a suppressive phenotype in
peripheral tissues.

Drugs targeting CTLA-4, such as ipilimumab, have shown
great success in other cancers. In unresectable Grade 3 and 4
melanoma, ipilimumab improved 1-year survival from 25% to
46% when used in combination with a gp-100 peptide vaccine,
granting it FDA approval in March 2011. In a phase 1 clinical
trial with nine Stage IV ovarian cancer patients, three instances
of stable disease (SD) were observed (46). Multiple toxicities
occurred, including two cases of Grade 3 inflammation
in the GI tract, one case of Sweet ’s syndrome, and
multiple dermatological reactions. A phase 2 clinical trial was
later done in patients with recurrent platinum-sensitive ovarian
Frontiers in Oncology | www.frontiersin.org 4
cancer (NCT01611558). Patients received 10 mg/kg of
ipilimumab once every 3 weeks for four doses then once
every 12 weeks. The overall response rate (ORR) was low at
10.3%. 18 patients experienced drug-related severe AEs, the
most common being small intestinal obstruction, diarrhea,
pneumonitis, and adrenal insufficiency.

Trials combining ipilimumab with other treatment regiments
have also been conducted. Recently, Zamarin et al. published a
Phase 2 trial comparing nivolumab to nivolumab and
ipilimumab for recurrent ovarian cancer. One hundred patients
were either given 3 mg/kg nivolumab every 2 weeks or 3 mg/kg
nivolumab plus 1 mg/kg ipilimumab every 3 weeks (47). In the
nivolumab monotherapy group, 3 complete responses (CRs), 3
partial responses (PRs), and 14 patients with SD were noted
compared to the 3 CRs, 16 PRs, and 20 patients with SD in the
combination group. Median progression-free survival (PFS) was
2 and 3.9 months while median OS was 21.8 and 28.1 months
for the monotherapy and combination therapy, respectively.
There were no treatment-related deaths with the most
common grade 3 or higher AEs being asymptomatic elevation
of pancreatic and liver enzymes, anemia, colitis, and diarrhea. A
number of other ongoing trials are evaluating anti-CTLA-4
antibodies in combination with chemotherapy, poly (ADP-ribose)
polymerase inhibitors (PARPi), and other immunotherapies
(Table 1).

Anti-PD-1 therapy has also had some success in treating
ovarian cancer. In a phase two trial, 20 patients with platinum-
resistant recurrent ovarian cancer were treated with either 1 or 3
mg/kg single-dose nivolumab every 2 weeks for one year (48). In
the 1 mg/kg cohort, two patients had a CR and four had SD while
in the 3 mg/kg cohort, one patient had a PR while two had SD.
Median OS was 20 months and PFS was 3.5 months. Low-grade
AEs included mild fever, rash, arthralgia, elevated liver function
tests (LFTs), and lymphocytopenia. Two patients experienced
Grade 3 disorientation and gait disorder or Grade 3 fever and a
deep vein thrombosis, respectively. Notably, two patients
developed a PR to maintenance chemotherapy post-treatment
with nivolumab (49). An open-label, randomized clinical trial is
ongoing in Japan.

One Phase 2 study has been published evaluating the
combination of nivolumab and bevacizumab in relapsed
ovarian cancer (50). Thirty-eight women with relapsed OC
were enrolled and treated with 10 mg/kg bevacizumab and 240
mg nivolumab once every 2 weeks. In platinum-sensitive
patients, there were eight PRs and nine patients with SD
compared to 3 PRs and 10 patients with SD in the platinum-
resistant group. Median PFS was 12.1 months and 7.7 months for
platinum-sensitive and -resistant patients, respectively. Grade 3
AEs reported were hypertension, myalgia, arthralgia, and
elevations in LFTs and serum amylase. Two patients
experienced Grade 4 increases in serum lipase levels as a result
of treatment. Like anti-CTLA-4 compounds, several ongoing
trials are evaluating combinations of nivolumab with
chemotherapy, PARPi, or vaccines (Table 1).

Pembrolizumab, another anti-PD-1 agent, has also been
evaluated as a single agent. In a phase 1b trial, 26 patients
January 2021 | Volume 10 | Article 604084

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ning et al. Ovarian Cancer TME
with advanced metastatic ovarian cancer received 10 mg/kg
every 2 weeks for up to two years (51). ORR was documented at
11.5%, with one CR and two PRs, and seven patients
experienced SD. Median PFS was 1.9 months while OS was
13.8 months. Drug-related AEs occurred in 19 patients with
one patient experiencing Grade 3 increases in transaminase
levels. Eight immune-related AEs occurred where the only
Grade 3 AE was pancreatitis. Later, Keynote-100 looked at
pembrolizumab in 396 patients with advanced recurrent
ovarian cancer. Two cohorts were formed based on prior
lines of treatment (52). Cohort A (285 patients) had one to
three lines of prior treatment while cohort B (91 patients) had
four to six. Patients received 200 mg IV every 3 weeks. ORR in
cohorts A and B was 7.4% and 9.9%, respectively. Median PFS
was 2.1 months for both cohorts while median OS was not
reached in cohort A and 17.6 months in cohort B. The most
common low-grade treatment-related AE was fatigue while the
most common immune-related AE was hypothyroidism. The
most common Grade 3 immune-related AEs were skin
reactions and colitis. More severely, two patient deaths were
attributed to treatment, one due to hyperaldosteronism and the
other to Stevens-Johnson syndrome. These recurring AEs led to
the need for early recognition and treatment to prevent
devastating complications from immune checkpoint inhibitor
therapy (53).

Recently, a single-arm phase I/II trial evaluated niraparib in
combination with pembrolizumab in patients with recurrent
platinum-resistant OC (54). 62 patients with OC were enrolled
between Phase I and II. ORR was 18% with 3 CRs and 8
confirmed PRs. Another 28 patients were noted to have SD.
Frontiers in Oncology | www.frontiersin.org 5
Median PFS was 3.4 months. Most common low-grade AEs
were fatigue, nausea, anemia, and constipation while high-
grade AEs were noted to be anemia and thrombocytopenia.
Extensive ongoing work is exploring combination therapies
with pembrolizumab.

Durvalumab, another anti-PD-1 compound, has been tested
in combination with PARPi in both Phase I and II trials. In a
Phase 1 trial, seven patients with ovarian cancer, along with one
endometrial and triple negative breast cancer, were treated
with olaparib and cediranib, a VEGFR1-3 inhibitor (55).
ORR was 44% with four partial responses and three patients
with SD. Most common low-grade AEs were fatigue, nausea,
and increased LFTs. Five patients experienced grade 3
hematological AEs, three with lymphopenia and two with
anemia). In a subsequent Phase 2, 35 OC patients were
enrolled in a single-center study (56). ORR was noted to be
14% with five patients achieving a partial response while 20
patients had SD. Overall, median PFS was noted to be 3.9
months. Like the Phase 1, hematologic toxicity, mainly anemia,
was the most common high-grade AE, affecting eleven patients.
The study also found significant increases in VEGFR3 were
correlated with worse PFS. Of note, when evaluating
durvalumab and olaparib in PARPi-naïve patients with
platinum-sensitive and mutated BRCA in a Phase II trial, a
63% RR was noted, with six patients achieving a CR and
fourteen achieving PRs (57). The most common grade three
or higher AEs were anemia, increased lipase and amylase,
and neutropenia.

Avelumab, an anti-PD-L1 therapy, though not directly
inhibiting the suppression of T cells, plays a role in preventing
TABLE 1 | Ongoing clinical trials of immune checkpoint inhibitors in women with ovarian cancer.

Intervention NCT/Author Phase Enrollment Primary
Endpoint

Anti-CTLA4
Tremelimumab + Olaparib NCT02571725 1/2 ~50 patients with BRCA1/2-mutant ROC RP2D, ORR
Tremelimumab + Olaparib NCT04034927 2 ~170 RPS OC

Anti-PD-1
Nivolumab ± Ipilimumab NCT03355976 2 ~62 patients with ovarian or renal cell carcinoma ORR
Intraperitoneal Nivolumab ± Ipiliumumab NCT03508570 1b ~48 patients with recurrent/high-grade gynecologic cancer with peritoneal

metastases
RP2D

Nivolumab ± Ipiliumumab + CarboTaxol NCT03245892 1 ~40 patients with High Grade Serous Ovarian, Fallopian Tube, or Primary
Peritoneal Cancer

DLT

Nivolumab + Bevacizumab ± Rucaparib NCT02873962 2 ~76 patients with ROC ORR
Nivolumab + Poly-ICIC (a viral mimic) NCT04024878 1 ~30 patients with OC Safety and

Activity
Nivolumab + WT1 vaccine NCT02737787 1 ~11 patients with ROC DLT
Durvalumab ± Tremelimumab +
CarboTaxol

NCT03249142 1/2 ~40 patients with Ovarian, Fallopian Tube or Primary Peritoneal
Adenocarcinoma

DLT

Durvalumab + Tremelimumab +
CarboTaxol

NCT03899610 2 ~24 patients with treatment-naïve clinical stage IIIC/IV ovarian cancer PFS

Sequential vs. combination Durvalumab +
Tremelimumab

NCT03026062 2 ~100 patients with RPR OC irPFS

Olaparib + Tremelimumab + Durvalumab NCT02953457 1/2 ~36 patients BRCA1/2-mutant ROC DLT and PFS
Anti-PD-L1
Avelumab ± PLD NCT02580058 3 566 patients with RPR OC OS and PFS
January 2021 | Volume 10
RP2D, Recommended phase 2 dose; ORR, Overall response rate; RPS, recurrent platinum-sensitive; OC, ovarian cancer; PFS, Progression free survival; DLT, dose-limiting toxicity; irPFS,
immune-related progression free survival; CarboTaxol, carboplatin and paclitaxel; ROC, recurrent ovarian cancer; PLD, pegylated liposomal doxorubicin; OS, overall survival.
| Article 604084

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ning et al. Ovarian Cancer TME
the inactivation of T cells. In a phase 1b trial, 125 ovarian cancer
patients with Stage III or IV disease received 10 mg/kg avelumab
every 2 weeks (58). Confirmed objective response was seen in only
twelve patients with one CR and eleven PRs. Median OS was 11.2
months. The most common treatment-related AEs were fatigue,
diarrhea, and nausea while the most common high-grade was an
increase in lipase-levels. Low grade immune-related AEs mainly
were hypothyroidism while three patients separately experienced
high-grade colitis, type 2 diabetes, or myositis. Ongoing
clinical trials are evaluating avelumab with chemotherapy and
PARPi (Table 1).

Regulatory T Cells
Discovered in 1995, Tregs were originally shown to be
involved in immune homeostasis, preventing an over-
activation of the immune system towards self (59). They
have been characterized to express CD4, CD25, and, most
notably, FoxP3 (4). Tregs enact their function by suppressing
activation of immune cells, inducing cell death of effector
cells, and secreting anti-inflammatory cytokines, such as TGF-
beta and IL-10 (60). Since their discovery, Tregs have been
shown to be involved in a number of disease processes,
including cancer.

In ovarian cancer, Tregs have been shown to be an indicator
of poor prognosis. Curiel et al. showed that in 104 patients,
increased numbers of intratumoral Tregs predicted poor survival
(61). Absolute Treg counts may overlook certain cellular
interactions, because in a study of 117 patients, intraepithelial
Treg counts did not correlate with a significant difference in
survival (9). Instead, increased ratios of CD8+ T cells to
CD4+CD25+FoxP3+ T cells were shown to significantly
associate with improved survival. Later studies also showed
that a high CD8+/Treg ratio as well as CD4+/Treg ratio were
associated with better survival outcomes (62).

Treg function can also be influenced by the ovarian TME.
TAMs and tumor cells have been shown to increase levels of
CCL22, which aid in Treg recruitment to the ovarian TME
(61). In a set of 75 ovarian cancer patients, CCL22 levels were
shown to be elevated in the peritoneal fluid, possibly
contributing to Treg recruitment and cancer progression
(63). Tregs have also been shown to be highly activated
when found intratumorally in ovarian cancer. CD45RA-

FoxP3hi effector Tregs expressed significantly higher levels
of 4-1BB, ICOS, OX40, and CTLA4 compared to CD45RA-

FoxP3lo effector T cells (64). Tregs expressing high PD-1 and
4-1BB were subsequently both more responsive to stimulation
by anti-CD3/anti-CD28 and were able to better suppress
T cells in vitro.

One method of reducing Treg effector functions is to directly
deplete Tregs. Low-dose cyclophosphamide has been tested for
use in conjunction with cancer vaccines due to its ability to
deplete FoxP3 Tregs (65). However, Tregs treated with low-dose
cyclophosphamide were unable to suppress the proliferation of
CD4+ and CD8+ T cells in vitro. When tested in ovarian cancer,
a combination therapy of low-dose cyclophosphamide with a
p53-SLP vaccine did not directly suppress either Treg counts or
Frontiers in Oncology | www.frontiersin.org 6
functionality (66). However, overall T cell counts were higher
and persisted longer in the combination group when compared
to vaccination alone. Similarly, a phase 1/2 clinical trial found a
single i.v. dose of cyclophosphamide had no effect on circulating
Tregs (67).

Regulatory B Cells
In ovarian cancer, there is evidence infiltrating B cells can be
either good or bad prognostic indicators. Milne et al. found that
intraepithelial CD20+ B cells, when present in patients optimally
debulked from high-grade serous OC, positively correlated with
disease-specific survival (68). Patients who had residual disease
or another histological subtype, however, did not demonstrate
any significant survival benefit with infiltrating CD20+ B cells. In
a follow-up study, tumor-infiltrating CD20+ cells were found to
have responded to antigen, having undergone class switching,
somatic hypermutation, and clonal expansion (69). These CD20
+ B cells, when found co-localized with CD8+ T cells in tumor,
also correlated with improved patient survival compared to
tumor-infiltrating T cells alone. In an independent study,
Santoiemma et al. also found tumor-infiltrating CD20+ B cells
to positively correlate with OS (70). Later, these CD20+ B cells, in
addition to CD138+ plasma cells and CD4+ TILs, were found to
co-localize with CD8+ T cells in tertiary lymphoid structures and
indicate better prognosis (71). Interestingly, Kroeger et al. also
found tumor-infi ltrating plasma cells, in high-grade
serous ovarian cancer, to express IgG and CXCR3, the latter
being normally expressed under immuno-stimulatory
environments (72).

Contrary to this finding, Lundgren et al. found CD138+ plasma
cells to positively correlate with tumor grade and negatively with
OS (73). Furthermore, they found CD20+ B cells only correlated
with tumor grade and had no significant correlation with survival.
Other studies have also shown infiltrating B cells to be detrimental.
Yang et al. showed that high levels of CD19+ B cells in the
omentum correlated with poor survival (74). Ultimately,
additional phenotype characterization of tumor-infiltrating B
cells needs to be completed to determine their impact in the
TME and patient outcomes.

Recently, a subset of B cells known as B regulatory cells has
been found in ovarian cancer patients (75). More specifically,
IL-10+ B cells were increased in ascites compared to peripheral
blood. These B cells were inversely correlated with the number
of CD8+ T cells in ascites and positively correlated with
FoxP3+CD4+ T cells. Ex vivo studies showed these B cells
were capable of suppressing IFN gamma secretion by T cells
even under stimulation by anti-CD28. Finally, accumulation of
these cells in the ascites correlated with more late-stage and
aggressive disease. In models of spontaneous ovarian cancer,
increased CD25+ pre-B-like cells were found intratumorally
(76). These pre-B-like cells were shown in breast cancer models
to develop into tBregs (CD19+ CD25HiCD69Hi) and promote
metastases. There are no modalities currently available that
specifically target Bregs. Additional research is necessary to
determine which markers best define this subset and how they
function in ovarian cancer.
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INNATE IMMUNITY

Despite recent advances in the use of checkpoint inhibitors
and augmenting the T cell response, attempts at augmenting
adaptive immunity have been unsuccessful in treating
ovarian cancer patients. Recent efforts have shifted to
include exploiting the innate immune response (77).
Myeloid cells of the innate immune system, such as
monocytes, classical macrophages, natural killer cells, and
dendritic cells, all play key roles in promoting an effective
adaptive response; the lack of accounting for these
interactions may be where current immunotherapies fall
short. Alternatively, cell types such as TAMs and MDSCs
induce a highly immuno-suppressive TME and may be
targets of future therapeutic strategies (6, 7).

Dendritic Cells
As the main mediator of responses between the innate and
adaptive immune response, conventional human DCs (cDCs,
CD141+, or CD1c+), are critical for the adaptive response by
up-taking antigen and skewing helper T cell differentiation
(78). However, cancer cells subvert proper antigen
presentation by down-regulating MHC, reducing TAAs on
their surface, and can be suppressed by numerous cytokines
(79). DCs can also induce T cell suppression themselves
through PD-1 and CD277 in the ovarian cancer TME (80,
81). Human plasmacytoid dendritic cells (pDCs, CD303+)
increase immunosuppression in the ovarian cancer TME
through upregulation of Tregs (82, 83). Furthermore,
tumor-associated pDCs have been correlated with poor
prognosis and early relapse for ovarian cancer patients,
possibly due to their influence on CD4+ T cells to produce
increased IL-10 (84).

Multiple clinical trials have looked at the benefit of utilizing
DCs, obtained through leukapheresis or derived from
monocytes, that are pulsed with specific antigens as
immunotherapy. In one trial, autologous DCs were pulsed with
Her2/neu, human telomerase reverse transcriptase, and pan-DR
epitope with or without a single-dose of cyclophosphamide. Five
of eleven patients had no evidence of disease at the time of
publication with only one patient dying of disease within 36
months after the initial vaccination (67). No grade 3 or 4
treatment-related AEs were reported. Two studies introduced
IL-2 in conjunction with DC treatment. Rahma et al. evaluated
the optimal mechanism of peptide delivery to DCs, with 6 OC
patients receiving DCs pulsed ex vivo with wild-type p53 peptide
264-272 (85). PFS and median OS was found to be 8.7 and 29.6
months, respectively, comparable to those patients receiving
subcutaneous injections of solely peptide. Notably, all Grade 3
or 4 AEs occurred during cycles of IL-2 administration—the
most common being fatigue, lymphopenia, and elevated liver
enzymes. IL-2 administration also led to increases in Tregs. In
another study by Baek et al., 10 patients with minimal residual
disease were treated with DCs pulsed with keyhole limpet
haemocyanin (KLH) and IL-2 (86). KLH has previously been
used as a surrogate marker for DC vaccination. Three patients
Frontiers in Oncology | www.frontiersin.org 7
underwent complete remission with the most common AEs
being flu-like symptoms, attributed to IL-2 administration.
Contrastingly, this study found treatment decreased CD4
+CD25+ T cells, albeit they did not characterize FoxP3
expression. A recent Phase I/II study enrolled three ovarian
cancer patients and treated them with DCs pulsed with Wilms’
tumor protein 1 (87). One patient reached SD by RECIST criteria
while the other two had progressive disease. No Grade 3 or
greater AEs were reported.

Alternatively, DCs could be pulsed with whole tumor lysate
as a means of eliciting a response to a variety of neoantigens as
opposed to a single one. In a phase I study with six ovarian
cancer patients, autologous DCs were pulsed with autologous
tumor lysate and (KLH) (84). No grade 2 or higher AEs
reported. Most common Grade 1 AEs included pain, fatigue,
nausea, and abdominal pain. In another clinical study, 25
immunotherapy-naïve OC patients were treated with either a)
intranodal injections of DCs pulsed with oxidized whole tumor
lysate, b) whole-tumor lysate pulsed DCs with bevacizumab or
c) the prior combination with cyclophosphamide (88). No
toxicities greater than Grade 2 were reported due to the
treatment. The most common Grade 1 AEs overall were pain,
fatigue, nausea and abdominal pain. There were two PRs and
thirteen patients had SD. Of note, patients without
intratumoral T cells reactive for autologous tumor had poorer
outcomes, again suggesting the success of DC vaccinations
relies on the ability to generate a specific T cell response.
Interestingly, the addition of cyclophosphamide improved
both immune response, as measured by IFN-gamma release,
and ultimately patient survival.

But despite some success of these DC vaccines, limitations
include the ability to generate a consistent immuno-stimulatory
effect and the difficulty of vaccine production (89). In an
attempt to generate a more efficient T-cell response in a
preclinical setting, Mirandola et al. treated DCs infected with
a recombinant adeno-associated virus (rAAV) containing
cancer/testis antigen mSP17 with a p38 MAPK inhibitor (90).
A p38 inhibitor was used due to previous studies showing its use
improving monocyte-derived DC survival and decreasing Treg
production (91, 92). Murine DCs were infected with rAAV-
mSP17 and treated with a p38 MAPK inhibitor. Survival analyses
showed that when C57BL/6 mice, injected i.p. with 1 × 106 ID8
cells, were treated with DCs plus p38 inhibitor, 95% of mice
survived up to 300 days, as compared to those receiving solely
DCs surviving up to 98 days. Furthermore, the addition of p38
inhibitor increased lymphocyte trafficking to the tumor. When
using human DCs, the addition of p38 inhibitor significantly
decreased PD-L1 expression, reversing one contributor to the
highly immunosuppressive TME. In a separate attempt to
alternatively produce DCs for use in OC patients, Cheng et al.
developed “mini DCs” through the use of cell membrane coating
nanotechnology, i.e., fusing cell membranes onto synthetic
polymer cores (93). To traffic tumor antigens to the membrane
prior to fusion, ID8 murine cells were lysed and pulsed onto bone
marrow-derived DCs. Additionally, IL-2 was loaded into the
nanoparticle prior to emulsion. Mice inoculated with ID8 cells
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subcutaneously showed significant growth reduction when
treated with the mini DCs compared to normal DCs and
empty nanoparticles. Increased CD8+ T cell infiltration and
decreased Tregs were also observed intratumorally in the mini
DC treated mice. When evaluating the effect of mini DCs on
metastases, mice injected i.p. with ID8 cells and treated with mini
DCs had significantly fewer nodules on the peritoneal wall
when compared to vehicle or those treated with normal
DCs. No changes in body weight or liver and kidney functions
were observed in mice treated with mini DCs, indicating
good biocompatibility.

Natural Killer Cells
Natural killer cells, CD56+, have become increasingly popular as
an immunotherapy due to their ability to kill without prior
sensitization to antigen. Instead, they integrate activating and
inhibitory receptors in order to mediate their cytotoxic effect.
Receptors, such as killer cell immunoglobulin-like receptors
(KIRs) and NKG2A-C that recognize MHC and NKG2D that
recognize stress molecules, cooperate to sense “missing self,”
“induced self,” or “altered self (94).” Similar to T cells, these cells
are able to kill by perforin-granzyme and also by FAS and
TRAIL-mediated mechanisms (95). In OC, NK cells have been
reported to both be positively and negatively prognostic. One
study evaluated the prognostic value of intra-tumoral NK cells in
82 patients with mixed histologies (96). Researchers found
patients with only intra-epithelial infiltration of NK cells had
an increased OS (106 months) compared to those with only
intra-stromal infiltration (58 months); no difference was seen in
PFS between these two groups. However, tumor infiltration of
CD56+ NK cells did not correlate with prognosis. Additionally,
this study evaluated the presence of ULBP2 and MICA/B on
patient outcomes—both activating ligands of NKG2D thought of
commonly to mark cells for elimination. Interestingly, high levels
of ULBP2 on tumor samples was found to indicate a poor
prognosis for cancer patients, while MICA/B did not correlate
with prognosis. This may be due to high levels of ULBP2
inhibiting proper T cell functioning. Samples from 283 patients
with high-grade serous carcinoma were evaluated by
immunohistochemistry for NK cell infiltration (97). Median
OS in patients with high levels of CD57+ NK cells (≥10 cells/
mm2) was improved, compared to patients with low levels (<10
cells/mm2), 45 vs. 29 months, respectively. Interestingly, higher
CD56+ NK cells:lymphocyte fraction in ascites was associated
with both a better PFS and OS in 20 OC patients (98). It was
noted though that by selecting for patients that had enough
ascites, patients with poor prognosis were inadvertently selected.
Further studies will be needed to evaluate the importance of
intra-tumoral NK cells.

There are multiple clinical trials in progress evaluating the
benefits of augmenting NK cell number and function. One Phase I
trial is evaluating IP FATE-NK100, a donor-derived NK product
compromised from terminally differentiated cells, with IL-2, as a
means of promoting NK survival, and lymphodepletion by
cyclophosphamide and fludarabine (CyFlu) in women with
recurrent OC (NCT03213964). Another Phase I trial is
Frontiers in Oncology | www.frontiersin.org 8
evaluating i.p. NK cells, instead generated from CD34
hematopoietic stem cells in umbilical cord blood, in twelve
recurrent OC patients with lymphodepletion by CyFlu
(NCT03539406). In an attempt to boost the body’s own NK
cells, one Phase II trial is evaluating the use of i.p. as well as
subcutaneous (s.q.) IL-15Ra super-agonist, ALT-803, after first-
line chemotherapy (NCT03054909). It was previously shown that
in OC, ascites-derived NK cells and healthy donor NK cells
improved their reactivity when stimulated with IL-15 or ALT-
803 (98). One published Phase II study evaluated i.v. NK cells,
treated ex vivo with IL-2, given post-lymphodepletion by CyFlu in
14 ovarian cancer patients (99). Five patients also received total
body irradiation to deplete lymphocytes and allow for NK
expansion. Despite four patients reaching PRs and eight having
SD, one patient developed a grade 5 toxicity due to tumor lysis
syndrome. Other severe AEs, such as passenger lymphocyte
syndrome and neutropenia, were attributed to the irradiation.

CARs have been also added to NK cells, as well as NKT cells
(CD3+CD56+), in an attempt to utilize these cells. Briefly, NKT
cells carry characteristics of both NK and T cells, enabling them to
enact cytotoxic killing without prior activation. Utilizing a CAR
against FR, Zuo and colleagues showed NKTs with improved
cytotoxicity towards FR+ PEO1 cells in vitro when compared to
CAR-Ts by transfecting NKT cells with CARs carrying both the
CD28 and 4-1BB co-stimulatory signaling domain, (100).
However, the NKT cells performed worse than CAR-T cells in
nude mice inoculated subcutaneously with PEO1 cells. NK cells,
specifically NK-92, were also used as a surrogate for a third-
generation anti-FR CAR (101). Similarly, these NK cells
demonstrated cytotoxic effects against SKOV3 in vitro and in B-
NDG mice inoculated i.p. with SKOV3. One clinical trial utilizing
anti-mesothelin NK cells, obtained from peripheral blood
mononuclear cells, has been proposed (NCT03692637).

Changes in synthesis methods and receptor signaling may
also be beneficial to the success of CAR-NKs. Li et al. created
anti-mesothelin CAR-NKs, with additional NKG2D and 2B4
domains, from induced pluripotent stem cells (iPSCs) (102).
Advantages to using iPSC include better clonal manipulation of
the end product and increased speed of production. In a
xenograft model injected i.p. with A1847 cells, treatment with
their CAR-NK, along with IL-2 and IL-15, significantly reduced
tumor burden and, ultimately, improved survival. When
directly compared to a CAR-T with the same receptor, but
with 4-1BB and CD28 signaling motifs instead, mice treated
with the CAR-NK had less weight loss and pathogenic damage
in organs such as the liver and kidney. Furthermore, those
treated with CAR-NK also had improved survival when directly
compared to those given CAR-T cells. Another group has
created a CAR-NKs against glypican-3 (GPC3), with CD28
and 4-1BB signaling motifs, also from iPSCs derived immune
cells (103). In NSG mice inoculated i.p. with KOC7c, a GPC3-
expressing ovarian cancer cell line, a statistically significant
difference in survival was seen when compared to PBS. Klapdor
et al. has also developed dual-CAR-NKs, using NK-92, against
CD24 and mesothelin with CD28 and 4-1BB signaling motifs
(104). CD24 was chosen as a target due to its presence on
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cancer stem cells and lack thereof on normal tissues; mesothelin
has been previously discussed. In A2780 and HEK293T cells
previously transfected with CD24, mesothelin, or both, the
dual-CAR was able to target both mesothelin-positive cells
and CD24-positive cells.

Monocytes and Macrophages
Monocytes can be classified into three subsets based on CD14
and CD16 expression: classical monocytes (CD14+CD16−),
intermediate monocytes (CD14+CD16+), and non-classical
monocytes (CD14-CD16+). Upon inflammation, monocytes
traffic to the tissue and differentiate on a spectrum ranging
from classically activated macrophages, or M1-like, to
alternatively activated macrophages, or M2-like. A holistic
review on M1 vs. M2 macrophage differentiation is more
thoroughly reviewed in (105). In brief, M1-like macrophages,
induced by IFN-g and TNF-a, secrete inflammatory cytokines,
such as IL-6 and IL-12, while M2-like macrophages are induced
by TGF-b and IL-4/13 and secrete anti-inflammatory cytokines
and recruiting Tregs (106). Cancer cells themselves are able to
induce a shift towards an M2 phenotype through the secretion of
signaling molecules. In OC specifically, CSCs were shown to
increase levels of CCL2, COX-2 and PGE-2 as well as activate the
PPARg pathway, all of which correlated with increased polarization
towards M2 macrophages (107, 108). Unsurprisingly, a high M1/
M2 ratio has been correlated with improved survival in OC patients
(109). A meta-analysis also indicated the presence of CD163+
TAMs was correlated with poor prognosis (110). A decreased
lymphocyte-to-monocyte ratio (LMR) also indicated both poor
overall and PFS in retrospective reviews (111–114).

In order to bolster immunity against cancer, the goal would be
to decrease M2-like macrophages and/or increase their M1-like
counterparts. Pre-clinical studies have attempted to decrease the
prominence of M2 macrophages in the OC TME by interfering
with the number of TAMs. Trabectedin, an inhibitor of DNA
repair and transcription, was found to activate caspase-8 in
monocytes through TRAIL-R1/2, leading to decreases in TAMs
(115). Paclitaxel, a microtubule inhibitor currently in use to treat
ovarian cancer, was recently found to shift M2 macrophages
towards M1 in a TLR4-dependent fashion (116).

In OC, the addition of IFN-a/g to monocytes was
hypothesized to maintain the M1-like phenotype when used as
an anti-cancer therapy. Importantly, this combination was
shown to significantly reduce tumor burden and improve
survival in BALB/c mice inoculated subcutaneously with
OVCAR-3 (117). Mice treated with the combination of IFNs
and monocytes survived to 170 days when compared to 87 and
81 days for IFNs or monocytes alone, respectively. Intra-tumoral
macrophages were identified by CD31 and CD68 staining.
Further immunofluorescence (IF) characterization showed that
the cells expressed M1 markers IL12, CXCL10 and NOS2, but
decreased M2 markers IL-10 and arginase, indicating that the
IFN-treated monocytes retained differentiation towards an M1-
like phenotype. Extrapolating these findings to other ovarian
cancer cell lines, Johnson et al. reinforced the ability of
monocytes and IFNs to kill tumor cells synergistically,
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although sensitivity varied between lines (118). A Phase 1
clinical trial was created to evaluate the intraperitoneal
administration of autologous monocytes treated ex vivo with
pegylated inteferon a-2b and interferon g-1b (119). Preliminary
results showed a well-tolerated treatment with two PRs and four
patients with SD (120).

Myeloid-Derived Suppressor Cell
Compared to the veteran immunosuppressive Tregs (discovered
in 1969), myeloid derived suppressor cells (MDSCs) are a
relatively “young” subset (121). Poorly-differentiated myeloid
cells with the capacity to suppress T cell activation were reported
in the 1970s (122), but the term “MDSC” was not coined until
2007 (123), and many questions relating to the origin,
classification, and behavior of MDSCs remain unresolved (124).

A comprehensive review of the current understanding of
MDSCs have been presented previously (7, 125). Briefly,
MDSCs are myeloid derived cells which develop in bone
marrow, traffic through peripheral blood to the tumor, and
increase during tumor development in response to chemotactic
and growth factor signals released by the tumor itself such as G-
CSF, GM-CSF, VEGF, and IFN-g (126, 127). MDSCs are
functionally characterized by the ability to suppress T cell
activation ex vivo (122), and to suppress the ability of immune
cells in the TME to mount an antitumor response in vivo by
mechanisms which are incompletely characterized, but include
direct suppression of cytotoxic T cells and NK cells via PDL1/2,
promotion of Treg expansion by TGF-beta, CD40L, and Il-10,
and promotion of M2-like/TAM development (128). MDSCs
can be identified by their expression of specific markers,
allowing division into monocytic and granulocytic subtypes
according to consensus guidelines, although these classification
schemes remain in flux (125). In mice, monocytic MDSCs are
defined as CD11b+ Ly6Chigh Ly6G– while granulocytic MDSCs
are CD11b+ Ly6Clow Ly6G+. In humans, monocytic MDSCs are
HLA-DR-CD11b+CD33+CD14+ while granulocytic MDSCs are
HLA-DR-CD11b+CD33+CD15+.

The clinical relevance of MDSCs as drivers of ovarian cancer
pathogenesis has been demonstrated by correlative studies in
humans associating MDSC frequency and phenotype with worse
prognosis as well as by experimental manipulations in mice, in
which direct ablation of MDSCs can impede tumor development.
In patient series, higher MDSC frequency in tumor biopsy (129),
in peripheral blood (130), or in ascites (131) correlated with
decreased OS or relapse free survival, as did high MDSC-to-
dendritic cell ratio in peripheral blood (132). Syngeneic mouse
model studies have demonstrated that MDSCs accumulate
during the course of tumor development (133) and that
ablation of MDSC by clodronate liposomes led to increased
survival. Depletion of MDSC by anti-Gr1 antibodies also
inhibited tumor growth in mouse and depletion of MDSC led
to increased mouse survival whereas adoptive transfer of MDSC
from one tumor-bearing mouse to another improved tumor
growth (134, 135). Similarly, depletion of MDSCs by anti-GM-
CSF therapy reversed anti-VEGF therapy resistance, reducing
intra-tumoral MDSCs and increasing CD8+ TILs (136).
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MDSCs have the capacity to develop into immunosuppressive
M2-like macrophages, but they can also differentiate into non-
immunosuppressive cell types such as conventional M1
macrophages and dendritic cells. Agents such as all-trans-
retinoic acid (ATRA) and epigenetic modifiers such
as histone-deacetylase inhibitors (HDACi) have been
demonstrated to induce differentiation of MDSC (resulting
in functional depletion) in preclinical studies. In ovarian
cancer, the phase II trial of histone deacetylase inhibitor
entinostat in combination with checkpoint inhibitor
avelumab failed to demonstrate an advantage over avelumab
alone (137). Differentiation vs depletion of MDSC by the
hypomethylating agent azacytidine has been reported in
mouse (138). Of note, azacytidine has also been reported to
sensitize platinum resistant ovarian cancer cells to platinum
by mechanisms that are not entirely understood (139), which
has been the inspiration for other trials. Decitabine has been
pursued as a platinum sensitizer and reported as having
disease activity by CA-125 reduction but not by reduction in
tumor size, i.e., RECIST criteria (140). A phase 1 trial of
azacyt idine and valproic acid , another HDACi, in
combination with carboplatin in patients with platinum-
refractory solid tumors was reported in abstract form as
displaying disease activity but with a very high (78%) rate of
grade 3–4 toxicity (141).

Blocking of MDSC migration to tumor might be achieved by
a variety of manipulations, including blocking of cytokines such
as VEGF, G-CSF, GM-CSF, and M-CSF, as discussed above.
VEGF inhibition by bevacizumab already has an established role
in treatment of ovarian cancer, with approvals in both the first-
line and later-line settings. Interestingly, mouse data in
bevacizumab-resistant tumors demonstrated that MDSCs
recruited by GM-CSF, produced by the tumor drove
immunosuppression which was reversible by blockade of GM-
CSF production (136). In the clinic, early phase I/II experimental
approaches are focusing on blocking the receptors on MDSCs
which mediate response to the above cytokines, namely CXCR2
(NCT02370238 and NCT02499328), CCR5 (NCT01736813),
and CSF1R (NCT01349036). In addition, a phase 1
combination trial of the anti-CSF1R antibody cabiralizumab
plus nivolumab (NCT02526017) including ovarian cancer
patients is underway.

Finally, inhibition of MDSC function has been hampered to
some extent by an incomplete understanding of the complex
mechanisms by which MDSCs downregulate antitumor
immunity. Depletion of L-arginine in the TME via expression
of arginase-1 and inducible nitric oxide synthase (NOS-1) is
thought to directly inhibit T cell function and result in cell cycle
arrest (142). Disruption of this process may be achieved in vitro
by inhibiting upstream inflammatory cyclooxygenase-2 (COX-
2), prostaglandin E2 (PGE2) or phosphodiesterase-5 (PDE-5)
signaling (143). Similarly, use of PDE-5 inhibitors such as
sildenafil and tadalafil, which are already FDA approved for
non-cancer indications, is being tested in combination trials in a
variety of solid tumors. A phase I study of the anti-VEGFR2
molecule regorafenib and sildenafil in multiple solid tumors was
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reported, with evidence of disease activity including two ovarian
cancer patients who achieved SD for >24 weeks (144).
CHALLENGES AND FUTURE DIRECTIONS

Ovarian cancer remains a lethal disease due to late-stage diagnoses
and a lack of suitable treatment options in the recurrent setting.
Despite recent advances in PARPi and anti-VEGF treatment
modalities, a better understanding of the immune cell subsets
and their interactions in the peritoneal TME may bring forth
novel targeted therapies and additional combination therapies.
Herein, we discussed key subsets of the many immune cells that
play a role in the immuno-suppressive and tumor-promoting
microenvironment of ovarian cancer, and recent attempts to
therapeutically employ both adaptive (Table 2) and innate
(Table 3) immunity. Tumor-specific lymphocytes have been
found in ovarian cancer, and have been associated with better
prognoses, but anti-inflammatory cytokines produced by Tregs
and other cells may overwhelm their effector functions. Depleting
Tregs by cyclophosphamide has not been shown to directly affect
Treg counts, but may promote overall T cell count. Reducing
counts of other immunosuppressive cells, mainly those of innate
immunity, may be significant in future treatments. MDSCs orM2-
like macrophages may be important target populations.

A lack of tumor associated antigens and proper stimulation may
also hinder a targeted immune response. A main problem seen in
CAR-T therapies included a lack of persistence within circulation
and poor penetrance into the peritoneal TME. Therapies such as
checkpoint inhibitors and CAR-T cells may have demonstrated
poor efficacy due to cellular interactions between adaptive and
innate immunity that are yet to be fully characterized. Bregs are one
class of cells that have yet to be fully understood. MDSCs have also
been shown to play a significant role in decreasing immune function
in the TME by secreting cytokines and directly inhibiting
adaptive immune cells, but need further characterization.

Augmenting the innate immune response may be a mechanism
by which to improve the anti-tumor response. Multiple groups have
evaluated DCs as ways to augment a tumor-specific T cell response.
Trials evaluating various peptides andwhole tumor lysate have shown
varied results though, but with minimal AEs. Future studies
evaluating additional mechanisms of sustaining DC activation as
well as possible bio-nanotechnology to replace synthesis of DCs will
be critical in developing this option. Another possible mechanism is
to use NK or NKT cells as an effector cell because they do not require
additional activation. These cells have demonstrated the capacity to be
transfected with CARs and clinical trials are currently underway.
Similarly, efforts to utilize monocytes as effector cells are underway.
Targeting of MDSCs is an exciting avenue for ovarian cancer therapy,
with the multiple agents and combinations discussed above being
tested, and many others with promising preclinical data. However,
there are outstanding questions which need to be addressed in order
for these approaches to be maximally beneficial. One invaluable is
given the rapidly increasing number of available therapeutic
combinations, how do we rationally choose which combinations to
test in our patients? Ultimately, further understanding of the
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TABLE 3 | Published clinical trials of immunotherapies modulating innate immunity in ovarian cancer patients.

Intervention NCT/Author Phase Enrollment Primary
Endpoint

PFS OS ORR

Dendritic Cell Vaccines (peptide
target)
(Her2/neu + hTRT + PADRE)
+/- cyclophosphamide

Chu et al. 1/2 14 OC in first or second remission Safety and
Activity

– – –

(WT p53 peptide) + IL-12 Rahma et al. 2 21 recurrent OC Activity 8.7
months

29.6
months

–

(KLH) + IL-2 Baek et al. 1/2 10 with MRD Safety and
Activity

– 65.0
months

3/10 (30%)

(WT1) Zhang et al. 1/2 3 OC DrAE – – 0/3 (0%)
(Autologous tumor lysate) +
KLH

Hernando
et al.

1 6 progressive or recurrent OC Safety and
Activity

– – 0/6 (0%)

(Autologous tumor lysate)
+/- bevacizumab
+/-cyclophosphamide

Tanyi et al. 1? 25 immunotherapy-naïve recurrent
OC

Safety and
Activity

– – 2/25 (8%)

Natural Killer Cells
NK Cells + IL-2
+ CyFlu

Geller et al. 2 14 OC Activity – – 4/14
(28.5%)

Monocytes
Monocytes + IFNa/g Cole et al. 1 11 recurrent OC Safety and

Activity
– – 2/11

(18.1%)
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-Not reported; RPR, recurrent platinum-sensitive; RPR, recurrent platinum-resistant; RP2D, Recommended phase 2 dose; ORR, Overall response rate; KLH, Keyhole limpet haemocyanin;
hTRT, human telomerase reverse transcriptase; PADRE, pan-DR epitope; WT-1, Wilms’ tumor protein 1; CyFlu, Cyclophosphamide + Fludarabine; SQ, subcutaneous; MRD, minimal
residual disease.
TABLE 2 | Published clinical trials of immunotherapies modulating adaptive immunity of ovarian cancer patients.

Intervention NCT/Author Phase Enrollment Primary Endpoint PFS OS ORR

CAR-T
Anti-Folate Receptor Kershaw et al. 1 14 recurrent FR+ OC Safety and Activity – – *
Anti-Mesothelin Beatty et al. 1 5 OC Safety and Activity – – 0/5

Anti-CTLA4
Ipilimumab Hodi et al. 1 9 Stage 4 OC Safety and Activity – – 0/9

NCT01611558 2 40 RPS OC DrAEs – – 4/39 (10.3%)
Nivolumab+Ipilimumab Zamarin et al.

NCT02498600
2 100 recurrent OC ORR 3.9 months 28.1 months 16/51 (31.4%)

Anti-PD-1
Nivolumab Hamanishi et al. 2 20 RPR OC Safety and Activity 3.5 months 20.0 months 3/20 (15%)
Nivolumab + Bevacizumab Liu et al. 2 38 recurrent OC ORR 12.1 months in

RPS
7.7 months in
RPR

– 8/20 (40%) in
RPS

3/18 (16.7%) in
RPR

Pembrolizumab Varga et al. 1b 26 PD-L1+ OC ORR 1.9 months 13.8 months 3/26 (11.5%)
Pembrolizumab Matulonis et al. 2 Cohort A: 285

recurrent OC
Cohort B: 91 recurrent
OC

ORR Cohort A: 2.1
months
Cohort B: 2.1
months

Cohort A: -
Cohort B: 17.6
months

Cohort A: 7.4%
Cohort B: 9.9%

Pembrolizumab + Niraparib Konstantinopoulos
et al.

1/2 Phase 1: 9 RPR OC
Phase 2: 53 RPR OC

Phase 1: Safety and
RP2D
Phase 2: ORR

3.4 months – Integrated: 18%

Durvalumab + Olaparib +
Cediranib

Zimmer et al. 1 7 recurrent OC
1 peritoneal cancer
1 endomterial
1 TNBC

RP2D – – 4/9 (44%)

Durvalumab + Olaparib Lampert et al. 2 35 recurrent OC ORR 3.9 months – 5/35 (14%)
Durvalumab + Olaparib Drew et al. 2 32 BRCAmut, RPS OC ORR – – 20/32 (63%)

Anti-PD-L1
Avelumab Disis et al.

NCT01772004
1b 125 recurrent OC ORR 2.6 months 11.2 months 12/125 (9.6%)
-Not reported; *No patients responded to treatment; RPR, recurrent platinum-sensitive; RPR, recurrent platinum-resistant; RP2D, Recommended phase 2 dose; TNBC, Triple-negative
breast cancer; ORR, Overall response rate.
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interactions amongst tumor and immune cells in the unique
peritoneal microenvironment will allow us to better develop
optimal targeted therapies for the treatment of ovarian cancer.
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