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Abstract 

Genetic association signals have been mostly found in noncoding regions through genome-wide association studies (GWAS), sug
gesting the roles of gene expression regulation in human diseases and traits. However, there has been limited success in colocalizing 
expression quantitative trait locus (eQTL) with disease-associated variants. Mediated expression score regression (MESC) is a recently 
proposed method to quantify the proportion of trait heritability mediated by genetically regulated gene expressions (GReX). 
Applications of MESC to GWAS results have yielded low estimation of mediated heritability for many traits. As MESC relies on strin
gent independence assumptions between cis-eQTL effects, gene effects, and nonmediated SNP effects, it may fail to characterize the 
true relationships between those effect sizes, which leads to biased results. Here, we consider the robustness of MESC to investigate 
whether the low fraction of mediated heritability inferred by MESC reflects biological reality for complex traits or is an underestima
tion caused by model misspecifications. Our results suggest that MESC may lead to biased estimates of mediated heritability with 
misspecification of gene annotations leading to underestimation, whereas misspecification of SNP annotations may lead to overesti
mation. Furthermore, errors in eQTL effect estimates may lead to underestimation of mediated heritability.
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Introduction
Recent years have seen many discoveries through genome-wide 
association studies (GWAS) [1], which aim to identify associations 
between genetic variants, particularly single-nucleotide poly
morphisms (SNPs), and phenotypes. Despite these advances, a 
majority of trait-associated variants in GWAS lie in noncoding 
regions [2], making it challenging to interpret the roles of these 
variants and the underlying disease mechanisms. Because a 
GWAS variant in a noncoding region may affect disease via its 
regulation of gene expressions [3], integrating transcriptomics 
data may help us identify disease-associated genes and improve 
our understanding of disease mechanisms.

With the development of gene expression profiling technolo
gies through microarrays and RNA-sequencing, expression quan
titative trait locus (eQTL) studies have offered a valuable 
resource to link genetic variations with transcriptomes. For in
stance, the Genotype-Tissue Expression (GTEx) project [4, 5] has 
proved to be a valuable resource for interpreting GWAS results. 
Colocalization tests [6–8] have enabled scientists to identify 
genes with eQTLs colocalized with GWAS loci of many traits, sug
gesting the important roles of the genetic regulations of these 
genes in disease etiology. Transcriptome-wide association stud
ies (TWAS) [9–11] “impute” the genetically regulated gene expres
sion components (GReX) based on eQTL data and correlate the 

“imputed” GReX with phenotypes to gain insights into genetically 

regulated gene–trait associations.
Despite the great successes of using eQTL results to interpret 

GWAS signals, the relative contribution of genetically regulated 

expression to complex traits remains unclear and controversial. 

Although some studies have reported enrichment of disease heri

tability at eQTLs [12], others only found a small fraction of 

disease-associated loci colocalized to eQTLs [13, 14]. The lack of 

correspondence between GWAS and eQTL findings may be due to 

several factors. One possibility is that the eQTL effects are cell- 

type-specific [15] or context-specific [16], while most eQTL stud

ies have been based on analyzing tissues, which only represent 

an average effect across cell types and contexts and may miss a 

large portion of eQTLs. Another explanation is the insufficient 

statistical power to detect disease-associated eQTLs due to the 

limited sample sizes of most eQTL studies [17]. However, it is not 

clear whether larger sample sizes can improve our understand

ing of the undiscovered regulatory associations [18]. Genetic reg

ulation of complex traits can be driven by many processes 

beyond regulation of gene expression, such as the regulation of 

proteins, splicing, and DNA methylation, the effects of which can 

be studied through so-called xQTLs [19]. Therefore, it is impor

tant to quantify the extent to which GReX explain trait heritabil

ity to determine whether more and larger eQTL and eQTL-related 
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studies are worthwhile to understand the biological mechanisms 
underlying complex traits.

One method to quantify the trait heritability mediated by 
GReX is known as mediated expression score regression (MESC) 
[20], which performs multiple linear regression of GWAS sum
mary statistics on linkage disequilibrium (LD) scores and expres
sion scores (the weighted LD scores with respect to eQTL 
annotations) to estimate the nonmediated and mediated herita
bility. One advantage of MESC is that it can be applied when only 
GWAS and eQTL summary statistics are available. MESC has an 
extension that stratifies the regression across both gene and SNP 
categories, which offers two additional advantages: (1) it weakens 
the assumptions required for MESC, thereby improving the esti
mation accuracy, which will be discussed in detail in the 
“Results” section and (2) it enables enrichment analysis of certain 
gene or SNP sets to uncover biological mechanisms.

MESC has broad applications. It can quantify the proportion of 
the trait heritability mediated by GReX in preidentified gene cate
gories, which identifies how much we can expect to learn about 
the biological mechanisms of complex traits through eQTL data. 
The application of MESC to different tissues in GTEx data and 
summary statistics of different traits found that, on average, 
only 11% of the trait heritability is mediated by cis-eQTLs [20]. 
Other studies also found a similarly low average fraction of medi
ated heritability [21–24]. MESC can also quantify the enrichment 
of mediated heritability in functional gene sets like enhancers, 
implying potential disease pathways [22, 24]. In addition to eQTL 
data, MESC has been applied to other QTL data, including splic
ing QTL (sQTL) [21, 23], RNA editing QTL (edQTL) [21], enhancer 
QTL (EeQTL) [22], and methylation QTL (mQTL) [24]. For example, 
a study found that a larger fraction of heritability of kidney dis
eases is mediated by methylation (30%–50%) than that by expres
sion (10%–20%) [24], indicating that more information about 
complex traits may be gained with methylation data.

Despite its great potentials, MESC was developed under sev
eral stringent assumptions about the relationships between ge
netic variants, gene expression, and complex traits. In brief, it 
assumes that the eQTL effect sizes are uncorrelated with the 
nonmediated genetic effect sizes and the gene–trait effect sizes. 
It is of interest to investigate the impact of the violations of these 
assumptions on the accuracy of the mediated heritability estima
tion. In addition, it is also of great interest to understand how the 
prediction errors of the eQTL annotations, or equivalently, the 
prediction errors of the expression scores affect the estimated 
mediated heritability. Answering these two questions can help us 
better understand whether the low proportion of eQTL-mediated 
heritability for complex traits is due to their biological reality or 
due to model misspecifications in the applications of MESC. In 
this article, we will address these two questions through analyti
cal and simulation studies and make recommendations for the 
applications and extensions of MESC.

Materials and methods
Overview of methods
We start with an overview of the MESC model. Suppose the sam
ple size is N, the number of SNPs is M and the number of genes is 
G. The genetic regulation of the phenotype can be modeled as 

y ¼ Xcþ XBaþ e; (1) 

where y 2 RN represents the standardized phenotype values, 
X 2 RN�M represents the standardized genotypes of the same 

individuals, c 2 RM is the nonmediated effect size vector of SNPs, 
a 2 RG is the effect size vector of genes, B 2 RM�G is the cis- 
eQTL effect size matrix and its ðj; iÞth element bji is the cis-eQTL 
effect size of SNP j on gene i, and e 2 RN is noise. All effect sizes 
are treated as random effects with zero means. We further as
sume that a; c; e are mutually uncorrelated, and E bjibki

� �
¼ 0 for 

i ¼ 1; . . . ; G and j 6¼ k, which means that E BBTð Þ is a diago
nal matrix.

Let R 2 RM�M represent the LD matrix and its j; k
� �

th element 
rjk is the LD between SNP j and SNP k, i.e. X � N 0; Rð Þ: We can 
estimate the LD matrix from the study population as R̂ ¼ XTX=N, 
where E r̂2

jk

h i

� r2
jkþ1=NþOð1=N2Þ. (This approximation can be 

obtained via the Delta method [25].) Furthermore, we denote the 
GWAS v2 summary statistic of SNP k as v2

k ¼ Nx̂
2
k , where x̂k is the 

marginal least squares estimate of the total effect size of the SNP 
k. Given the LD estimates of the genotypes, R̂, and the cis-eQTL 
effect size matrix, B, Equation (1) can be rewritten as 

E½v2
k j B; R̂� ¼ N

XM

j¼1

var cjð Þr̂
2
jk þ N

XG

i¼1

var aið Þ
XM

j¼1

b2
ji r̂

2
jk þ 1: (2) 

Note that as each element of B is considered a random effect, 
a given B refers to given the variances of its elements. Under the 
assumption that the nonmediated effect sizes and the gene effect 
sizes are uncorrelated with the cis-eQTL effect sizes and LD, the 
mediated heritability is 

h2
med ¼

XG

i¼1

XM

j¼1

var aið Þb
2
ji;

and the nonmediated heritability is 

h2
nmed ¼

XM

j¼1

var cjð Þ:

Note that the term “mediated heritability” only refers to the 
trait heritability mediated by cis-eQTLs, as trans-eQTLs are not 
considered in MESC. Therefore, we may miss mediated heritabil
ity contributed by the trans-eQTLs.

This regression model (Equation 2) corresponds to a stratified 
MESC where each SNP or gene belongs to one and only one SNP 
or gene category. However, for real data, the number of predic
tors (the sum of the total number of SNPs and genes) could be 
much larger than the sample size, leading to a high-dimensional 
problem of estimating the regression coefficients (variances of 
the effect sizes) individually. For SNPs and genes, we have addi
tional functional annotations to categorize them based on their 
specific functions. To address the high-dimensional problem, 
MESC assumes that the contributions to the variances of the ef
fect sizes are the same for SNPs and genes in a certain annotated 
category and are also independent of the cis-eQTL effect sizes or 
LD. In the remaining part of this article, we will use the term 
“independence assumptions” to refer to these assumptions.

To be specific, suppose that we have C SNP categories and 
D gene categories, with aj;c denoting the annotation of SNP j to 
SNP category C c and bi;d denoting the annotation of gene i to 
gene category D d. For binary annotations, aj;c ¼ 1j 2C c and 
bi;d ¼ 1i 2D d. We need the following assumptions to estimate me
diated heritability: (1) the per-SNP contribution to heritability 
with respect to one unit of the annotation is the same and 
denoted as s c; (2) the per-gene contribution with respect to 
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heritability to one unit of the annotation bd is the same and 

denoted as pd; and (3) the per-gene and per-SNP contributions are 
independent of each other. With these assumptions, the varian

ces of the effect sizes are 

varðcjÞ ¼
XC

c¼1

aj;csc;

varðaiÞ ¼
XD

d¼1

bi;dpd:

Then, we have the following stratified MESC, 

E v2
k

h i

¼ N
XC

c¼1

sclk;cþN
XD

d¼1

pdLk;d þ 1;

where 

lk;c ¼
XM

j¼1

aj;cr
2
j;k 

is the LD score of SNP k with respect to annotation ac and 

Lk;d ¼
XG

i¼1

XM

j¼1

bi;dr2
j;kb

2
ji 

is the expression score of SNP k with respect to annotation bd. 
The mediated heritability is 

h2
med ¼

X

d;i;j

bi;dpdb2
ji;

and the nonmediated heritability is 

h2
nmed ¼

X

c;j

aj;csc:

For unstratified MESC, there would be only one SNP and gene 

category containing all SNPs or genes, with stronger assumptions 
than the stratified version.

Datasets and simulation studies
In the “Results” section, we present some analytical results on 

the impact of the violation of independence assumptions and 
prediction errors in eQTL effect size estimation. To substantiate 

the analytical results, we conducted simulations to study poten
tial biases of MESC.

We used imputed genotypes from the UK Biobank (UKBB v3) 

[26] restricted to HapMap 3 [27] SNPs on chromosome 1. We fil
tered out SNPs with missing call rates exceeding 5% or minor al

lele frequencies (MAFs) lower than 5%, resulting in M ¼ 84;202 
SNPs considered in simulations. To minimize population hetero

geneity, we only used the UKBB European samples in our analysis.
We randomly sampled 1000 individuals as the reference sam

ples to estimate the LD scores with annotations from the 

baselineLD model (v2.1) [28]. These functional annotations in
clude coding, conserved, regulatory, and LD-related annotations. 

Like MESC method, we removed four categories related to QTL 
MaxCPP [29] as they were redundant to the cis-eQTL annotations 

for the expression scores. We used the LD Score Regression 

(LDSC) software [25] to calculate LD scores from summing LD 
with variants within a 1-cM window.

We randomly sampled another 1000 individuals and 1000 
genes on chromosome 1 for the external expression panels. To 
generate the expression levels, we randomly designated five 
SNPs to be cis-eQTLs within 1 megabase (Mb) window around 
each gene, where one SNP had an effect size drawn from 
Nð0; 0:8 h2

cis;iÞ and the other four SNPs had effect sizes drawn 
from Nð0; 0:05 h2

cis;iÞ. We then scaled these five random eQTL ef
fect sizes to ensure that the sum of their squares was equal to 
the given value of h2

cis;i. The cis-heritability per gene had different 
structures in different simulation settings (see Table 1) with a 
mean of 10%. This cis-eQTL effect size setting followed the simu
lation setting of Yao et al. [20], which reflected the sparsity of cis- 
eQTLs after fine-mapping strategies, where top eQTLs have 
larger causal effects [4, 5]. The gene expression levels were then 
simulated using an additive model with normally distributed 
noise using the GCTA software [30]. The true expression scores 
were calculated using the LDSC software [25, 28, 31]; with anno
tations from true squared cis-eQTL effect sizes b2

ji, while the esti
mated expression scores were estimated using the MESC 
software [20] with the individual-level genotype and expression 
level data from the expression panels.

We randomly sampled 10 000 individuals for GWAS analysis. 
The gene effect sizes and the nonmediated SNP effect sizes for all 
SNPs and genes were simulated with normal distributions. We 
then simulated the phenotypes using an additive model with nor
mally distributed noise using the GCTA software [30]. We con
ducted association tests for each SNP to obtain GWAS summary 
statistics using PLINK (version 1.9-beta5.3) [32]. We then applied 
MESC on the external expression data and GWAS summary sta
tistics to estimate the mediated heritabilities. The true total heri
tability, h2

g, was fixed at 0:5 and the true mediated heritability, 
h2

med, was varied in f0:1; 0:2; 0:3; 0:4g. We performed both 
unstratified and stratified MESC with both true and estimated ex
pression scores using the MESC software [20]. All simulation set
tings were repeated 100 times.

We performed five sets of simulations, where the effect of 
gene i was drawn from Nð0; varðaiÞÞ and the nonmediated effect 
of SNP j was drawn from Nð0; varðcjÞÞ. The variances of effect 
sizes were varied under different simulation settings (see Table 1). 

Table 1. Summary table for the choices of the cis-heritabilities, 
h2

cis;i, the variances of the gene effect sizes, varðaiÞ, and 
nonmediated SNP effect sizes, varðcjÞ, in six simulation settings.

Setting h2
cis;i varðaiÞ varðcjÞ

1 0.1
h2

med
Gh2

cis;i

h2
nmed
M 

2 0:1G 2i=200
P

k
2k=200

h2
med

Gh2
cis;i

h2
nmed
M 

3 maxf0:7rexp 7ð Þ;0:7g
h2

med
Gh2

cis;i

h2
nmed
M 

4 0:1G 2i=200
P

k
2k=200

h2
med2�

ti
200

P
k
h2

cis;k
2�

tk
200

h2
nmed
M  

5 0:1G 2i=200
P

k
2k=200

h2
med2

5i� 1
G½ �

G
50�

i
10

P
k
h2

cis;k
2

5k� 1
G½ �

G
50
� k

10

h2
nmed
M  

6 0.1
h2

med
Gh2

cis;i

h2
nmed
2M þ

h2
nmed1j2eQTL

2#feQTLg

Notations: The subscript i is the index for gene i and the subscript j is the index for 
SNP j. The sample size is N, the number of SNPs is M; and the number of genes is 
G. The mediated heritability is h2

med and the nonmediated heritability is h2
nmed. 

The “rexp” represents a random sample from the exponential distribution, 
ft1; t2 ; . . . ; tGg is a random resample of f1;2; . . . ;Ggwithout replacement, ½x� is a 
floor function, and # eQTLf g represents the number of eQTLs.
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In the first setting, all the independence assumptions were satis

fied, where we expect that even unstratified MESC can obtain un

biased estimates of h2
med. In the second setting, the cis-eQTL effect 

sizes were negatively correlated with the gene effect sizes, but af

ter partitioning genes with similar cis-eQTL heritabilities into the 

same gene categories, the gene effect sizes were similar in the 

same category. This setting was used in Yao et al. [20] to illustrate 

that the stratified MESC can retain its unbiasedness even when 

the independence assumptions are violated. However, this setting 

did not violate the independence assumptions after stratifying 

the genes (see more details in the Results section). In the third set

ting, the cis-eQTL effect sizes were still negatively correlated with 

the gene effect sizes, but the cis-eQTL heritabilities were drawn 

from a different distribution to introduce randomness. This vio

lated the independence assumptions, and we expect that even 

stratified MESC may lead to biased estimates of h2
med. In the fourth 

setting, the cis-eQTL heritabilities were the same as the second 

setting while the variances of the gene effect sizes were randomly 

chosen, where the cis-eQTL heritabilities were uncorrelated with 

the gene effect sizes (cor ¼ � 0:049). In the fifth setting, the cis- 

eQTL effect sizes were negatively correlated with the gene effect 

sizes within each gene category, and the default stratification rec

ommendation in MESC failed to group genes with similar gene ef

fect sizes into the same categories, corresponding to a strong 

violation of the independence assumptions.
We used a negative correlation between cis-eQTL effect sizes 

and gene effect sizes in these settings, considering that evolution

arily constrained genes tend to have fewer eQTLs [5]. The viola

tions observed in the third and fourth settings might represent 

more general scenarios where the independence assumptions fail. 

On the other hand, the correlation relationship in the fifth setting 

was a numerical example and might not be typical of real-world 

situations. However, it may serve the purpose of evaluating the 

performance of MESC under extremely challenging conditions.
In the sixth setting, the cis-eQTL effect sizes were positively 

correlated with the nonmediated SNP effect sizes and the correla

tion structure could not be characterized by the SNP category 

structure in the baselineLD model. We adopted a positive correla

tion between cis-eQTL effect sizes and nonmediated effect sizes, 

as genetically regulatory variants have been found to be highly 

implicated in biological activities of both transcriptome and prote

ome [33]. Across all the simulation settings, we compared the per

formance of MESC with true and predicted expression scores.

Results
Violation of the independence assumptions leads 
to biased estimates of mediated heritability
MESC requires strict independence assumptions for its accuracy. 

The violation of these assumptions may cause biased estimation. 

We present an overview of conditions where MESC is no lon

ger consistent.
Since MESC is an extension of LDSC that models mediation by 

GReX, we first consider LDSC, which also requires a similarly 

strong assumption that all the SNP effect sizes have the same 

variances. However, it has been shown that LDSC leads to consis

tent estimators under model misspecification [34]. To be more 

specific, suppose the true contribution to the total heritability of 

SNP j is sj, which may be different across SNPs, we have 

E½ĥ
2
� ¼ ME½ŝ� ¼

X

j

sj ¼ h2:

This result can be extended to a binary annotation ac in 
stratified S-LDSC. Suppose that the true contribution to heritability 
with one unit of the annotation ac of SNP j is sj;c, we have 

E½ĥ
2

c � ¼
X

j

aj;cE ŝc½ � ¼ jCcjE½ŝc� ¼
X

j2Cc

sj;c ¼ h2
c :

Essentially, if for all SNP categories, the equality 

X

j

aj;c

P
k2Cc

sk;c

jCcj
¼
X

j

aj;csj;c (3) 

holds, S-LDSC will lead to consistent estimates even when SNPs 
in the same SNP category have different degrees of contributions 
to heritability. Equation (3) is a weakened assumption for S-LDSC 
compared with the independence assumption. Both indepen
dence assumptions (where sj;c are the same) and binary annota
tions (where aj;c ¼ 1 represents SNP j belongs to category Cc) are 
special cases satisfying Equation (3).

However, if we have continuous annotations in S-LDSC, 
Equation (3) may not hold for all categories and the partitioned 
heritability may have biased estimates. Unfortunately, mediated 
heritability is a special case of heritability with continuous anno
tations, as 

ĥ
2

med;d ¼
XG

i¼1

bi;d

XM

j¼1

b2
ji

0

@

1

Ap̂d ¼
XM

j¼1

XG

i¼1

bi;db
2
ji

0

@

1

Ap̂d:

Even with binary annotations of genes, 
PG

i¼1 bi;db
2
ji are still con

tinuous annotations of SNP j, which can potentially lead to a bi
ased estimate of mediated heritability.

Prediction error in cis-eQTL effect sizes leads to 
underestimation of h2

med
The derivation of the MESC model is conditioned on a given set of 
cis-eQTL effect sizes. However, the true cis-eQTL effect sizes are un
known for real data. MESC uses LASSO [35] to infer the causal cis- 
eQTL effect sizes and adjusts their scales by the restricted maxi
mum likelihood (REML) [36] estimate of the cis-heritability for genes. 
Although the estimated cis heritability and the expression scores 
were reported to be accurate [20], the errors in prediction may affect 
the mediated heritability estimation. This corresponds to the prob
lem of high-dimensional linear mixed model with measurement 
errors in the covariates having random effects. To the best of our 
knowledge, there has not been any study on this problem. However, 
we can qualitatively analyze the effects from the prediction error.

We denote the true cis-eQTL effect size matrix as B and the 
estimated one as B̂: Let C ¼ E B̂

T
B̂

� �þ
E B̂

T
B

� �

and D ¼ B � B̂C, where 
E B̂

T
B̂

� �þ
represents the Moore–Penrose inverse of E B̂

T
B̂

� �

. Then 

E DTB̂Cð Þ ¼ E BTB̂C � CTB̂
T
B̂C

� �

¼ E BTB̂ð ÞE B̂
T
B̂

� �þ
E B̂

T
B

� �

� E BTB̂ð ÞE B̂
T
B̂

� �þ
E B̂

T
B̂

� �

E B̂
T
B̂

� �þ
E B̂

T
B

� �

¼ E BTB̂ð ÞE B̂
T
B̂

� �þ
E B̂

T
B

� �

-E BTB̂ð ÞE B̂
T
B̂

� �þ
E B̂

T
B

� �

¼ 0G�G:

Next, we denote c0 ¼ cþDa and a0 ¼ Ca, where c0, B̂a0, and e are 
also mutually uncorrelated. Notably, c0and B̂a0 are uncorre
lated since 
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E cþDað Þ
TB̂ Cað Þ

� �

¼ E cTB̂CaþaTDTB̂Ca
� �

¼ 0G�M:

Thus, we can express the additive model of the phenotype 
based on B or B̂ as 

y ¼ XcþXBaþe

¼ XcþX B̂CþD
� �

aþe

¼ X cþDað ÞþXB̂ Cað Þþe

¼ Xc
0

þXB̂a
0

þe:

Here, c0, a0, and e0 can be regarded as the effect sizes given B̂ 
rather than B. The total heritability of the phenotype, y, is the 
ground truth and thus will not change due to the prediction er
ror, which means 

varðXcþXBaÞ ¼ varðXc
0

þXB̂a
0

Þ ¼ h2;

i.e. the prediction error will only change the proportions of the 
mediated and nonmediated heritability among the total herita
bility. Therefore, the nonmediated heritability with the predicted 
expression scores will be overestimated: 

E ĥ
2

nmed;est

h i

¼ varðXc0Þ

¼ varðXcþ XDaÞ

¼ varðXcÞ þ varðXDaÞ

� varðXcÞ ¼ h2
nmed;true

(4) 

Model MESC MESC_est SMESC SMESC_est

0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

True hmed
2

E
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m
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2

(a) (b)

(c)

0 0.1 0.2 0.3 0.4

−0.2
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True hmed
2
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ed

2

0 0.1 0.2 0.3 0.4

0.4
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0.6

True hmed
2

E
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 h
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l
2

Figure 1. Comparisons of the estimation of (a) mediated heritability, (b) nonmediated heritability, and (c) total heritability between unstratified and 
stratified MESC with true and estimated expression scores under the simulation setting 1. The total heritability was fixed at 0.5, and the x-axis represents 
different simulation settings where the mediated heritability was varied from 0 to 0.4. The label “S” means stratified and the label “est” represents 
models using estimated expression scores. The dashed gray lines represent the true values and the red rhombuses represent the means of the estimates.
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The third equality of Equation (4) holds because c 

is uncorrelated with Da. The final inequality of Equation (4) 
is only strict in some special cases, for example, the gene–trait– 
effect sizes are zero (i.e. varðaÞ ¼ 0) or the correlation between 
the true and predicted cis-eQTL effect sizes is one (i.e. D ¼ 0M�G).

Thus, if S-LDSC gives an unbiased estimator for the total heri
tability under certain conditions, i.e. 

E ĥ
2

nmed;est

h i

þE ĥ
2

med;est

h i

¼ h2 ¼ h2
nmed;trueþh2

med;true;

we can infer E ĥ
2

med;est

h i

� h2
med;true. That means the imperfect pre

diction will result in probable underestimation of the mediated 

heritability, even when the independence assumptions are satis

fied. However, if S-LDSC overestimates the total heritability, we 

may not be able to know whether the mediated heritability is 

overestimated or underestimated.

Simulation results of evaluating MESC with 
estimated and true expression scores
We first evaluated the performance of MESC with estimated and 

true expression scores in the first simulation setting, where all 

the independence assumptions were satisfied (Fig. 1). We chose 

to present the comparison under this setting to avoid the poten

tial confounding effects from the violation of the assumptions. 
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Figure 2. Comparisons of the estimation of (a) mediated heritability, (b) nonmediated heritability, and (c) total heritability between unstratified MESC 
with true and estimated expression scores with varied eQTL sample size under the simulation setting 1. The total heritability was fixed at 0.5 and the 
mediated heritability was fixed at 0.2. The numbers represent models using the estimated expression scores with corresponding eQTL sample sizes and 
“True” represents using the true expression scores. The dashed gray lines represent the true values and the red rhombuses represent the means of 
the estimates.
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We found that only when there were no mediating effects of 

GReX, MESC with both estimated and true expression scores 

could unbiasedly estimate h2
med ¼ 0. Otherwise, MESC with esti

mated expression scores underestimated h2
med, while MESC with 

true expression scores is unbiased as expected. Correspondingly, 

MESC with estimated expression scores overestimated h2
nmed 

when there was mediating effects of GReX. As for the total herita

bility, interestingly MESC with estimated expression scores also 

overestimated h2 when there was mediating effects of GReX. This 

result showed that the overestimation of h2
nmed outweighed the 

underestimation of h2
med. There was no systematic difference 

between the results of using unstratified or stratified MESC, except 

for a slight inflation of the standard deviations of the estimators 

across simulations due to the inflation of the number of predictors 

in the regression. We also compared the performance of MESC with 

estimated and true expression scores in other simulation settings, 

and found that the estimated expression scores all led to underesti

mation of h2
med and overestimation of h2

nmed and h2 in MESC com

pared to these with true expression scores, although the estimators 

of MESC with true expression scores might not be on target in these 

settings due to the violations of the independence assumptions (see 

Supplementary Figs S1–S4).
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Figure 3. Comparisons of the estimation of (a) mediated heritability, (b) nonmediated heritability, and (c) total heritability between unstratified and 
stratified MESC with true expression scores under the simulation setting 2. The total heritability was fixed at 0.5, and the x-axis represents different 
simulation settings where the mediated heritability was varied from 0 to 0.4. The label “S” means stratified. The dashed gray lines represent the true 
values and the red rhombuses represent the means of the estimates.
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Yao et al. [20] demonstrated that increasing the eQTL sample 
size could lead to improved expression score estimation. 
Therefore, we investigated how the eQTL sample size could affect 
the biases in MESC heritability estimation. We conducted a simu
lation study under setting 1, where we fixed h2

med ¼ 0:2 while 
varying the eQTL sample size. As shown in Fig. 2, as the eQTL 
sample size increased, the biases of the mediated heritability de
creased. However, even with a relatively large sample size of 
2500, there was still a noticeable bias in the heritability estima
tion. Interestingly, the biases of the nonmediated heritability did 
not exhibit significant changes as the eQTL sample size varied. 
This observation can be attributed to the fact that, even with 
varying sample sizes, the noise terms in gene expressions 
remained similar in the simulation setting, so the prediction 
errors as represented by the matrix D were similar for different 

sample sizes. As a result, the bias term of the nonmediated heri
tability, varðXDaÞ, in Equation (4) remained similar.

These simulation results are consistent with our analytical 
results that MESC leads to biased estimate of mediated heritabil
ity when we use the expression scores predicted from an external 
eQTL data set, even when all the modeling assumptions are satis
fied. The magnitude of this impact is difficult to assess for real 
data as we do not know the true cis-eQTL effect sizes. Although 
MESC has compared several expression score prediction models 
through simulation studies to figure out the empirically best pre
diction model to mitigate the accuracy loss, we should still be 
cautious about the impact of the prediction errors to our estima
tion. As MESC is a special case of S-LDSC, the prediction error in 
the expression scores can lead to errors in cis-eQTL annotations. 
Therefore, the observed overestimation of the total heritability 
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Figure 4. Comparisons of the estimation of (a) mediated heritability, (b) nonmediated heritability, and (c) total heritability between unstratified and 
stratified MESC with true expression scores under the simulation setting 3. The total heritability was fixed at 0.5, and the x-axis represents different 
simulation settings where the mediated heritability was varied from 0 to 0.4. The label “S” means stratified. The dashed gray lines represent the true 
values and the red rhombuses represent the means of the estimates.
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may be the result of S-LDSC being biased due to inaccurate con

tinuous annotations, whereas there is no such concern for LDSC 
without annotations [34].

Simulation results for MESC under violations of 
the independence assumptions
We next investigated the performance of MESC under different 

kinds of violations of the independence assumptions. We chose 
to only present the estimation results with true expression scores 

to avoid the confounding effects from the prediction errors in the 
following discussion.

In the first simulation setting where all independence 
assumptions were satisfied, we found both stratified and unstra

tified MESC hit the target of h2
med, h2

nmed, and h2 (Fig. 1). The stan
dard deviations of stratified MESC were larger than the 

unstratified ones because of a larger number of predictors, which 

is not related to any specific simulation setting and expected to 
persist in most other settings as well.

In the second simulation setting where the independence 
assumptions of cis-eQTL effect sizes and gene effect sizes were 
weakly violated, we found that unstratified MESC underesti
mated h2

med and overestimated h2
nmed in the presence of mediating 

effects, whereas the stratified version tended to be approxi
mately unbiased (Fig. 3). Both versions had approximately unbi
ased estimation of the total heritability. This scenario was used 
in Yao et al. [20] to illustrate that stratified MESC can mitigate the 
accuracy loss due to the correlation between cis-eQTL effect sizes 
and gene effect sizes. However, this scenario only weakly violates 
the assumptions for two reasons: (1) the variances of the gene 
effects in each gene category did not vary much as they were set 
to be proportional to the reciprocal of the cis-heritability and the 
genes were categorized by their cis-heritability and (2) the values 
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Figure 5. Comparisons of the estimation of (a) mediated heritability, (b) nonmediated heritability, and (c) total heritability between unstratified and 
stratified MESC with true and estimated expression scores under the simulation setting 4. The total heritability was fixed at 0.5, and the x-axis 
represents different simulation settings where the mediated heritability was varied from 0 to 0.4. The label “S” means stratified. The dashed gray lines 
represent the true values and the red rhombuses represent the means of the estimates.
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of the cis-heritability and the gene effect variances happened to 
meet Equation (3), where the mean of h2

cis times the mean of 
var að Þ approximates the mean of the product of h2

cis and var að Þ in 
each gene category. However, we may not have this equality in 
real data, which means that the good performance of stratified 
MESC under this specific setting may not translate to robust per
formance for real data.

Our third simulation setting considered some mild violations 
of the independence assumptions of cis-eQTL effect sizes and 
gene effect sizes, where we found that both stratified and 
unstratified MESC underestimated h2

med and overestimated 
h2

nmed in the presence of mediating effects, while they both had 
an approximately unbiased estimation of the total heritability 
(Fig. 4). Unstratified MESC performed worse in partitioning the 
mediated and nonmediated heritability than stratified MESC. 
The biases were caused by the negative correlation between the 

cis-eQTL effect sizes and gene effect sizes, and the equality in 
Equation (3) no longer holds. However, after categorizing genes 
by their cis-heritability, stratified MESC had the same advantage 
over unstratified MESC as in the second setting that the varian
ces of the gene effects in each gene category did not vary too 
much, so the stratification led to better (but still biased) 
performance.

In the fourth simulation setting, even the cis-eQTL effect sizes 
and gene effect sizes were uncorrelated (cor ¼ � 0:049), they did 
not satisfy Equation (3). We found that both stratified and 
unstratified MESC underestimated h2

med and h2 in the presence of 
mediating effects, while they only exhibited slight overestimation 
of the h2

nmed (Fig. 5). These results suggest that solely relying on 
the uncorrelation assumption might not be sufficient for ensur
ing the robustness of MESC. Additional assumptions, such as 
those outlined in Equation (3), need to be identified.
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Figure 6. Comparisons of the estimation of (a) mediated heritability, (b) nonmediated heritability, and (c) total heritability between unstratified and 
stratified MESC with true expression scores under the simulation setting 5. The total heritability was fixed at 0.5, and the x-axis represents different 
simulation settings where the mediated heritability was varied from 0 to 0.4. The label “S” means stratified. The dashed gray lines represent the true 
values and the red rhombuses represent the means of the estimates.
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Figure 7. Comparisons of the estimation of (a) mediated heritability, (b) nonmediated heritability, and (c) total heritability between unstratified and 
stratified MESC with true expression scores under the simulation setting 6. The total heritability was fixed at 0.5, and the x-axis represents different 
simulation settings where the mediated heritability was varied from 0 to 0.4. The label “S” means stratified. The dashed gray lines represent the true 
values and the red rhombuses represent the means of the estimates.

Table 2. Summary table for the simulation results of the accuracy of MESC and stratified MESC (S-MESC) under six kinds of 
assumptions violations.

MESC S-MESC

Violations h2
med h2

nmed h2 h2
med h2

nmed h2

None ¼ ¼ ¼ ¼ ¼ ¼

Negative correlation between h2
cis;i and var aið Þ but Equation (3) holds # " ¼ ¼ ¼ ¼

Negative correlation between h2
cis;i and var aið Þ but similar var aið Þ in the same gene category # " ¼ # " ¼

h2
cis;i and var aið Þ uncorrelated but varied var aið Þ in the same gene category # " # # " #

Negative correlation between h2
cis;i and var aið Þ in each gene category # " # # " #

Positive correlation between h2
cis;i and var cjð Þ " # ¼ " # ¼

Notation: “¼” represents unbiased, “"” represents overestimated, and “#” represents underestimated. h2
cis;i: cis-heritabilities; varðaiÞ: the variances of the gene effect 

sizes; varðcjÞ: nonmediated SNP effect sizes. The subscript i is the index for gene i and the subscript j is the index for SNP j. h2
med: the mediated heritability; h2

nmed: 
the nonmediated heritability; and h2: the total heritability.
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In the fifth simulation setting, the independence assumptions 
of cis-eQTL effect sizes and gene effect sizes were strongly violated. 
We found that both stratified and unstratified MESC underesti
mated h2

med and overestimated h2
nmed in the presence of mediating 

effects (Fig. 6). Different from the third setting, they both underes
timated h2 as well. Although unstratified MESC still performed 
worse than stratified MESC, we did not see substantial difference 
between them as in the third setting, because the gene categories 
did not capture the underlying structure of the gene effects, so it 
failed to mitigate the differences of the variances of the gene 
effects. Additionally, from the fourth and fifth simulations, we 
note that the model misspecification of the SNPs effects with con
tinuous annotations may compromise the consistency of S-LDSC.

In the sixth simulation setting where the independence 
assumptions of cis-eQTL effect sizes and nonmediated SNP effect 
sizes were violated, we found that both stratified and unstratified 
MESC overestimated h2

med and underestimated h2
nmed, although 

stratified MESC seemingly performed better than unstratified 
MESC (Fig. 7). They had an approximately unbiased estimation of 
the total heritability. There were biases because the SNP catego
ries from the baselineLD model did not have a SNP category of all 
cis-eQTLs, thus failing to capture the underlying structure of the 
nonmediated SNP effects. In fact, Yao et al. [20] considered a sce
nario where only SNPs in the coding regions had nonmediated 
SNP effect sizes to illustrate that stratified MESC could mitigate 
the accuracy loss due to the correlation between cis-eQTL effect 
sizes and nonmediated SNP effect sizes. However, there was no 
violation of independence assumptions, as the baselineLD model 
correctly annotates the coding regions so that the nonmediated 
SNP effect sizes were independent of cis-eQTL effect sizes in each 
SNP category.

In summary, we found that stratified MESC performed quite 
well when the SNP and gene categories satisfy the independence 
assumptions. However, as expected, violations of the indepen
dence assumptions lead to biased estimations (Table 2). Positive 
correlation between cis-eQTL effect sizes and nonmediated SNP 
effect sizes tends to cause overestimation of the mediated herita
bility, whereas negative correlation between cis-eQTL effect sizes 
and gene effect sizes tends to lead to underestimation. Moreover, 
when the independence assumptions are strongly violated, even 
the total heritability estimation may be biased. Overall, despite 

an increase in standard deviations, stratified MESC had lower 
biases than unstratified MESC under model misspecifications, 
making it a better choice when we do not know the underlying 
correlation structures.

Applying MESC on complex traits with functional 
annotations
We applied MESC to estimate the mediated heritability of 20 
complex traits from publicly available GWAS summary statistics 
datasets (summarized in Table 3). Our objective was to investi
gate whether incorporating gene functional annotations could 
improve the default MESC results. In our analysis, we considered 
only autosomal SNPs with MAF >1% and excluded the major his
tocompatibility complex (MHC) block on chromosome 6 (30–31 
Mb). The expression scores meta-analyzed over all tissues from 
GTEx v8 [5] were obtained from the MESC website (see the “Data 
availability” section). The default method in MESC stratifies the 
genes by their cis-heritability. In addition to this approach, we 
used five gene lists as functional annotations, which include: all 
coding genes, genes near significant GWAS peaks [37], genes es
sential in mice [38–40], genes essential in cultured cell lines [41], 
genes with any disease association in ClinVar [42] and FDA- 
approved drug targets [43] from the Macarthur laboratory GitHub 
page (see the “Data availability” section).

Our findings revealed that the incorporation of gene func
tional annotations yielded higher average estimates of the pro
portion of heritability mediated by cis-eQTL (mean¼ 18.7%) than 
the default method (mean¼16.3%) (Fig. 8). In addition, we ob
served a strong correlation between the estimates from both 
methods [cor¼ 0.982, 95% CI ¼ (0.953–0.993)]. These results sug
gest that gene functional annotations might improve the perfor
mance of MESC. However, further investigations may be 
necessary to assess the impact of specific functional annotations 
and potential sources of bias in the results.

Discussion
We have performed a comprehensive investigation of how MESC 
is impacted by its strict independence assumptions and the im
perfect prediction of expression scores through both analytical 
and simulation studies. We found that MESC yields unbiased 

Table 3. Summary table of 20 complex traits in this study.

Trait Abbreviation Sample size PubMed ID

Attention-Deficit/Hyperactivity Disorder ADHD 53,293 30478444 [44]
Anorexia Nervosa AN 72,517 31308545 [45]
Autism Spectrum Disorder ASD 46,351 30804558 [46]
Asthma Asthma 385,822 31427789 [47]
Anxiety Disorder AXD 31,880 31116379 [48]
Breast Cancer BC 247,173 32424353 [49]
Body Mass Index BMI 806,834 30239722 [50]
Cognitive Performance CP 257,828 30038396 [51]
Crohn's Disease Crohn 40,266 28067908 [52]
Educational Attainment EA 765,283 35361970 [53]
Height Height 385,748 31427789 [47]
Heart Rate HR 361,411 31427789 [47]
Hypertension Hypertension 298,307 31427789 [47]
Inflammatory Bowel Disease IBD 59,957 28067908 [52]
Lung Cancer LC 85,716 28604730 [54]
Major Depressive Disorder MDD 500,199 30718901 [55]
Myasthenia Gravis Mg 51,453 Nealelab [56]
Schizophrenia SCZ 130,644 35396580 [57]
Type 2 Diabetes T2D 933,970 35551307 [58]
Ulcerative Colitis UC 45,975 28067908 [52]
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estimates of mediated heritability when the assumptions are sat
isfied or weakly violated, where the gene effect sizes or the non
mediated SNP effect sizes are similar in each gene or SNP 
category and the prediction of the expression scores is accurate. 
However, if the independence assumptions are strongly violated, 
which means that the effect sizes varied much in some gene or 
SNP categories, MESC will no longer be unbiased. Thus, it is 

crucial to identify gene and SNP categories that likely satisfy the 
independence assumptions to the greatest extent before per
forming MESC. However, the gene effect sizes and the nonmedi
ated SNP effect sizes underlying complex biological mechanisms 
are usually difficult to estimate. The gene effect sizes are based 
on GReX which are unobservable and the nonmediated SNP ef
fect sizes are hard to separate from mediated SNP effect sizes in 
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Figure 8. Comparison of the proportion of heritability mediated by cis-eQTL estimated by MESC using two different gene stratification methods. 
“Default” represents stratifying genes by their cis-heritability, while “Functional Annotation” represents additionally stratifying genes by functional 
annotations. Error bars represent jackknife standard errors.

Robustness of quantifying mediating effects | 13  



real data. The large number of genes and SNPs also make it chal
lenging to estimate the per-gene and per-SNP effect sizes. The 
choice of gene and SNP categories would therefore be highly 
based on the scientists’ experiences. MESC provides a default 
choice of gene categories based on the cis expression heritabilities 
and SNP categories based on baselineLD model [28, 31]. The 
baselineLD model may be more promising because SNPs are par
titioned by their functional annotations, although it is still un
known whether these annotations fit the independence 
assumptions. But the gene categories seem to be an ad hoc choice 
as there is no evidence showing that genes with similar cis-ex
pression heritabilities will have similar effects on traits. The 
MESC software provides options for users to self-define the gene 
and SNP categories in addition to the default categories. We rec
ommend that users carefully categorize genes or SNPs with simi
lar effect sizes based on their functional annotations from 
the literature.

Even if the gene and SNP categories are carefully chosen, we 
may still misspecify the model for MESC. In the past, methods for 
quantifying total genetic heritability like GCTA [30] and LDSC [25] 
share similar assumptions that all SNP effect sizes have the 
same variances. Previous studies have established consistency 
and convergence properties for those two methods under weaker 
assumptions [34, 59]. Although we found that MESC would lose 
its consistency when the assumptions are violated, there are op
portunities to find less strict conditions for its unbiasedness. For 
example, Equation (3) in the “Results” section could be such a 
condition, but it is computation-based and unverifiable. Further 
work is needed to understand the consistency of MESC.

Like most other eQTL methods, MESC highly relies on the ac
curacy of the gene expression data. However, the gene expression 
data are tissue- and context-specific, which means our estima
tion of the mediated heritability would only be tissue- or context- 
specific. We need to identify the causal tissues or contexts for 
complex traits before using MESC. Moreover, the expression level 
data may be contaminated [60], which further weakens the eQTL 
effect estimation results. Even if we have data collected from a 
well-designed eQTL study, the inevitable prediction errors of the 
expression scores likely lead to an underestimation of the medi
ated heritability. Therefore, we recommend the use of eQTL ef
fect estimates from a large cohort to reduce prediction errors and 
increase the accuracy of mediated heritability estimation.

Finally, the terminology used by MESC may be confusing. 
Although the estimators are named as “mediated” and 
“nonmediated” heritabilities, only cis-eQTLs are used for the cal
culation of expression scores. To obtain statistically significant 
estimators for “trans-mediated” heritabilities, a very large eQTL 
study is needed, which is unavailable for current datasets [20]. As 
a result, the heritability mediated by GReX will be underesti
mated as the “trans-mediated” part is currently missing, and we 
recommend users to carefully interpret the results of mediated 
heritability.

Despite these challenges, MESC still has great potential to 
help scientists understand the role of gene expressions in the as
sociation between genetic variants and complex traits. It pro
vides a framework with explicit modeling assumptions and 
efficient implementations and offers an opportunity to only use 
GWAS and eQTL summary statistics to infer how much the SNP 
effects are mediated through gene expression regulations. The 
definition of expression scores borrows ideas from “imputed” 
GReX [9], which enables distinguishing mediated effects from 
pleiotropic and linkage effects. If the genetic heritability medi
ated by cis-eQTLs is low, scientists may aim to collect data from 

other -omics platforms instead of putting more resources to 
eQTL studies to understand the molecular mechanism. It is also 
promising to find disease-relevant gene sets by the gene enrich
ment analysis based on their mediated heritability enrichment.

In future work, there are several possible extensions for MESC. 
First, as LDSC, which is used to estimate the total genetic herita
bility, can be extended to estimate the genetic correlation be
tween complex traits, MESC can also be extended to estimate the 
genetic correlation mediated by GReX. Second, as some eQTL 
methods can be extended for other QTL data, MESC may be ex
tended to analyze other omics data for the mediated effects 
quantification to uncover the biological processes of complex 
traits from other mechanisms.
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sources of GWAS summary statistics are summarized in Table 2. 
Gene sets can be found from the Macarthur laboratory (see 
https://github.com/macarthur-lab/gene_lists. The expression 
scores meta-analyzed over all tissues from GTEx v8 are available 
in MESC software website (see https://github.com/douglasyao/ 
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