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Abstract: High-mobility group protein 1 (HMGA1) participates in the processes of DNA transcription,
replication, recombination, and repair. The HMGA1 gene is expressed abundantly during embryoge-
nesis and is reactivated during carcinogenesis. HMGA1 gene expression has been associated with a
high degree of malignancy, metastatic tendency, and poor survival in breast, colon, ovary, and pan-
creatic cancers. However, its prognostic significance in lung cancer remains unclear. Using publicly
available data, HMGA1 was shown to be overexpressed in both small and non-small lung tumors,
with higher expression compared to both the adjacent non-malignant lung tissues and non-tumor
lung tissues of healthy individuals. Elevated HMGA1 expression could result from lowered HMGA1
methylation and was connected with some clinicopathological features like sex, age, and stage of the
disease. The high HMGA1 expression level was connected with shorter overall and first progression
survival time among lung adenocarcinoma patients, but not lung squamous cell carcinoma patients.
HMGA1 could interact with proteins involved in cellular senescence and cell cycle control (TP53,
RB1, RPS6KB1, and CDK1), transcription regulation (EP400 and HMGA2), chromatin assembly and
remodeling (LMNB1), and cholesterol and isoprene biosynthesis (HMGCR and INSIG1). Taken to-
gether, HMGA1 overexpression could be an essential element of lung carcinogenesis and a prognostic
feature in lung cancer.

Keywords: high-mobility group protein; methylation; prognosis; survival; protein–protein
interaction network

1. Introduction

Despite recent advances in the understanding of the molecular pathogenesis and
treatment of lung cancer, it remains one of the most commonly diagnosed and most deadly
neoplasms worldwide [1]. Among lung cancer patients, survival is strongly influenced
by the clinical stage. Unfortunately, due to the lack of efficient diagnostic methods, early
detection of cancer, when currently available treatment schemes are most effective, is rare.
The development of lung cancer is a multi-annual and multi-stage process that could be
initiated by several carcinogens, as well as by hormonal and genetic features [2,3]. However,
too little is still known about host factors facilitating the initiation and progression of tumor
development and determining the individual response to treatment. Thus, the search for
new, more effective, and precise molecular diagnostic and prognostic markers, as well as
drug targets, for lung cancer is an urgent need.

High-mobility group protein 1 (HMGA1) is a non-histone chromosomal protein in-
volved in the processes of DNA transcription, replication, recombination, and repair. As
the HMGA1 protein regulates gene expression and alters the structure of chromatin, it
has been described as an architectural transcription factor. It possesses three independent
domains (AT-hook) in its structure; these bind to the minor groove of the DNA double
helix in the regions of promoters and sequences enhancing the transcription of genes rich
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in AT sequences [4,5]. The HMGA1 gene is expressed abundantly during embryogenesis,
but at low or even undetectable levels in mature differentiated tissues [6]. The gene is also
reactivated during the process of cancer formation. HMGA1 overexpression has been noted
in in breast, colon, ovarian, and pancreatic cancer, among others [7]. For many malignant
neoplasms, the HMGA1 gene has been associated with a high degree of malignancy, re-
sistance to chemotherapy, metastatic tendency, and low patient survival [8]. Studies also
show that HMGA1 has oncogenic properties in cultured cells and transgenic mice, but how
the protein leads to neoplastic transformation is not fully elucidated [8,9].

The data about the role of the HMGA1 gene and its protein in lung cancer pathogenesis
and prognostication is also limited. Expression of both the HMGA1 gene and the HMGA1
protein has been found to be upregulated in various lung cancer cell lines in comparison
with normal human lung bronchial epithelium [10,11]. Correspondingly, higher expression
of the HMGA1 gene has been noted in most primary lung tumors compared to normal
lung tissue [10–12]. HMGA1 protein was found in an increased amount in metaplasia,
dysplasia, and carcinoma in situ of the bronchial epithelium [13]. High HMGA1 protein
expression in NSCLC tissue was connected with a higher TNM stage [14] and HMGA1
gene overexpression with shorter overall survival [11] and increased HMGA1 protein
levels [15] in tumor tissue among NSCLC patients. However, some contradictory findings
were also published [16]. Taken together, it appears that HMGA1 can play an important
role in pulmonary carcinogenesis and also could be a promising prognostic biomarker or
therapeutic target in lung cancer. However, the above-mentioned studies were conducted
in relatively small sample groups with different methodologies; as such, it is not possible
to draw clear conclusions about the significance of HMGA1 for lung cancer.

Therefore, the present study attempts to integrate data about HMAG1 gene expression
in lung cancer from several publicly available databases. A variety of bioinformatical
analyses were performed, including screening for HMGA1 expression levels across differ-
ent malignant tumors, comparing HMGA1 expression between lung cancer and normal
pulmonary tissue, evaluating the association between the level and lung cancer clinical
features and prognosis, and constructing a functional network of the HMGA1 protein.

2. Results
2.1. An Increase in HMGA1 mRNA Expression Level and HMGA1 Protein Amount Is Common
in Multiple Carcinomas

First, the differential expression of the HMGA1 between various cancers and noncancer-
ous tissues from healthy individuals was assessed via the Oncomine platform (Figure 1).
As shown in Figure 1, increased mRNA expression (red) was observed in most of the
analyzed cancers, e.g., in bladder, breast, ovarian, and gastrointestinal tumors. Eleven
of 34 analyses in 9 of 14 datasets collected in Oncomine found HMGA1 to belong to 10%
of the top overexpressed genes in lung cancer. A similar observation was made using
the TIMER2.0 database (Figure 2A) where lung cancer was found to be among the neo-
plasms most significantly overexpressing the HMGA1 (p < 0.001). Analysis of RNA-seq
data available via the TMNplot web tool produced similar results to those described above
(Figure 2B). These elevated mRNA expression levels were associated with an increase in
HMGA1 protein levels compared to non-cancerous tissue in the investigated cancer types
(Figure 3). One exception was renal clear cell carcinoma, where a decrease in HMGA1
protein was accompanied by a decline in HMGA1 mRNA expression.

2.2. HMGA1 Is Overexpressed in Lung Cancer in Comparison to Both Adjacent and Unpaired
Normal Lung Tissue

The TNMplot platform tool was used to compare the HMGA1 expression level between
paired lung cancer tumors and adjacent normal tissue collected from the same patients
and between non-paired tumors and normal lung tissues collected from separate subject
cohorts. Statistically significant overexpression of the studied gene was noted in the
cancerous tissue in comparison to both adjacent and unpaired lung tissue (p = 1.36 × 10 −29

and p = 8.66 × 10−54, respectively). Significantly higher HMGA1 expression was also stated



Int. J. Mol. Sci. 2022, 23, 6933 3 of 29

in both lung adenocarcinoma and squamous cell carcinoma compared to adjacent samples
(p = 5.19 × 10−10 and p = 1.66 × 10−9, respectively) and unpaired samples (p = 3.59 × 10−96

and p = 1.36 × 10−152, respectively).
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Figure 1. Differential mRNA level of HMGA1 in 20 types of cancer compared to matched normal 
tissue in the Oncomine. Significantly (p < 0.05) increased and decreased levels of HMGA1 are indi-
cated in red and blue, respectively. The intensity of cell color is determined by the best gene rank 
percentile for the analyses within the cell. The number in each cell represents the number of analyses 
that meet the given thresholds within the analysis and cancer types. 

 
Figure 2. HMGA1 expression levels in different cancer types compared to the corresponding normal 
tissue: (A) TIMER2.0; the statistical significance (p-value) computed by the Wilcoxon test is anno-
tated by the number of stars: * p <0.05; ** p <0.01; *** p <0.001; box plots in grey columns indicate 

Figure 1. Differential mRNA level of HMGA1 in 20 types of cancer compared to matched normal
tissue in the Oncomine. Significantly (p < 0.05) increased and decreased levels of HMGA1 are indicated
in red and blue, respectively. The intensity of cell color is determined by the best gene rank percentile
for the analyses within the cell. The number in each cell represents the number of analyses that meet
the given thresholds within the analysis and cancer types.

The right-sided bar charts in Figures 4 and 5 also provide a graphical representation
of the sensitivity and specificity of HMGA1 expression level at the major cut-offs set on the
base of the range of the HMGA1 expression level in normal samples. In lung cancer samples,
a combination of the highest sensitivity and specificity was found at the third quartile
cut-off when referencing adjacent normal tissue (Figure 4A) and at the median cut-off
when referencing unpaired normal tissue (Figure 5A). When the lung adenocarcinoma and
squamous cell carcinoma subtypes are analyzed individually, even better sensitivity and
specificity values were calculated at the third quartile cut-off, referencing both adjacent and
unpaired normal tissues (Figures 4B and 5B).
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Figure 2. HMGA1 expression levels in different cancer types compared to the corresponding normal
tissue: (A) TIMER2.0; the statistical significance (p-value) computed by the Wilcoxon test is annotated
by the number of stars: * p < 0.05; ** p < 0.01; *** p < 0.001; box plots in grey columns indicate cancer
types where data for matched normal tissue was available; red and blue box plots indicate tumor
and normal samples, respectively (B) TNMplot; cancer names where differences with p < 0.01 was
detected are typed in red.
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Figure 5. HMGA1 expression level in non-paired tumor and normal tissue by TNMplot. (A) Gene
chip data for lung cancer. (B) RNA-Seq data for adenocarcinoma and squamous cell carcinoma.

2.3. HMGA1 Is Widely Overexpressed in Different Histological Types of Lung Tumour

The histological characteristics of the lung cancer tissue substantially influence the
behavior of neoplastic cells, determine cancer prognosis, and direct treatment regimens
applied. Thus, we explored the HMGA1 mRNA expression data from Oncomine related
to small cell lung cancer, the main three subtypes of non-small cell lung cancer, and lung
carcinoids. Consistent HMAG1 overexpression was found across different non-small cell
lung cancer subtypes: adenocarcinoma (Figure 6A), squamous cell carcinoma (Figure 6B),
and large cell carcinoma (Figure 6C). HMGA1 upregulation was observed in small cell carci-
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noma, but without statistical significance (Figure 6D). Contrarily, no significant difference in
HMGA1 expression level was detected between lung carcinoid tumors and non-cancerous
lung tissue (Figure 6E).
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Figure 6. HMGA1 expression level in normal lung tissue and different histological subtypes of
lung neoplasm by Oncomine platform. The analysis is shown for (A) lung adenocarcinoma (Landi
Lung, Selemat Lung, Hou Lung), (B) squamous cell lung carcinoma (Bhattecharjee Lung, Hou Lung,
Yamagata Lung), (C) large cell lung carcinoma (Hou Lung), (D) small cell lung carcinoma (Garber
Lung), and (E) lung carcinoid tumor (Yamagata Lung).

The study also examined whether an increase in HMGA1 mRNA expression in lung
cancer is followed by an elevation of HMGA1 protein. Indeed, statistically significant
correlations found between mRNA expression score and protein abundance for lung
cancer data collected by cBioPortal. An increase in HMGA1 mRNA level was associated
with a proportional gain in the HMGA1 protein amount in both lung adenocarcinoma
(R Spearman 0.40, p < 0.001; R Pearson 0.45 p < 0.001; Figure 7A) and lung squamous cell
carcinoma (R Spearman 0.61, p < 0.001; R Pearson 0.54, p < 0.001; Figure 7B).

2.4. HMGA1 Expression Level in Lung Cancer Could Be Connected with Methylation Status but
Not with DNA Alterations of the HMGA1 Gene

HMGA1 overexpression observed at the mRNA level is a common feature of lung
cancer. One of the reasons for this may be changes in the sequence or the copy number
of the HMGA1 gene. Therefore, Oncoprint was generated by using cBioPortal to query
7276 patients/7799 samples from 27 studies (Figure 8A). It revealed that HMGA1 gene
alterations were stated in only 1.1% of lung cancer patients profiled for copy number
changes, mutations, and structural variants of the gene, namely in about 1.5% of lung
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adenocarcinoma and 0.5% of lung squamous cell carcinoma cases. Among them, the most
frequently detected were gene amplification, with deep deletions less frequently (Figure 8B).
The only mutation reported was the T75S missense mutation in lung adenocarcinoma
(Figure 8C). The data from Oncomine confirmed no substantial change in copy number
variation of HMGA1 across different lung cancer subtypes (Figure 9). However, plotting
HMGA1 expression level against copy number alterations clearly showed an increase in the
level from deep deletion to amplification (Figure 10A). A statistically significant positive
correlation was noted between HMGA1 expression level and log2 copy-number value
(R Spearman 0.24, p < 0.001; R Pearson 0.28, p < 0.001; Figure 10B).
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Figure 8. Genomic alterations of HMGA1 in lung cancer according cBioPortal. (A) Oncoprint of the
HMAG1 in lung cancer, (B) Incidence of different alterations according to NSCLC types, (C) Details
of HMGA1 missense mutation found in lung adenocarcinoma.

As mutations or copy number changes of the HMGA1 appear to occur rarely in lung
cancer, potential causes of HMGA1 overexpression were sought. Since DNA methylation
can change the gene activity without changing the sequence, the connection between
the HMGA1 expression level and DNA methylation profile in lung cancer was inspected
using cBioPortal. The significant negative correlation between the mentioned features
was stated (R Spearman −0.44, p < 0.001; R Pearson −0.37, p < 0.001; Figure 11A). The
results regarding HMGA1 promoter methylation yielded by the UALCAN database were
consistent with this association. For both the lung adenocarcinoma and lung squamous cell
carcinoma promoter, the methylation level was substantially lowered in the tumor tissue in
comparison to normal lung tissue (p < 0.001 for both cancer subtypes, Figure 11B).

2.5. HMGA1 Expression Level Is Connected with Selected Clinical Parameters in Lung Cancer

Many factors, including the extent of the spread of neoplastic cells in the body or
their histological differentiation, affect the outcome of lung cancer patients. Therefore, to
evaluate the clinical significance of the HMGA1 expression level in lung cancer, HMGA1
expression level was compared with selected clinicopathological features: age, sex, pop-
ulation affinity, smoking status, TNM stage, and nodal involvement separately in lung
adenocarcinoma (Figure 12A) and squamous cell carcinoma (Figure 12B) with the usage of
the UALCAN database.



Int. J. Mol. Sci. 2022, 23, 6933 10 of 29

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 29 
 

 

 
Figure 8. Genomic alterations of HMGA1 in lung cancer according cBioPortal. (A) Oncoprint of the 
HMAG1 in lung cancer, (B) Incidence of different alterations according to NSCLC types, (C) Details 
of HMGA1 missense mutation found in lung adenocarcinoma. 

 
Figure 9. HMGA1 copy number in normal lung tissue and different histological subtypes of lung 
neoplasm by Oncomine: (A) TCGA lung 2: 0. normal lung (n = 810), 1. acinar lung (n = 6), 2. lung 
adenocarcinoma (n = 261), 3. lung adenocarcinoma, mixed subtype (n = 67), 4. lung clear cell adeno-
carcinoma (n = 2), 5. lung mucinous adenocarcinoma (n = 6), 6. micropapillary lung adenocarcinoma 
(n = 3), 7. mucinous bronchioloalveolar carcinoma (n = 3), 8. non-mucinous bronchioloalveolar car-
cinoma (n = 9), 9. papillary lung adenocarcinoma (n = 10), 10. solid lung adenocarcinoma (n = 1), 11. 
squamous cell lung carcinoma (n = 348), 12. squamous cell lung carcinoma, basaloid variant (n = 8), 
13. squamous cell lung carcinoma, papillary variant (n = 2), 14. squamous cell lung carcinoma, small 
cell variant (n = 1); (B) Weiss lung: 0. normal lung (n = 59), 1. lung adenocarcinoma (n = 77), 2. squa-
mous cell lung carcinoma (n = 155). 

Figure 9. HMGA1 copy number in normal lung tissue and different histological subtypes of lung
neoplasm by Oncomine: (A) TCGA lung 2: 0. normal lung (n = 810), 1. acinar lung (n = 6),
2. lung adenocarcinoma (n = 261), 3. lung adenocarcinoma, mixed subtype (n = 67), 4. lung clear
cell adenocarcinoma (n = 2), 5. lung mucinous adenocarcinoma (n = 6), 6. micropapillary lung
adenocarcinoma (n = 3), 7. mucinous bronchioloalveolar carcinoma (n = 3), 8. non-mucinous
bronchioloalveolar carcinoma (n = 9), 9. papillary lung adenocarcinoma (n = 10), 10. solid lung
adenocarcinoma (n = 1), 11. squamous cell lung carcinoma (n = 348), 12. squamous cell lung
carcinoma, basaloid variant (n = 8), 13. squamous cell lung carcinoma, papillary variant (n = 2),
14. squamous cell lung carcinoma, small cell variant (n = 1); (B) Weiss lung: 0. normal lung (n = 59),
1. lung adenocarcinoma (n = 77), 2. squamous cell lung carcinoma (n = 155).
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Figure 12. Association between the HMGA1 expression level and selected clinical parameters: age,
gender, population affinity, smoking status, TNM stage, and nodal involvement in healthy individuals
and lung cancer patients. (A) lung adenocarcinoma patients. (B) lung squamous cell carcinoma
patients (UALCAN); * p < 0.05, ** p < 0.01, *** p < 0.001; the first layer-* right above the error bar
indicates comparison to the normal group, the above layers-* placed above a second line indicates
the comparison between corresponding groups covered by the line.

In lung adenocarcinoma, a significantly higher expression level was found in lung
adenocarcinoma patient groups aged between 41 and 60 years than 61–80 years (p = 0.0335).
No differences were found between any two of the remaining age groups. The HMGA1
expression level was not connected with the age of lung squamous cell carcinoma patients.
The higher expression level of the gene was consistently higher in men than women in
both lung adenocarcinoma (p = 0.0393) and lung squamous cell carcinoma (p = 0.0177).
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Population affinity did not give rise to any significant differences in the HMGA1 expression
in any of the analyzed subtypes of lung cancer.

In both lung adenocarcinoma and squamous cell carcinoma, the level of HMGA1
expression was the lowest in non-smokers, of intermediate value in reformed smokers, and
the highest in current smokers. In lung adenocarcinoma, statistically significant differences
were stated between the non-smoker group and any of the groups of reformed smokers
>15 years (p = 0.0004) and current smokers (p = 0.0000). There was also a difference in
the level between reformed smokers for <15 years and any of the groups of reformed
smokers for >15 years (p = 0.0006) and smokers (p = 0.0000). In squamous cell carcinoma,
only smokers and reformed smokers for <15 year groups differed significantly in HMGA1
expression level (p = 0.0217).

In lung adenocarcinoma, nodal status was not connected with the expression level of
the HMGA1. In squamous cell carcinoma, higher expression was noted in the N1 group
than in the N0 group (p = 0.0232); however, no significant differences were found between
other subgroups of patients. In both analyzed subtypes of lung cancer, some dissimilarities
in HMGA1 expression level were stated. In lung adenocarcinoma, the level was significantly
lower in stage I than in stages II (p = 0.0227) and III (p = 0.0023). In squamous cell carcinoma,
the HMGA1 expression level was lower in stage I than in stage II (p = 0.0330). Additionally,
in this subtype of lung cancer, the expression level in stage IV was significantly lower than
the level in the other three subgroups of different clinical stages: stage I (p = 0.0314), stage
II (p = 0.0314), and stage III (p = 0.0188).

Additionally, the gene chip data provided by TNMplot indicated significant differences
in HMGA1 expression level between normal lung tissue and lung cancer tissue-primary
and metastatic samples (p = 0.0000; Figure 13). The level was significantly lower in normal
tissue than in tissues of both primary tumors (p = 0.0000) and metastases (p = 0.0000). It
was also lower in primary tumors than in metastases (p = 0.0000).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 29 
 

 

  
Figure 13. The HMGA1 expression level in normal lung tissue and lung cancer tissue—primary and 
metastatic samples. Plot generated using TNMplot based on gene chip data. 

2.6. High HMGA1 Expression Is Related to a Poor Prognosis in Lung Cancer 
To evaluate the association between the HMGA1 expression level and the prognosis 

of lung cancer patients, a survival analysis was done using the Kaplan–Meier plotter. 
Lung cancer patients with high expression of the gene had a shorter overall (p < 1 × 10–16) 
and first progression (p = 1.7 × 10–6) survival time in comparison to the low expression 
group. As an association was found between the HMGA1 expression level and some clini-
copathological factors known to be determinants of patient survival, a survival analysis 
was performed restricted to subgroups of patients who differed with regard to sex, smok-
ing history, grade, stage, and histological type (Table 1).  

High HMGA1 expression level was connected with poor overall and first progression 
survival in both sexes and both analyzed smoking history states. The association between 
HMGA1 expression and overall and first progression survival was significant only in stage 
I but not in more advanced stages. Correspondingly, this connection was stated as signif-
icant in AJCC stage T 1 for overall and first progression survival, and AJCC stage T 2 for 
overall survival, but not in more advanced AJCC stages T. A high HMGA1 expression 
level was associated with poor overall survival in AJCC stages N 0 and N1 and with first 
progression survival in AJCC stages N1 and N2. In AJCC stages M0, the high expression 
level of the gene was connected with shorter overall, but not first progression, survival. 

A significant connection was observed between the HMGA1 expression level and 
overall survival times in lung adenocarcinoma (p = 4.7 × 10–08), but not in the lung squa-
mous cell carcinoma subtype (p = 0.2403; Figure 14A). The first progression survival anal-
ysis showed similar results (adenocarcinoma p = 0.0003, squamous cell carcinoma p = 
0.4168, Figure 14B). To validate these findings, the survival data of NSCLC, lung adeno-
carcinoma, and lung squamous cell carcinoma patients provided by the PrognoScan da-
tabase was compared (Table 2). For adenocarcinoma, a connection between HMGA1 ex-
pression level and overall survival was detected with Cox p-value < 0.1 in nine of fourteen 
different datasets, and between HMGA1 expression and relapse-free survival in one of 
two datasets. For squamous cell carcinoma, no association was found between HMGA1 
expression and neither overall nor relapse-free survival, based on the available six da-
tasets.  

  

Figure 13. The HMGA1 expression level in normal lung tissue and lung cancer tissue—primary and
metastatic samples. Plot generated using TNMplot based on gene chip data.

2.6. High HMGA1 Expression Is Related to a Poor Prognosis in Lung Cancer

To evaluate the association between the HMGA1 expression level and the prognosis of
lung cancer patients, a survival analysis was done using the Kaplan–Meier plotter. Lung
cancer patients with high expression of the gene had a shorter overall (p < 1 × 10−16)
and first progression (p = 1.7 × 10−6) survival time in comparison to the low expression
group. As an association was found between the HMGA1 expression level and some
clinicopathological factors known to be determinants of patient survival, a survival analysis
was performed restricted to subgroups of patients who differed with regard to sex, smoking
history, grade, stage, and histological type (Table 1).
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Table 1. Survival analysis of HMGA1 expression regarding selected clinicopathological factors in
lung cancer by Kaplan–Meier plotter.

Variable Overall Survival First Progression Survival

N Hazard Ratio p-Value N Hazard Ratio p-Value

Non-restricted analysis 1925 1.78 (1.57–2.03) <1 × 10−16 982 1.60 (1.32–1.94) 1.7 × 10−6

Grade
I 201 1.34 (0.93–1.92) 0.1101 140 1.21 (0.78–1.87) 0.4016

II 310 1.70 (1.24–2.34) 0.0009 165 1.33 (0.88–2.02) 0.1729
III 77 1.59 (0.82–3.07) 0.1676 51 0.68 (0.30–1.54) 0.3572

Histology
adenocarcinoma 719 1.93 (1.52–2.45) 4.7 × 10−8 461 1.79 (1.30–2.46) 0.0003

squamous cell carcinoma 524 1.15 (0.91–1.46) 0.2403 141 1.24 (0.74–2.07) 0.4168
Stage

I 577 3.01 (2.24–4.05) 2.3 × 10−14 325 1.48 (0.95–2.29) 0.0810
II 244 1.33 (0.92–1.92) 0.1239 130 0.91 (0.54–1.52) 0.7062

III 70 1.00 (0.57–1.74) 0.9962 19 NA NA
IV 4 NA NA 0 NA NA

AJCC stage T
1 437 1.66 (1.24–2.22) 0.0005 177 1.75 (1.04–2.93) 0.0318
2 589 1.33 (1.07–1.67) 0.0108 351 1.19 (0.88–1.60) 0.2636
3 81 1.15 (0.70–1.89) 0.5938 21 1.89 (0.71–5.07) 0.1968
4 46 1.47 (0.78–2.77) 0.2355 7 NA NA

AJCC stage N
0 781 1.39 (1.12–1.71) 0.0023 374 1.31 (0.95–1.81) 0.1046
1 252 1.38 (1.01–1.88) 0.0455 130 1.53 (0.97–2.42) 0.0640
2 111 1.23 (0.82–1.84) 0.3076 51 2.47 (1.20–5.08) 0.0110
0 781 1.39 (1.12–1.71) 0.0023 374 1.31 (0.95–1.81) 0.1046

AJCC stage M
0 681 1.46 (1.18–1.79) 0.0004 195 1.35 (0.82–2.25) 0.2375
1 10 NA NA 0 NA NA

Sex
female 714 2.08 (1.63–2.64) 1.1 × 10−9 468 1.40 (1.05–1.86) 0.0218

male 1100 1.59 (1.36–1.87) 7.6 × 10−9 514 1.61 (1.24–2.09) 0.0003
Smoking history

never-smokers 205 2.20 (1.22–3.69) 0.0071 193 1.73 (1.06–2.82) 0.0255
present or reformed

smokers 820 1.71 (1.38–2.11) 4.9 × 10−7 603 1.53 (1.20–1.96) 0.0006

High HMGA1 expression level was connected with poor overall and first progression
survival in both sexes and both analyzed smoking history states. The association between
HMGA1 expression and overall and first progression survival was significant only in stage I
but not in more advanced stages. Correspondingly, this connection was stated as significant
in AJCC stage T 1 for overall and first progression survival, and AJCC stage T 2 for overall
survival, but not in more advanced AJCC stages T. A high HMGA1 expression level was
associated with poor overall survival in AJCC stages N 0 and N1 and with first progression
survival in AJCC stages N1 and N2. In AJCC stages M0, the high expression level of the
gene was connected with shorter overall, but not first progression, survival.

A significant connection was observed between the HMGA1 expression level and over-
all survival times in lung adenocarcinoma (p = 4.7 × 10−8), but not in the lung squamous
cell carcinoma subtype (p = 0.2403; Figure 14A). The first progression survival analysis
showed similar results (adenocarcinoma p = 0.0003, squamous cell carcinoma p = 0.4168,
Figure 14B). To validate these findings, the survival data of NSCLC, lung adenocarcinoma,
and lung squamous cell carcinoma patients provided by the PrognoScan database was
compared (Table 2). For adenocarcinoma, a connection between HMGA1 expression level
and overall survival was detected with Cox p-value < 0.1 in nine of fourteen different
datasets, and between HMGA1 expression and relapse-free survival in one of two datasets.
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For squamous cell carcinoma, no association was found between HMGA1 expression and
neither overall nor relapse-free survival, based on the available six datasets.
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Figure 14. Kaplan–Meier survival curves based on HMGA1 expression level by Kaplan–Meier plotter:
(A) the overall survival for all lung cancer patients (n = 1925), lung adenocarcinoma patients (n = 719),
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Table 2. HMGA1 expression and survival data of lung cancer patients using the PrognoScan database.

Dataset Subtype End-Point * Probe ID N Cut-Point Cox p-Value HR [95% CI]

jacob-00182-CANDF LUAD OS 210457_x_at 82 0.32 0.1758 1.25
[0.90–1.73]

jacob-00182-CANDF LUAD OS 206074_s_at 82 0.48 0.0547 1.99
[0.99–4.03]

HARVARD-LC LUAD OS 39704_s_at 84 0.88 0.0073 1.67
[1.15–2.42]

jacob-00182-HLM LUAD OS 210457_x_at 79 0.80 0.5391 0.89
[0.60–1.30]

jacob-00182-HLM LUAD OS 206074_s_at 79 0.23 0.9811 1.00
[0.67–1.51]

MICHIGAN-LC LUAD OS L17131_rna1_at 86 0.20 0.0998 1.48
[0.93–2.35]

jacob-00182-MSK LUAD OS 206074_s_at 104 0.81 0.0235 1.83
[1.08–3.08]

jacob-00182-MSK LUAD OS 210457_x_at 104 0.83 0.0138 1.62
[1.10–2.37]
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Table 2. Cont.

Dataset Subtype End-Point * Probe ID N Cut-Point Cox p-Value HR [95% CI]

GSE13213 LUAD OS A_23_P42331 117 0.11 0.0606 0.34
[0.11–1.05]

GSE13213 LUAD OS A_24_P222043 117 0.81 0.0151 1.35
[1.06–1.73]

GSE31210 LUAD OS 210457_x_at 204 0.68 0.1824 0.74
[0.48–1.15]

GSE31210 LUAD OS 206074_s_at 204 0.61 0.0056 2.01
[1.23–3.29]

jacob-00182-UM LUAD OS 210457_x_at 178 0.60 0.6309 1.06
[0.83–1.35]

jacob-00182-UM LUAD OS 206074_s_at 178 0.66 0.0627 1.39
[0.98–1.96]

GSE31210 LUAD RFS 210457_x_at 204 0.35 0.5440 0.90
[0.63–1.27]

GSE31210 LUAD RFS 206074_s_at 204 0.78 0.0000 2.34
[1.62–3.37]

GSE4573 LUSC OS 206074_s_at 129 0.37 0.1601 1.45
[0.86–2.45]

GSE4573 LUSC OS 210457_x_at 129 0.20 0.4697 1.13
[0.81–1.59]

GSE17710 LUSC OS 32619 56 0.84 0.8742 1.06
[0.53–2.09]

GSE17710 LUSC OS 29455 56 0.73 0.6085 0.80
[0.35–1.85]

GSE17710 LUSC OS 39302 56 0.55 0.6607 1.10
[0.72–1.66]

GSE17710 LUSC RFS 39302 56 0.55 0.6389 1.10
[0.74–1.64]

GSE17710 LUSC RFS 32619 56 0.79 0.8784 0.95
[0.48–1.89]

GSE17710 LUSC RFS 29455 56 0.11 0.6048 0.82
[0.38–1.77]

* OS—overall survival, DSS—disease-specific survival, RFS—relapse-free survival.

2.7. HMGA1 Protein Interacts with Proteins Involved in Cellular Senescence and Ageing, Cell
Cycle Control, Transcription Regulation, Chromatin Assembly/Remodelling, and Cholesterol and
Isoprene Biosynthesis

Lastly, to understand the importance of HMGA1 for the carcinogen process, the study
examined the proteins that interact with HMGA1 and the related cellular processes. An
HMGA1-centered protein–protein network was constructed using the STRING online tool.
Interactors predicted with a confidence score of at least 0.700 are presented in Figure 15.
The top functional partners of the HMAG1 protein, predicted with the highest confidence,
were cellular tumor antigen p53 (TP53, score = 0.986), lamin-B1 (LMNB1, score = 0.923),
retinoblastoma-associated protein (RB1, score = 0.915), ribosomal protein S6 kinase beta-1
(RPS6KB1, score = 0.904), and E1A-binding protein p400 (EP400, score = 0.900).

Clustering of the generated PPI network revealed three clusters of interacting proteins
(Figure 16). Functional enrichment analysis against gene ontology found the network to
be mostly enriched in cellular senescence and cell ageing, cell cycle control, transcription
regulation, chromatin assembly and remodeling, cholesterol and isoprene biosynthesis
for biological processes, and significantly enriched in chromatin and nucleoplasm for
cellular components.
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Figure 16. Clustered protein-protein interaction network of the HMGA1. Edges of clusters were
indicated by dotted lines.

TCGA and TGEx data provided by the GEPIA platform was used to analyze the
correlation between HMGA1 expression level and those of genes coding revealed protein
interactors in lung adenocarcinoma, lung squamous cell carcinoma, and normal lung cancer
tissue (Table 3). The strongest positive correlation was found for CDK1 (RS = 0.61) and
LMNB1 (RS = 0.54) in lung adenocarcinoma. The expression levels of EP400, HMGB2, CDK1,
PPARG, and MVK were found to be significantly correlated with HMGA1 expression level
in both analyzed cancer subtypes but not in non-cancerous tissue of the lung. Expression
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levels of the GGPS1 and PMVK genes were only significantly correlated with HMGA1
expression in lung adenocarcinoma.

Table 3. Correlation between expression levels of the HMGA1 and the genes coding putative in-
teracting proteins in lung adenocarcinoma, lung squamous cell carcinoma, and normal lung tissue.
Calculated by GEPIA.

Lung Adenocarcinoma Lung Squamous Cell Carcinoma Normal Lung Tissue

R
Spearman p-Value R

Spearman p-Value R
Spearman p-Value

C6orf1 0.02 0.72 0.21 3.30 × 10−6 0.21 0.00027
CEBPB 0.17 1.8 × 10−4 −0.21 2.4 × 10−6 0.27 3.9 × 10−6

EP400 0.21 2.2 × 10−6 0.26 3.10 × 10−9 −0.09 0.13
HMGB2 0.39 1.10 × 10−18 0.25 4.20 × 10−8 −0.06 0.33
LMNB1 0.54 8.70 × 10−38 0.38 6.10 × 10−18 0.43 2.10 × 10−14

RPS6KB1 0.31 3.90 × 10−12 0.26 8.90 × 10−9 0.10 0.081

CDK1 0.61 3.00 × 10−50 0.27 2.80 × 10−9 0.06 0.35
CREBBP 0.08 0.073 0.18 5.00 × 10−5 −0.27 3.30 × 10−6

HMGA2 0.31 2.00 × 10−12 0.24 8.70 × 10−8 0.18 0.002
PPARG 0.20 6.00 × 10−6 0.15 8.00 × 10−4 −0.02 0.062

RB1 0.03 0.54 −0.04 0.41 −0.07 0.25
TP53 0.01 0.77 0.18 6.90 × 10−4 0.08 0.19

INSIG1 0.12 9.40 × 10−3 0.13 5.20 × 10−3 0.29 8.2 × 10−7

FDFT1 0.01 0.81 0.22 5.60 × 10−7 0.28 1.40 × 10−6

FDPS 0.30 1.30 × 10−11 0.25 2.90 × 10−8 0.2 5.00 × 10−4

GGPS1 0.10 0.029 0.04 0.44 −0.01 0.9
HMGCR 0.23 2.00 × 10−7 0.22 1.50 × 10−6 0.25 2.10 × 10−5

MVD 0.19 2.60 × 10−5 0.18 7.20 × 10−5 0.37 5.00 × 10−11

MVK 0.12 0.0083 0.19 1.50 × 10−5 −0.01 0.88
PMVK −0.09 0.042 0.00 0.98 −0.01 0.9

3. Discussion

In 1983, Lund et al. [17] discovered HMGA1 expression in cervical cancer HeLa
S3 cells. Since then, an elevated expression of the protein or HMGA1 gene has been
confirmed in many cancers of epithelial and mesenchymal origin, e.g., breast cancer [18],
gastric cancer [19], lung cancer [20], or glioblastoma [21]. The present study used big
data to screen for HMGA1 expression levels in various types of cancers. Its findings
largely support the previously published observation that HMGA1 overexpression is a
common feature of cancers, even those with distinct tissue origins: tumors of the head
and neck, breast, gastrointestinal, and reproductive system, as well as melanoma and
lymphomas, demonstrated elevated HMGA1 expression in comparison to non-cancerous
tissue, followed by an increase in HMGA1 protein. Surprisingly, a few exceptions were also
noted; for example, in kidney chromophobe and renal clear cell carcinoma, the HMGA1
was underexpressed. This suggests the presence of distinct gene expression regulation
mechanisms in these types of cancer. Indeed, tissue-specific upstream and downstream
regulation of HMGA1 was described in head and neck, thoracic, reproductive system
cancer, and other abdominal tumors [8]. Taken together, the deregulation of HMGA1
expression appears to be a hallmark of cancer and implies that HMGA1 plays an essential
role in carcinogenesis. but the mechanisms in which the expression is changed during
carcinogenesis remain unclear.

Earlier research showed higher expression of the HMGA1 gene in lung tumors than in
the normal lung tissue [10–12]. Our present reanalysis using currently available data by
Oncomine and TNMplot found that HMGA1 is overexpressed in lung cancer in comparison
to unpaired normal lung tissue and to the non-cancerous tissue adjacent to the tumor. The
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data published so far cannot conclusively indicate that HMGA1 expression differs between
different histological subtypes of lung cancer. Upregulation of HMGA1 gene expression
has been reported in both adenocarcinoma and squamous cell carcinoma of NSCLC [20],
and HMGA1 protein was detected in a high proportion of lung cancer tumors irrespective
of the histological type [13]. No major differences in HMGA1 gene or protein expression
were reported between different NSCLC subtypes by Zhang et al. [14] and Zhang et al. [15].
However. Lin and Peng [16] detected higher levels of HMGA1 protein in the squamous
cell carcinoma subtype compared to adenocarcinoma. Our present analysis of the various
large datasets provided by Oncomine showed that HMGA1 upregulation in a common
phenomenon, concerning not only adenocarcinoma and squamous cell carcinoma but also
large and small cell carcinomas of the lung. In addition, the HMGA1 expression level
was positively correlated with HMGA1 protein abundance in both lung adenocarcinoma
and lung squamous cell carcinoma. Most likely, re-expression of the HMAG1 gene occurs
at the early stages of carcinogenesis in the lung and increases as the process progresses.
HMGA1 protein has been found to be present in increased amounts in metaplasia, dysplasia,
and carcinoma in situ of the bronchial epithelium [13]. These findings raise the question
of whether HMGA1 could be useful in distinguishing between normal and neoplastic
lung tissue. For example, early research demonstrated that HMGA1 expression could
be useful in differentiating between thyroid follicular carcinoma and adenoma [22]. Our
TMNplot analysis indicates that the HMGA1 expression level could discriminate with good
sensitivity and specificity between cancerous and adjacent non-cancerous tissues in both
lung adenocarcinoma and squamous cell carcinoma. Thus, it could be concluded that the
HMGA1 expression level could be a lung cancer biomarker.

With HMGA1 overexpression being a common feature of lung cancer, the study then
examined the molecular mechanisms responsible for its upregulation. Further research
showed that growth factors, cancer-associated mutations (KRAS, mutated APC), or cancer-
related transcription factors (cMYC) could up-regulate HMGA1 in specific contexts [23].
Little is known about the role of HMGA1 mutations in determining the function and
expression level of the HMGA1 in cancer. In invasive triple-negative breast cancer cells,
mutating the three HMGA1 serines (99, 102, and 103) phosphorylated by casein kinase
2 (CK2) results in decreased HMGA1 secretion and disrupts the invasive properties of the
cell line [24]. Mutation of serine 102 of HMGA1, a CK2 phosphorylation site, was found
to restore the efficacy of gefitinib through the reactivation of the downstream signaling
pathway of EGFR in drug-resistant NSCLC cells [25].

Our own analysis of the data provided by cBioPortal found that the genomic alterations
of the HMGA1 gene occur very rarely in lung cancer tissue. Collective frequency of gene
amplification, gene deletion, and point mutation slightly exceeded 1% of 7276 analyzed
lung cancer cases and the detected alterations were restricted to adenocarcinoma and
squamous cell carcinoma subtypes. This is in agreement with Klett et al. [26], who showed
that HMGA1 was among the top 5% of more than 19,000 genes, with the lowest mutation
frequency analyzed in more than 9000 cancerous samples from TCGA. As could be expected,
a positive correlation was found between HMGA1 expression level and the copy number
of the gene. However, the low occurrence of HMGA1 amplification or point mutation in
lung cancer excludes the possibility that genomic alterations of HMAG1 are responsible
for the common overexpression of HMGA1 in this type of tumor. In contrast, a negative
correlation was found between the mRNA expression level and the DNA methylation
profile of HMGA1 in lung cancer.

TCGA data provided by the UALCAN platform indicated that the HMGA1 promoter
methylation level was significantly decreased in both lung adenocarcinoma and lung
squamous cell carcinoma tissue in comparison with normal lung tissue. Another study
based on TCGA data by Klett et al. [26] demonstrated that hypomethylation of 9 from
21 analyzed CpGs in HMGA1 was an indicator of increased gene expression in breast
cancer, lung adenocarcinoma, and thyroid cancer. HMGA, as one of the pluripotency-
related genes, acquired 5-methylcytosines in their promoters, which were repressed during
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differentiation of human embryonic stem (hES) cells into ventral midbrain-type neural
precursor cells and then into dopamine neurons. Promoter methylation was preserved
to maintain a silencing state [27]. It also was shown that HMGA1 was suppressed in hep-
atocellular carcinoma cells by human menstrual-blood-derived stem cells via amending
5-hydroxymethylcytosine and 5-methylcytosine abundance at its regulatory region [28].
Considering the above. the HMGA1 gene may be a potential candidate for DNA methyla-
tion targeting anti-cancer therapy.

Our findings indicate some connection between HMGA1 expression and the sex and
smoking history of lung cancer patients. While Lin and Peng [16] report that tissue HMGA1
expression was more frequently observed in men than women, this was contradicted by
Zhang et al. [14] and Zhang et al. [15]. In our study, the HMGA1 expression level was
consistently higher among men in both lung adenocarcinoma and lung squamous cell
carcinoma. The gender-specific biological and clinical features of lung cancer have been
described previously [29,30], suggesting that lung cancer in women and men are distinct
entities, mainly because of the involvement of genetic alterations and hormonal factors.
Rouquetta et al. [3] observed a higher rate of EGFR mutations in women. ER and EGFR
were also expressed more frequently in women and there was a positive link between the
expression of EGFR and of ER. As HMGA1 is an upstream negative regulator of the EGFR
signaling pathway [25], it could be speculated that gender-specific HMGA1 expression
influences lung cancer cell behavior.

Among NSCLC patients, ever-smokers demonstrate higher overall mortality than
never-smokers, and current smoking is an independent risk factor for a poorer progno-
sis [31]. Our present data suggests some differences in HMGA1 expression levels related to
smoking status. Generally, the level of HMGA1 expression tends to be the lowest in non-
smokers, of intermediate value in reformed smokers, and the highest in current smokers in
both lung adenocarcinoma and squamous cell carcinoma. However, in the lung adenocarci-
noma group, statistically significant differences were noted between the non-smoker group
and both reformed smokers >15 years and current smokers. Jung et al. [32] compared TCGA
data for the smoker’s lung adenocarcinoma and normal lung tissue; the analysis found that
HMGA1 is one of six genes up-regulated in LUAD, and simultaneously inversely correlated
with DNA methylation level. Borderline differences in CpG methylation of HMGA1 have
been noted between smoking and never-smoking lung adenocarcinoma patients based on
validation of clinical samples. Since cigarette smoke affects DNA methylation and thus is a
critical factor in the development of lung cancer [33,34], it may, at least partially, account
for the observed differences in HMGA1 expression levels associated with smoking habits.

The significant role played by HMGA1 expression in promoting growth, invasive-
ness, and migration of lung cancer cells in vitro has been confirmed [11,35]. Similarly,
in the present study, HMGA1 expression level was found to increase from non-tumor
lung tissue through lung primary tumor to lung cancer metastasis. Zhang et al. [14] and
Zhang et al. [15] report that high HMGA1 protein expression in NSCLC tissue was associ-
ated with tumor size, the presence of lymph node and distant metastases, and with higher
advancement according to the TNM classification. Although differences were noted in the
expression level between patients of different nodal statuses and stages of the disease in the
present study, the observed differences were restricted to one histological subtype of lung
cancer or to particular states of the analyzed factor. A connection was observed between
HMGA1 expression level and nodal status in lung squamous cell carcinoma but not in lung
adenocarcinoma, and the only significant difference in level was observed between N0 and
N1 cases. An increase in the median HMGA1 expression level was stated between stage
I and stages II and III in adenocarcinoma, and between stages I and II in squamous cell
carcinoma. Contrary to expectations, no further increase in the median level was detected
in the most advanced IV stage, probably because of the relatively low number of cases in
this stage.

Zhang et al. [14] found high HMGA1 protein expression to be associated with a
shorter survival time and was stated as an independent negative prognostic factor in
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NSCLC patients. No such correlation was observed by Lin and Peng [16]. In the present
study, survival analysis indicates the high HMGA1 expression level is connected with poor
survival of lung cancer patients. Overall and first progression survival of lung cancer
patients was shorter when HMGA1 expression was high, according to the Kaplan–Meier
plotter. However, survival analysis in the context of clinicopathological factors suggests
that the association between HMGA1 expression and survival rate may be limited to
specific subgroups of patients. For example, a high expression level of the HMGA1 gene
was connected to an increased risk of death in stage I patients but not in stage I or II.
Similarly, the mentioned connection was detected in the adenocarcinoma subtype but
not in squamous cell carcinoma of the lung. This is in line with the early findings of
Sarhadi et al. [13], who report a correlation between the nuclear expression of the HMGA1
protein and shorter survival time among patients with lung adenocarcinoma but not
squamous cell carcinoma. It is most likely that the effect of the HMGA1 on the progression
of lung cancer is dependent on some other factors. For instance, Zhang et al. [15] stated the
increased amount of HMGA1 protein found in NSCLC tissue was connected with shorter
overall survival compared to patients with a low amount of HMGA1. However, the amount
of HMGA1 protein in cancer tissue was correlated with the amount of FOXM1 and G6PD.
The proteins form a common pathway of transcriptional regulation with HMGA1 and were
similarly associated with TNM stage and overall survival.

To identify molecular contributors of HMGA1 that could mediate or assist its function
during carcinogenesis in lung tissue, a functional network was created. HMGA1 was found
to cooperate with proteins that can be grouped into three functional clusters. The first
cluster was mostly enriched by protein involved in transcriptional regulation and chromatin
assembly and remodeling (C6orf1, CEBPB, EP400, HMGB2, LMNB1, and RPS6KB1). For
most of these proteins, there is some evidence that they are concerned with neoplastic
transformation in the lung. Ribosomal proteins S6 kinase B1 (RPS6KB1, p70S6K) are critical
components of mTOR signaling, that have been found to increase the growth of NSCLC
cells in vivo and inhibit tumor metastasis through repression of epithelial-mesenchymal
transition [36]. The AMPK-CEBPB-PDL1 signaling pathway enhances the proliferation of
NSCLC cells [37]. Lamin B1 is overexpressed in lung adenocarcinoma cells and promotes
the proliferation of lung cancer cells via the AKT pathway [38]. p400 is an important
mediator of downregulation of EGFR and apoptosis induced by E1A protein of human
adenovirus [39]. By sharing a functional connection with the mentioned protein, HMGA1
could be involved in the most important signaling pathways driving lung carcinogenesis.
Additionally, we found the expression level of HMGA1 to be positively correlated with the
expression of HMGB2 and EP400 genes in both lung adenocarcinoma and lung squamous
cell carcinoma but not in normal lung tissue, which could suggest that co-expression of
these genes may be crucial for malignant transformation.

Functional enrichment analysis indicated that the second cluster within the built PPI
network is an assembly of proteins involved in cellular senescence and cell cycle control
(TP53, RB1, CDK1, CREBBP, PPARG, and HMGA2). Previously, bioinformatics analyses
conducted by Zhou et al. [40] found TP53 and HMGA1 to be two of the main 10 genes
belonging to the miRNA-gene interaction network, and may be crucial in the pathogenesis
of NSCLC. However, the proteins are also believed to be engaged in other cellular processes
essential for lung neoplastic transformation, such as cell adhesion, invasion and migration.
For example, CDK1 positively regulated the stemness of lung cancer cells [41] and medi-
ated the signaling for proliferation, invasion, and migration in NSCLC cells [42]. Loss of
CREBBP drives tumorigenesis in SCLC by reducing histone acetylation and transcription of
cellular adhesion genes [43]. Activation of PPARG expression may inhibit the progression of
LSCC through the regulation of LSCC upstream regulators and downstream marker genes
involved in tumor cell proliferation and protein polyubiquitination/ubiquitination [44].
Additionally, CREB binding protein (CREBBP) directly influences the HMGA1 function.
Munshi et al. [45] demonstrated CREBBP acetylate HMGI(Y) modulating IFN-beta tran-
scriptional regulation. Our present findings indicate that the HMGA1 gene expression
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level correlated with expression of both CDK1 and PPARG in lung adenocarcinoma and
squamous cell carcinoma but not in normal lung tissue; this supports the findings that the
interaction the HMGA1 with these CDK1 and PPARG are important for lung carcinogenesis.

Proteins involved in cholesterol, mevalonate, and isoprene biosynthesis (FDFT1, FDPS,
GGPS1, HMGCR, MVD, MVK, PMVK, and INSIG1) were revealed to be HMGA1 interactors.
An association between HMGA1 and adipogenesis has been described earlier. HMGA1
has been found to play an essential role in adipocytic cell growth and differentiation
in murine 3T3-L1 adipocytes [46]. Reduced fat mass and impaired adipogenesis were
demonstrated in transgenic mice overexpressing HMGA1 in both white and brown adipose
tissues compared to wild-type mice [47]. In humans, the HMGA1 IVS5-13insC variant
(rs146052672), which resulted in a decrease in mRNA and protein levels of HMGA1,
was significantly associated with metabolic syndrome and negatively correlated with
serum HDL-cholesterol [48,49]. The variant was also connected with the elevated risk of
acute myocardial infarction independently of diabetes mellitus type 2 and other classic
cardiovascular risk factors like gender, hypertension, and obesity [50]. There is some
evidence that the relationship between the HMGA1 and cholesterol biosynthesis may be
significant in neoplastic transformation. Our findings indicate that the MVK, GGPS1 and
PMVK expression was correlated with HMGA1 gene expression in lung cancer tissues,
but not in normal lung tissue. Previously, Treff et al. [51] demonstrated that cholesterol
biosynthesis genes are decreased in human MCF-7 mammary adenocarcinoma cells with
HMGA1a-induced overexpression. Simultaneously, total cholesterol was significantly
depleted and sensitivity to epidermal growth factor activation of ERK phosphorylation
was significantly elevated in cells overexpressing HMGA1a.

Taken together, the findings from the bioinformatical analysis indicate that elevated
HMGA1 expression is a common feature of many malignant tumors, including lung cancer.
HMGA1 overexpression in lung cancer could result from reduced HMGA1 methylation
and this is connected with some clinicopathological features and adverse prognosis of lung
cancer patients. HMGA1 could be an essential element of lung carcinogenesis through the
interaction with proteins involved in e.g., cell cycle control, transcription regulation, and
cholesterol and isoprene biosynthesis. Considering the carcinogenic properties of HMGA1
and its connection with poor prognosis in many types of cancer, some approaches were
previously made to invent an in vitro diagnostic kit to quantitatively determine the amount
of HMGA1b in peripheral blood of cancer patients [52]. In light of the results of our analysis,
the evaluation of HMGA1 expression level may be of great value in the management of
lung cancer patients. Especially, the possibility to identify very little amounts of HMGA1
transcripts directly in the blood specimens could either allow for early diagnosis or the
monitoring of the efficacy of lung cancer therapy. Moreover, HMGA1 protein-targeted
therapies based on aptamers or antisense RNA, as well as HMGA1 gene inhibitors, were
developed to slow down the proliferation of cancer cells or to increase their sensitivity to
chemotherapy [9]. High expression levels of HMGA1 mRNA in lung tumors and relatively
low expression levels in non-cancerous tissue of the lung allow us to assume that such
therapies would have clinical advantages in lung cancer because of presumed low toxicity
toward healthy cells.

4. Materials and Methods
4.1. Gene Expression Analysis
4.1.1. Oncomine

The Oncomine database [53] (https://www.oncomine.org, accessed on 1 January
2022) was used: (1) to analyze the HMGA1 mRNA expression level in a variety of human
cancers, where threshold settings were as follows: gene ranking of the top 10%, change
≥ 2, p-value ≤ 1 × 10−4, and (2) to screen HMGA1 mRNA expression level in different
histological subtypes of lung cancer. All statistical methods and statistical values were
obtained directly from the mentioned database.

https://www.oncomine.org
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4.1.2. TIMER2.0

The Gene_DE module of the Tumor Immune Estimation Resource 2.0 [54] (http:
//timer.cistrome.org, accessed on 1 January 2022) was used to study the differential expres-
sion between tumor and adjacent normal tissues for HMGA1 gene across TCGA tumors.
The distributions of gene expression levels are displayed using box plots. The statistical
significance (p-value) was computed by the Wilcoxon test.

4.1.3. TMNplot

The TMNplot web tool [55] (https://tnmplot.com, accessed on 1 January 2022) was
used: (1) to display pan-cancer changes in HMGA1 expression based on RNA-seq data from
TCGA, genotype-tissue expression (GTEX), therapeutically applicable research to generate
effective treatment (TARGET); significant differences are typed red and marked with an
asterisk, (2) to compare HMGA1 expression level in lung cancer and non-tumor lung tissues
based on RNA-seq and DNA chip data. The normal and tumor samples were compared by
the Mann–Whitney U-test, matched tissues with adjacent samples were compared using
the Wilcoxon test. Normal, tumorous, and metastatic tissue gene comparison was analyzed
using the Kruskal–Wallis test and Dunn’s test.

4.2. Prognosis and Survival Analysis
4.2.1. Ualcan

TCGA data available on the UALCAN portal [56] (http://ualcan.path.uab.edu/index.
html, accessed on 1 January 2022) was used to validate the association between the HMGA1
expression level with selected clinical features in the lung adenocarcinoma and lung
squamous carcinoma. The results were presented in box-whisker plots with minimum,
q1, median, q3, and maximum values. The significance of the difference was estimated by
Student’s t-test considering unequal variance.

4.2.2. Kaplan–Meier Plotter

The Kaplan–Meier plotter [57] (http://kmplot.com/analysis/index.php?p=service,
accessed on 1 January 2022) was applied to evaluate the prognostic value of HMGA1
expression level for overall survival and first progression survival in lung cancer, lung
adenocarcinoma, and lung squamous cell carcinoma. Kaplan–Meier plots were drawn
using “HMGA1” as an input query, array quality control was set as “exclude biased arrays”;
patients were split by median; the desired Affy ID 206074_s_at was valid.

4.2.3. PrognoScan

The PrognoScan [58] (http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html, ac-
cessed on 1 January 2022) was used to evaluate the connection between HMGA1 expression
level and overall and relapse-free survival in lung adenocarcinoma and lung squamous cell
carcinoma. Cox p-values and hazard ratio with a 95% confidence interval were calculated
according to HMGA1 mRNA level (high vs. low).

4.3. DNA Alteration and Methylation of the HMGA1 Gene
4.3.1. cBioPortal

The genomic characteristics of HMGA1 in lung cancers were analyzed using the
cBioPortal for Cancer Genomics [59] (v3.7.28; http://www.cbioportal.org, accessed on 1
January 2022). Combined querying of 7276 patients/7799 samples from 27 studies was
performed. The incidence of different alterations of the studied gene was assessed in lung
cancer cases and, specifically, in NSCLC histological types. Additionally, the association
between HMGA1 mRNA expression level and copy number alteration, and between the
mRNA level of the gene and methylation beta-value (HM450, 492 cases), was analyzed.
Spearman’s and Pearson’s correlation coefficients were calculated.

http://timer.cistrome.org
http://timer.cistrome.org
https://tnmplot.com
http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
http://kmplot.com/analysis/index.php?p=service
http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html
http://www.cbioportal.org
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4.3.2. Oncomine

The Oncomine database [53] (https://www.oncomine.org, accessed on 1 January 2022)
was used to extract and analyze data about the copy-number alteration of the HMGA1 in
different histological subtypes of lung cancer.

4.3.3. UALCAN

TCGA data available on the UALCAN portal [56] (http://ualcan.path.uab.edu/index.
html, accessed on 1 January 2022) was used to compare the promoter methylation level
in the lung adenocarcinoma and lung squamous carcinoma and healthy lung tissue. The
boxplot represents beta values of CpG probes located up to 1500 bp upstream of the gene’s
start site. The beta value is the ratio of the methylated probe intensity to the sum of
methylated and unmethylated probe intensity. The beta value ranges from 0 to 1.

4.4. Protein Analysis
cBioPortal

Association between mRNA expression level vs. protein amount was assessed
with the cBioPortal for Cancer Genomics [59] (v3.7.28; http://www.cbioportal.org, ac-
cessed on 1 January 2022). Separate analysis for lung adenocarcinoma (querying 4159
patients/4309 samples from 12 studies) and lung squamous cell carcinoma (querying 1256
patients/samples from 4 studies) were conducted. Spearman’s and Pearson’s correlation
coefficients were calculated.

4.5. Interaction Network Analysis
4.5.1. STRING

The STRING database [60] (https://string-db.org/, accessed on 1 January 2022) was
used to build a protein–protein interaction (PPI) network querying the protein “HMGA1”
and organism “Homo sapiens”. The main parameters were set as follows: the minimum
required interaction score was 0.7 and no more than 50 interactors to show. K-means
clustering of the generated PPI network was performed with a pre-set of three clusters.

4.5.2. GEPIA

Correlation between HMGA1 expression level and expression level of the selected
genes was evaluated in TCGA and TGEx data provided by gene expression profiling interac-
tive analysis (GEPIA) [61] (http://gepia.cancer-pku.cn/index.html, accessed on 1 January
2022). Spearman’s correlation coefficient and p-values were calculated for each correlation.

4.6. Statistical Analysis

Computing the appropriate statistics was provided by data platforms utilized in
the present study. In the Oncomine database, Student’s t-test was used to analyze the
differential expression. The statistical significance was computed in the TIMER database
by the Wilcoxon test. In the TNM plot database, to assess the significance of the expression
level differences, the Mann–Whitney U test was used when two subgroups of samples
were compared. Meanwhile, the Kruskal–Wallis test, followed by the Dunn post hoc test,
was applied for analyzing the two-class differential expression analysis. When differences
in expression levels with respect to clinical parameters were analyzed by the UALCAN,
t-test assuming the unequal variance was calculated. Spearman and/or Pearson correlation
coefficients were estimated for analysis of gene–gene expression level by the GEPIA, gene-
to-protein expression level, gene expression-to-copy number value, and gene expression-
to-methylation profile by the cBioPortal. To compare survival curves, the log rank test and
hazard ratio (HR) with a 95% confidence interval (CI) were calculated. A univariate Cox
regression model was applied to calculate the HR and Cox p value in the PrognoScan. In
all above-mentioned analyses p < 0.05 was assumed to be significant.

https://www.oncomine.org
http://ualcan.path.uab.edu/index.html
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