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Abstract: To improve the recognition rate of chip appearance defects, an algorithm based on a
convolution neural network is proposed to identify chip appearance defects of various shapes and
features. Furthermore, to address the problems of long training time and low accuracy caused by
redundant input samples, an automatic data sample cleaning algorithm based on prior knowledge is
proposed to reduce training and classification time, as well as improve the recognition rate. First,
defect positions are determined by performing image processing and region-of-interest extraction.
Subsequently, interference samples between chip defects are analyzed for data cleaning. Finally, a
chip appearance defect classification model based on a convolutional neural network is constructed.
The experimental results show that the recognition miss detection rate of this algorithm is zero, and
the accuracy rate exceeds 99.5%, thereby fulfilling industry requirements.

Keywords: chip appearance defects; data cleaning; convolutional neural network; pattern recognition

1. Introduction

Due to the advantages of being noncontact, nondestructive, full field, and of high
precision, fringe projection profilometry (FPP) plays an important role in some academic
and applied fields, such as product inspection, reverse engineering, and computer ani-
mation, [1–5]. Recently, with the development of high-speed imaging sensors and digital
projection technology (e.g., the digital-light-processing module developed by Texas Instru-
ments), it is possible to reach a higher level of quality and speed [6,7]. For this reason,
researchers have started to expand the application domain of FPP to include, for example,
biomechanics, on-line inspection, human-computer interaction, robot navigation, and solid
mechanics [8].

Owing to the rapid development of information technology, electronic products are
ubiquitous in various areas pertaining to the national economy and all aspects of society.
Chips are basic carriers of electronic products. Because of equipment, environmental, and
human factors, defects are inevitable during chip production. After a batch is completed,
the chips are inspected visually to detect the appearance quality, something that pertains
to surface detection research. Although general methods and theories exist for surface
detection, owing to the significant differences in surface detection problems in different
application fields, different methods have been developed for specific research fields, these
include copper strip surface detection [1], gun barrel surface detection [2], fabric surface
detection [3], asphalt surface detection [4], and crankshaft surface detection [5].

The development of surface detection technology has resulted in increased attention
toward chip surface detection. Chiou et al. [6] detected defects including stains, scratches,
solder masks, and pinholes in ball-grid-array-type printed circuit boards (PCBs), and
classified the detected defects using a backpropagation neural network. Su et al. [7]
demonstrated a nondestructive inspection method for the defect detection of flip chips
using ultrasonic excitation and a laser scanning vibrometer. Tsai and Lin [8] proposed
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two entropy measures pertaining to chromatic and structural regularities for the surface
inspection of gold fingers on PCBs, and various defects such as pinholes, copper exposure,
nicks, and roughness were detected. Chang et al. [9] adopted a hybrid approach that
combined a referential approach for case-based reasoning and a rule-based approach to
construct an advanced PCB inspection system that can effectively detect defects in PCBs,
e.g., open circuits, short circuits, indentation, and particles. Huang et al. [10] proposed an
inspection algorithm composed of image segmentation and defect detection for detecting
defects on PCB circuitries, e.g., broken circuits, short circuits, pinholes, over-etching,
inadequate etching, and copper residue. Benedek [11] proposed a novel hierarchical
marked point process framework for optical scooping analysis in PCBs and incorporated
solder paste extraction and scooping error detection in a joint probabilistic approach.
Wang et al. [12] presented a method for PCB welding spot detection using a series of
image processing algorithms based on an automatic threshold segmentation algorithm
and computer morphology. The methods above can effectively detect defects on a chip
surface that are significantly smaller than the background area, and the defect features can
be effectively extracted. Owing to weak defects on the chip surface caused by low contrast
between the defects and background, as well as small defects, information regarding the
defect target, background, noise, etc. is within a narrow gray scale range and difficult to
distinguish, thereby complicating the automatic detection of chip surface defects.

Deep learning (DL) can approximate complex functions through multilayer networks
and learn the essential features of data from many sample sets. Since it’s introduction
by Hinton and Salakhutdinov [13] in 2006, DL has yielded significant achievements in
computer vision, speech recognition, natural language processing, and other fields. Owing
to the development of DL, surface detection methods based on DL have been actively inves-
tigated. Zhang et al. [4] proposed an efficient network architecture based on a convolutional
neural network (CNN), named CrackNet, for the automated detection of pavement cracks
on asphalt surfaces. Ren et al. [14] presented a generic DL-based automated surface inspec-
tion method including feature transfer from a pretrained DL network and the convolution
of a patch classifier over an input image; the method demonstrated favorable detection
capability on wood surface defects. Li et al. [3] proposed a Fisher-criterion-based stacked
denoising autoencoder framework, by which fabric patches were efficiently classified into
defect-free and defective categories. Mei et al. [15] proposed a novel approach known as
multiscale convolutional denoising autoencoder, which had different Gaussian pyramid
levels for detecting and localizing defects with defect-free samples for model training; the
approach is effective for homogeneous and nonregular textured surfaces.

In summary, DL can extract and combine the underlying features of samples to
identify hidden features, which are used widely in surface defect detection. Various types
of chip appearance defects exist, and any background changes will cause random changes
in the character and location of the defects. As such, a recognition method based on
general feature extraction cannot identify defects effectively. Therefore, a chip appearance
defect detection algorithm based on a CNN is proposed herein. The algorithm comprises
primarily three procedures: image preprocessing, accurate location of the region of interest
(ROI), and chip defect recognition.

The main contributions in this study are summarized as follows:

(1). An adaptive threshold segmentation algorithm based on light and shade coefficient is
proposed to improve the classical OSTU method [16] used to address the problem of
uneven ROI gray scales caused by pin frames, welding wire oxidation, and defects.
The results show that the improved OSTU method is robust and accurate for the
foreground of a large gray scale.

(2). A template-matching algorithm based on row and column statistical characteristics
is proposed to solve random deformations in frames and welding wires, as well as
the problem of epoxy resin with uneven distributions interfering with the extraction
results of the chip plastic encapsulation area. The results confirm the robustness, short
operating time, and high matching accuracy of the algorithm.
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(3). An automatic data sample cleaning algorithm based on prior knowledge is proposed
to fulfill the requirements of a large sample training network to ensure the accuracy
of the sample set and the minimum number of dirty samples. The results show that
data cleaning can effectively improve the reliability of the samples.

2. Principle

An image of the plastic encapsulation and pin sides of a chip is shown in Figure 1.
The chip comprised four components: a welding foot, a welding wire, an epoxy resin, and
a chip. The epoxy resin and chip constituted the enclosed area of the chip. This study
focused on the surface defect detection of the enclosed area. The overall algorithm for
chip appearance defect detection, as shown in Figure 2, comprised three procedures: (1)
image preprocessing (see Section 2.1), (2) ROI extraction (see Section 2.2), and (3) defect
recognition (see Section 2.3).
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2.1. Image Preprocessing

The image preprocessing performed in this study included two procedures: (1) Image
filtering and (2) threshold segmentation. Image filtering was performed to eliminate image
noise, whereas threshold segmentation was performed to convert grayscale images into
binary images.
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2.1.1. Image Filtering

The chip image noise was primarily caused by fine dust on the pin frame. Therefore, a
median filter was adopted to de-noise the fine dust while maintaining the detailed features
of the image as much as possible. The median filtering formula is expressed as follows:

G(x, y) = med{F(x− k, y− l), (k, l ∈W)}, (1)

where F(x, y) is the original image, G(x, y) the processed image, and W a two-dimensional
template. In this study, W was a 5 × 5 kernel.

2.1.2. Threshold Segmentation

The solder oxidation of the pin frame and welding wire, as well as the uneven distribu-
tion of the epoxy and resin resulted in a gradient in the gray level in the bright/dark field
of the pin side of the chip image. As shown in Figure 3, in the dark field, the gray histogram
exhibited poor contrast, and the welding feet, expected as the foreground, indicated a
lower gray level in the gray histogram owing to uneven oxidation. Conversely, in the
bright field, the welding feet, welding wires, and pins as the foreground indicated high
contrast to the background. Moreover, the gray distribution for the plastic package side of
the chip image in the bright and dark fields was the same as that at the pin side, as shown
in Figure 4. Therefore, the classic OSTU was improved in this study as follows: The bright
and dark fields were assessed adaptively based on the average gray level of the gray image.
An adaptive coefficient k was added to Equation (2) to improve the mean gray values of
the welding pins, welding wires, and pins in the whole image, where k depends on the
mean gray value of the entire image, represented by u′.{

u′ = w0u0 + kw1u1
u = w0u0 + w1u1

k =

{
1 u > 50
50
u u ≤ 50

. (2)

In the above, w0u0 and w1u1 are the probability/mean of the background and fore-
ground, respectively. Figure 5 shows the corresponding binary images of the threshold
segmentation by the classical and improved OSTU methods, and it can be concluded that
the improved OSTU method can effectively distinguish the foreground and background in
dark field images.
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2.2. ROI Extraction

To extract the plastic-sealed region from the chip image, template-matching local-
ization should be performed. The classic template-matching methods primarily include
the mean absolute differences algorithm, sum of absolute differences algorithm (SAD),
sum of squared differences (SSD), mean square differences (MSD), and normalized cross
correlation algorithm (NCC). The SAD and SSD, which are based on pixels, have high
complexity, and are easily disturbed by noise. Standard deviation is introduced into the
NCC such that the global gray level in the image will not be easily disturbed. Therefore, an
improved NCC was adopted in this study for template matching.

In some chips, the epoxy resin was unevenly distributed, as shown in Figure 6. The
resulting white area after threshold segmentation was in contact with the chip; this hindered
the template matching of the chip plastic-sealed region. Therefore, the projection statistical
characteristics of columns and rows can be adopted for ROI extraction to not only overcome
the significant amounts of computation in per-pixel feature extraction, but also to preserve
the regional statistical features of the plastic-sealed area. A flowchart of the improved NCC
template-matching algorithm for ROI extraction is shown in Figure 7.
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The mathematical description of the improved NCC template-matching algorithm
based on the projection statistical features of the columns or rows is as follows:

R(i) = ∑M
m=1 Si(m)Ti(m)√

∑M
m=1[Si(m)]2

√
∑M

m=1[Ti(m)]2
, (3)

where R is the similarity metric, T the projection vector of the template of the plastic-sealed
area (M), and S the projection vector of the binary image of the chip. In addition, the
upper left corner of the image is the origin (0, 0), the horizontal axis is the X-axis, and the
vertical axis is the Y-axis. Figure 8 shows a binary image of the template and its vertical
and horizontal projections. Figure 9 shows the images obtained during the improved
NCC template-matching process. It was clear that the improved NCC template-matching
algorithm successfully extracted the plastic-sealed area of the chip.
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A comparison of three template-matching algorithms (i.e., (1) a template-matching
algorithm based on pixels, (2) a template-matching algorithm based on general projection
features, and (3) the improved NCC template-matching algorithm) was performed on
100 images to verify the efficiency and accuracy of the proposed algorithm. Comparisons
of the operating time and positioning error are shown in Table 1 and Figure 10, respectively.
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In this study, the positioning error is described as the Euclidean distance between the
matching position and the actual position.

δ =

√
(x− x0)

2 + (y− y0)
2, (4)

where (x, y) is the matching position, and (x0, y0) is the actual position. The positioning error
of the template-matching algorithm based on general projection features was significant
and hence did not fulfill the accuracy requirement. The operating time of the template-
matching algorithm based on pixels exceeded 100 ms, which did not satisfy the cycle
time requirement. The operating time of the improved NCC template-matching algorithm
proposed herein was less than 30 ms, and the positioning error was small, which can satisfy
the actual demand.

Table 1. Operating time comparison of three template-matching algorithms.

Template-Matching Algorithm Average Running Time

Template-matching algorithm based on pixels 105 ms
Improved NCC template-matching algorithm 21 ms

Template-matching algorithm based on general projection features 16 ms
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2.3. ROI Extraction

The defect characteristics of the chips were analyzed. Defect features with significant
and insignificant intra-class variances in each sample were analyzed to identify similar
features among different defect types such that interference features that can easily cause
misidentification can be eliminated. After performing data cleaning on the training samples,
the AlexNet model was used to train the CNN. A flowchart of the defect recognition
algorithm is shown in Figure 11.
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2.3.1. ROI Extraction

After the ROI of the chip image was extracted, the defect characteristics of the chip
were analyzed and categorized into six types: edge defects, foreign-body defects, fragmen-
tation defects, void chip defects, incorrect position defects, and repeatedly pasting defects.
Details pertaining to these defects are described as follows:

Edge defect: Chips are generated by cutting round wafers into small pieces. The chip
cut from the circular edge of the wafer has an irregular shape, which does not satisfy the
process requirements (see Figure 12a).
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Figure 12. Six types of chip surface defects: (a) Edge defect; (b) foreign-body defect; (c) fragmentation defect; (d) void chip
defect; (e) incorrect position defect; (f) repeatedly pasting defect.

Foreign-body defect: During chip production, the chip is transmitted after being
drawn by a vacuum nozzle; therefore, oil from the vacuum nozzle will adhere to the chip
surface, thereby rendering the surface of the chip sticky. As such, particles such as dust
can be trapped on the chip. Typically, foreign bodies discovered on the surface of chips are
dust from the environment or randomly shaped broken wires caused by machine failure.
The characteristics of the dust and broken wires differ significantly from those of the chip
(see Figure 12b).
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Fragmentation defect: When the chip is drawn by the vacuum nozzle, the excessive
nozzle pressure generated causes chip fragmentation. The defect area is typically located
near the center of the chip. Because the suction nozzle and the plastic sealing surface are
primarily inclined contacts, the shape of the fracture defect is typically a strip or a block
(see Figure 12c).

Void chip defect: The chip is drawn away by the vacuum nozzle, or the chip is
not pasted, thereby resulting in a chip with only welding feet and welding wires (see
Figure 12d).

Incorrect position defect: The chip is not pasted in the correct location (see Figure 12e).
Repeatedly pasting defect: The vacuum nozzle did not perform as intended when

absorbing the chip, resulting in multiple chip pasting (see Figure 12f).
As shown by the chip surface defect images presented in Figure 12, it is clear that

edge, void chip, incorrect position, and repeatedly pasting defects differ significantly
and are hence easily distinguishable. Conversely, the difference between foreign-body
and fragmentation defects is ambiguous; therefore, they can be easily misidentified, as
illustrated in Figure 13. In addition, because the grayscale of foreign-body defects is similar
to that of fragmentation defects, it is difficult to distinguish the two defects using grayscale
features. In terms of geometric features, the geometrical sizes of these two defects are
random; therefore, they cannot be distinguished by area and perimeter. The analysis shows
that the chip fragmentation is primarily caused by excessive force of the vacuum nozzle
when drawing the chip, i.e., the geometric center of the fragmentation defect is primarily
located at the center of the chip. However, foreign-body defects are primarily caused by
dust or falling welding wires, and the geometric center of foreign-body defects on the chip
is random. Therefore, fragmentation and foreign-body defects cannot be detected based on
the geometric center position.
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Figure 13. Comparison of foreign-body and fragmentation defects. (a) Foreign-body defect; (b) fragmentation defect.

Meanwhile, when the foreign body is dust, the defect area is round. In this regard,
Equation (5) is introduced, where the compactness C can be used to distinguish the two
types of defects, S is the area of the defect area (i.e., the number of pixels in the defect
area), and L is the boundary length of the defect area (i.e., the number of edge pixels).
When the foreign body was welded, the defect area resembled a rectangle. In this case,
Equation (6) was adopted, where Rq represents the ratio between S and the minimum
bounding rectangle; Ls and Ll denote the short and long sides, respectively.

C =
4πS
L2 , (5)

Rq =
S

LsLl
, (6)

2.3.2. Cleaning Algorithm for Training Samples

The eigenvector of a foreign-body defect (Equation (7)) and fragmentation defect
(Equation (8)) can be expressed as follows:

A{(xA0, yA0), (xA1, yA1), · · · (xAN−1, yAN−1)}, (7)
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B{(xB0, yB0), (xB1, yB1), · · · (xBN−1, yBN−1)}, (8)

where xAi is the compactness of the defect area, yAi the duty ratio characteristic of the defect
area, xBi the compactness of the defect area, yBi the duty ratio of the defect area, and N the
number of training samples. The eigenvector distributions of the foreign-body defect and
fragmentation defect samples are presented in Figure 14. The following two phenomena
were observed: (1) the eigenvector distribution of the foreign-body defect samples was
relatively concentrated, and (2) most of the samples were concentrated in areas where the
X-axis coordinate (denoting compactness) exceeded 0.9, or the Y-axis coordinate (denoting
duty ratio) exceeded 0.8. By contrast, the eigenvector distribution of the fragmentation
defect samples was relatively scattered, primarily in the region where the X-axis coordinate
was less than 0.7, and the Y-axis coordinate was less than 0.8.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16 
 

 

2.3.2. Cleaning Algorithm for Training Samples 
The eigenvector of a foreign-body defect (Equation (7)) and fragmentation defect 

(Equation (8)) can be expressed as follows: 

0 0 1 1 1 1{( , ), ( , ), ( , )},A A A A AN ANA x y x y x y− −  (7)

0 0 1 1 1 1{( , ), ( , ), ( , )},B B B B BN BNB x y x y x y− −  (8)

where xAi is the compactness of the defect area, yAi the duty ratio characteristic of the defect 
area, xBi the compactness of the defect area, yBi the duty ratio of the defect area, and N the 
number of training samples. The eigenvector distributions of the foreign-body defect and 
fragmentation defect samples are presented in Figure 14. The following two phenomena 
were observed: (1) the eigenvector distribution of the foreign-body defect samples was 
relatively concentrated, and (2) most of the samples were concentrated in areas where the 
X-axis coordinate (denoting compactness) exceeded 0.9, or the Y-axis coordinate (denot-
ing duty ratio) exceeded 0.8. By contrast, the eigenvector distribution of the fragmentation 
defect samples was relatively scattered, primarily in the region where the X-axis coordi-
nate was less than 0.7, and the Y-axis coordinate was less than 0.8. 

To simplify computation and reduce interference between compactness and duty ra-
tio, using the coordinate value as the metric, we set the threshold value D (0.8 in this 
study) to screen foreign-body defect samples whose X- or Y-axis coordinate exceeded or 
were equal to D, and fragmentation defect samples whose X- and Y-axis coordinates were 
both less than D. The formula pertaining to the sample screening is as follows: 

( ) ( ) ( )
,Ai Ai iif x D and y D delete A

else continue
< Δ < Δ




 (9)

( ) ( ) ( )
,Bi Bi iif x D or y D delete B

else continue
< Δ < Δ




 (10)

 
Figure 14. Eigenvector distribution of foreign-body defect and fragmentation-defect samples. 

2.3.3. CNN Training 
In this study, 1000 chip images of each defect type and 1000 chip images without 

defects were selected. Therefore, 7000 images were used as the sample database, 70% of 

Figure 14. Eigenvector distribution of foreign-body defect and fragmentation-defect samples.

To simplify computation and reduce interference between compactness and duty ratio,
using the coordinate value as the metric, we set the threshold value D (0.8 in this study) to
screen foreign-body defect samples whose X- or Y-axis coordinate exceeded or were equal
to D, and fragmentation defect samples whose X- and Y-axis coordinates were both less
than D. The formula pertaining to the sample screening is as follows:{

i f (xAi < ∆D)and(yAi < ∆D) delete(Ai)

else continue
, (9)

{
i f (xBi < ∆D)or(yBi < ∆D) delete(Bi)

else continue
, (10)

2.3.3. CNN Training

In this study, 1000 chip images of each defect type and 1000 chip images without
defects were selected. Therefore, 7000 images were used as the sample database, 70% of
which was used as the training sample set, and 30% as the test sample set. After cleaning the
training dataset using the method described in the previous section, the AlexNet model was
used for training. The training sample set was trained 160,000 times, the loss function was
output once every 1000 times, and a recognition accuracy test was performed once every
2000 times. As shown in Figure 15, as the training time increased, the recognition accuracy
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first increased significantly, then stabilized, and finally reached 99.73%. By contrast, the
loss function declined significantly at first and then stabilized to 0.17%.
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The test sample set was input to the trained model for testing, and the chip defect
detection results are listed in Table 2. The columns represent the actual defect types,
whereas the rows represent the defect types that were automatically identified by the CNN
model, as described below. As shown in the table, the result with defects (from II to VII) are
not confounded into no-defect result (I), that is, the missed detection rate of the test samples
was 0. In addition, only a few foreign-body and fragmentation defects were mistakenly
detected, and the test accuracy reached 99.76%.

Table 2. Test results based on AlexNet model after training. I: no defect; II: edge defect; III: foreign-
body defect; IV: fragmentation defect; V: void chip defect; VI: incorrect position defect; VII: repeatedly
pasting defect.

RESULT I II III IV V VI VII

I 300
II 298 3
III 300
IV 2 297
V 300
VI 300
VII 300

3. Result and Discussion

The proposed algorithm was implemented in the Windows 10 operating system and
coded using LabVIEW and Visual C++. Real-time performance and accuracy were tested
on a personal computer equipped with an Intel(R) Core(TM) i7-7700HQ, 16 GB of memory,
and 256 GB of storage on a solid-state drive.

3.1. Real-Time Performance

The data cleaning and training processes did not constitute the online defect detection
as they were performed during offline training. In other words, those processes were not in-
cluded in the real-time performance test. For the real-time test, 1000 images that resembled
Figure 1a or Figure 1b were used for the method proposed herein, and the operating times
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of the main stages were 65.32 (threshold segmentation), 12.91 (position) and 130.76 ms (de-
fect detection). The total time of the three main stages was approximately 221.10 ms, where
defect detection consumed the longest time. In terms of operating time, the algorithm
presented herein demonstrated decent performance with satisfactory accuracy.

3.2. Accuracy Performance

For the accuracy performance test, 1000 images were used. These images show defec-
tive and non-defective chips. The chip defects included edge, foreign-body, fragmentation,
missing, misplace, and number defects. After image preprocessing, the proposed method
was used for classification, and the results are listed in Table 3. The test results show
10 images presenting both foreign-body and fragmentation defects, five images presenting
only foreign-body defects, and five images presenting fragmentation defects. Moreover,
except for the two abovementioned defects, the other defects were insignificant. Therefore,
the accuracy rate was 99.56%. Meanwhile, we listed the accuracy results of several related
methods, as listed in Table 3. It can be seen from the comparison that our proposed method
has the highest accuracy, which satisfies practical requirements.

Table 3. Accuracy comparison results of different methods.

Method Lin’s [17] Redmon’s [18] Chen’s [19] Fu’s [20] Our Proposed

Accuracy Rate 61.59% 80.30% 95.28% 88.40% 99.56%

As shown in Table 4, misdetection occurred in the defect classification. This is at-
tributable to two main reasons: (1) Image preprocessing was not sufficiently meticulous,
i.e., interference information was retained. (2) The images of the foreign-body and fragmen-
tation defects were similar, which can easily interfere with the classification. In addition,
the testing data were directly obtained from the actual scene without cleaning, which may
have affected the accuracy.

Table 4. Statistics of chip plastic surface defect image recognition results. I: no defect; II: edge defect;
III: foreign-body defect; IV: fragmentation defect; V: void chip defect; VI: incorrect position defect;
VII: repeatedly pasting defect.

Defect I II III IV V VI VII

I 990
II 1000
III 3 985 18
IV 7 15 982
V 1000
VI 1000
VII 1000

Accuracy Rate 0.99 1 0.985 0.982 1 1 1

4. Conclusions

Herein, a novel chip appearance defect recognition algorithm based on a CNN was
proposed. The algorithm exhibited the following characteristics:

(1). In segmenting images with non-uniform bright and dark fields, our proposed OTSU
method demonstrated significant advantages over the traditional OTSU method.

(2). Our proposed localization algorithm offered high efficiency, high accuracy, robustness,
and high practicality.

(3). Effective data cleaning was performed prior to classification, thereby improving the
recognition rate of the system.
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