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Brain structure has been proposed to facilitate as well as constrain functional
interactions within brain networks. Simulation models suggest that integrity of white
matter (WM) microstructure should be positively related to the complexity of BOLD
signal – a measure of network interactions. Using 121 young adults from the Human
Connectome Project, we empirically tested whether greater WM integrity would be
associated with greater complexity of the BOLD signal during rest via multiscale entropy.
Multiscale entropy measures the lack of predictability within a given time series across
varying time scales, thus being able to estimate fluctuating signal dynamics within brain
networks. Using multivariate analysis techniques (Partial Least Squares), we found that
greater WM integrity was associated with greater network complexity at fast time scales,
but less network complexity at slower time scales. These findings implicate two separate
pathways through which WM integrity affects brain function in the prefrontal cortex –
an executive-prefrontal pathway and a perceptuo-occipital pathway. In two additional
samples, the main patterns of WM and network complexity were replicated. These
findings support simulation models of WM integrity and network complexity and provide
new insights into brain structure-function relationships.

Keywords: diffusion tensor imaging, Human Connectome Project, fMRI, multiscale entropy analysis, resting state
networks, white matter microstructure

INTRODUCTION

Some people process and analyze information quickly, whereas others do so more slowly. These
individual differences in cognitive efficiency likely involve the coordination of many brain regions
and are impacted by the integrity of both brain structure and function. Using the analogy of a road
system, Nakagawa and colleagues (Nakagawa et al., 2013) likened brain structure to street size (e.g.,
the amount of lanes) and brain function to traffic volume. They noted that street size both enables
and limits the amount of traffic volume just as the integrity of brain structure enables and limits
the amount of information flow between brain regions. They also emphasized that the effect of
structure on function depends on the time scale with which traffic is measured – a property that
has largely been ignored in human neuroscience. Consistent with this analogy, it is widely believed
that brain structure impacts brain function. However, how structure impacts function and whether
function impacts structure are far from well-understood.
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One approach to understanding structure-function relationships
has been to correlate the integrity of white matter (WM)
microstructure and brain activity assessed in fMRI. WM integrity
is most often measured using diffusion tensor imaging (DTI) to
assess the degree of water diffusion within the white matter. For
example, individuals with greater WM integrity (i.e., fractional
anisotropy or FA) in frontoparietal regions exhibited increased
brain activity in similar brain regions (Olesen et al., 2003; Toosy
et al., 2004). Few studies have investigated other measures of
WM integrity such as axial diffusivity (AD), radial diffusivity
(RD), or mean diffusivity (MD). Notably, one study did find
that increased RD – representing greater demyelination – in
lateral temporal cortex was associated with decreased brain
activity in lateral frontal and cingulate cortices (Koch et al.,
2010). These findings suggest that individuals with greater
WM integrity are able to recruit more neural resources and
therefore might be able to process information more quickly
and efficiently than those with less WM integrity (Bennett and
Rypma, 2013).

However, WM integrity in one region might also impact
brain function in gray matter regions that are not directly
connected to that region, but rather are more distal. That is,
WM integrity might impact brain function in other functional
networks. Studies have found when WM and brain activity
have been assessed in non-adjacent regions, greater WM
integrity has been associated with less brain activity (Baird
et al., 2005; Persson et al., 2006; Madden et al., 2007; Putnam
et al., 2008). This negative association might reflect a reduced
reliance on or interactions between distal regions (i.e., more
local processing), or could reflect a type of interference that
prevents greater activity in distal regions within the same
network or in outside networks (i.e., a disruption of distributed
processing).

These studies illustrate the complicated relationship between
brain structure and function and highlight the importance
of separately characterizing local and distributed processing
mechanisms. An emerging field within systems neuroscience
has begun to investigate how temporal fluctuations within
brain signals (i.e., predictability or lack thereof) are related to
information processing. Specifically, researchers have proposed
that less predictable fluctuations of brain activity are associated
with richer (Tononi et al., 1994, 1998; Garrett et al., 2013;
Nakagawa et al., 2013) or more integrated information (Vakorin
et al., 2011; McIntosh et al., 2014). Unpredictable and highly
complex biological systems often are related to a normal and
healthy brain, whereas highly predictable or regular biological
systems often are related to dysfunction and disease (Pincus
and Goldberger, 1994; Goldberger et al., 2002; Yang and Tsai,
2013). Critically, multiscale entropy (MSE) has been developed
to estimate the complexity within temporal signals across
multiple time scales (Costa et al., 2005). MSE and its single
scale counterpart, sample entropy (or SampEn), were originally
used to understand temporal patterns of the human heartbeat
(Goldberger et al., 2002; Costa et al., 2005). Sample entropy
estimates the irregularity of a time series, which increases as
the amount of noise within a system increases. However, noise
becomes quickly less complex towards coarser time scales because

it has one single expected mean value (Goldberger et al., 2002;
Nakagawa et al., 2013). Thus, the term “complexity” refers to
the ability for a system to maintain irregularity across time
series from fine to coarse. Over the last 5 years, researchers
have extended the application of MSE and related entropy
metrics to brain signals (e.g., Lippé et al., 2009; Vakorin et al.,
2011; Yang et al., 2012; Yang and Tsai, 2013; Nakagawa et al.,
2013; McIntosh et al., 2014; McDonough and Nashiro, 2014).
This research has proposed that high frequency (fine) time
scales and low-frequency (coarse) time scales represent local and
distributed information processing, respectively (Vakorin et al.,
2011; McDonough and Nashiro, 2014; McIntosh et al., 2014).
Additionally, these measures of brain signal complexity offer
complementary information that is not captured through other
measures such as functional connectivity or standard deviation
as evidenced by weak correlations between the various measures
(Lippé et al., 2009; Yang et al., 2012; Courtiol et al., 2016).
While many studies have used MSE to understand brain signal
complexity using EEG (Lippé et al., 2009; Vakorin et al., 2011;
Yang and Tsai, 2013; McIntosh et al., 2014), only recently has
research applied the same analysis tools to BOLD fMRI signals
(Yang et al., 2012, 2014; McDonough and Nashiro, 2014).

The present study examined how WM integrity constrains
brain function using MSE analyses, thus revealing its impact
across multiple time scales. We base our predictions on
simulations of WM integrity and complexity of the BOLD signal
(Nakagawa et al., 2013), but use non-simulated BOLD fMRI
data to verify these simulations. According to Nakagawa and
colleagues (Nakagawa et al., 2013), people with greater WM
integrity should have greater neural complexity at fine time
scales. They further suggested that these findings may emulate
individual differences in brain and cognitive functioning (e.g., as
with aging). For example, since WM integrity should be positively
related to neural complexity, then as WM integrity declines with
old age, brain function also would be less efficient, and ultimately
lead to slower processing speeds – a general characteristic of aging
(Salthouse, 1996; Park and McDonough, 2013). Aging, however,
is just one factor that can influence between-subject variability.
Here, we tested the general notion that individual differences in
WM integrity and neural complexity related to one another in
a sample of healthy young adults from the Human Connectome
Project [HCP, WU-Minn Consortium (Van Essen et al., 2013)]. In
accordance with these simulations, we predicted that individuals
with greater WM integrity would exhibit greater local network
complexity in the HCP data. However, because the data used in
the present study can afford a larger range of time scales than
that used in the model simulations, we tested a new hypothesis
that individuals with greater WM integrity would show reduced
distributed network complexity than individuals with less WM
integrity. Our rationale for this reverse effect stems from previous
research revealing (a) an inverse relationship with WM integrity
and distal brain activity (Bennett and Rypma, 2013) and (b) an
inverse relationship between functional connectivity and neural
complexity at fine (local) time scales but a positive relationship at
coarse (distributed) time scales (McDonough and Nashiro, 2014).
To understand these network dynamics, multivariate network
analyses were implemented. Lastly, we tested our predictions in
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three samples to generalize our results. These finding should shed
light on the impact of WM integrity on brain function and help
further our understanding of patterns of MSE in the BOLD signal.

MATERIALS AND METHODS

Participants
Data was taken from participants in the HCP, which is a long-
term study to explore human brain circuits. Participants were
young adults that were relatively healthy and free of a prior
history of significant psychiatric or neurological illnesses, but
could have a history of smoking, heavy drinking, or recreational
drug use. All subjects gave their written informed consent
for inclusion before they participated in the study. The study
was conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Ethics Committee of
Washington University, St. Louis and The University of Alabama.

Four hundred and ninety adults, some of which were siblings,
were included in the study if they had available DTI and fMRI
data. From this total, three subgroups were formed (see the
sample characteristics for the final samples in Table 1). The first
group consisted of 123 unrelated individuals and was used for
the primary analyses. The second and third groups were used
for replication purposes. Due to the nature of the HCP data,
these other two groups consisted of related individuals (both
related to each other within the subgroup as well as related to
the first group). Of these two groups, we were able to match the
second group to the first on demographic factors including age,
education, sex, and racial status (white or non-white). The third
group was older than the other two groups, had more education,
and was more likely to be white (all p’s < 0.001). There were no
differences in sex between the last group and the first two groups
(all p’s > 0.17).

DTI Procedures
Diffusion data were collected using a single-shot, single
refocusing spin-echo, echo-planar imaging sequence with
1.25 mm isotropic spatial resolution (TE/TR = 89.5/5520 ms,
FOV = 210 mm× 180 mm). Three gradient tables of 90 diffusion-
weighted directions and six b = 0 images each were collected

TABLE 1 | Sample characteristics across three samples.

Primary Matched Non-matched

N 121 122 121

Age (SD) 27.97 (3.14) 28.11 (3.54) 30.37 (3.04)

Years of Education (SD) 14.38 (2.28) 14.30 (2.26) 15.69 (1.52)

Sex (% Female, % Male) 57%/43% 63%/37% 65%/35%

Race

White (%) 66% 68% 92%

Black (%) 24% 30% 6%

Asian/Pacific Islander (%) 3% 1% 2%

Other (%) 7% 1% 1%

SD, standard deviation.

with right-to-left and left-to-right phase encoding polarities
for each of the three diffusion weightings (b = 1000, 2000,
and 3000 s/mm2). HCP preprocessed DTI images were used
which included correcting for B0, susceptibility artifact, and eddy
current distortions. For a more detailed description of the DTI
acquisition and preprocessing procedures see, Sotiropoulos et al.
(2013) and Ugurbil et al. (2013). Linearly fitting a diffusion
tensor model to the DTI images resulted in FA, eigenvector,
and eigenvalue maps that were then used to estimate axial
diffusivity (AD; λ1), radial diffusivity [RD; (λ2 + λ3)/2], and
mean diffusivity [MD; (λ1 + λ2 + λ3)/3]. Using Tract Based
Spatial Statistics (TBSS) (Smith et al., 2006), FA images were
skeletonized and normalized to the FMRIB58 template using a
non-linear image registration tool (FNIRT). Using the mean FA
image, a skeletonized mask was created representing the tract
centers common to all participants. Mean DTI values for each
measure were then extracted from tracts of interest based on the
JHU atlas. The tracts included 30 major association, projection,
and callosal white matter tracts, which were then extracted using
masks from the JHU atlas. Due to computational demands, we
had to exclude some tracts. We chose to first exclude tracts that
had few voxels (thus potentially leading to poor estimations)
or were not immediately relevant to the higher order cognitive
networks of interest [exclude tracts included Fornix (cres)/Stria
Terminalis, Cerebellar tracts].

fMRI Procedures
All data were acquired on a Siemens Skyra 3T scanner
housed at Washington University in St. Louis. The scanner
had a customized SC72 gradient insert and a customized
body transmitter coil with 56 cm bore size (diffusion:
Gmax = 100 mT/m, max slew rate = 91 mT/m/ms;
readout/imaging: Gmax = 42 mT/m, max slew
rate = 200 mT/m/ms). The HCP Skyra had the standard set
of Siemen’s shim coils (up to 2nd order) and used Siemen’s
standard 32 channel head coil. BOLD fMRI data were acquired
using a T2∗-weighted gradient-echo EPI sequence with 72
axial slices per volume, 104 × 90 matrix (2.0 × 2.0 × 2.0 mm3),
FOV = 208 mm, TE = 33.1 ms, TR = 720 ms, and FA = 52◦. Across
four scanning sessions of 15 min each, a total of 4800 frames
were acquired. Participants were instructed to keep their eyes
open and focused on a bright cross-hair on a dark background.
Across sessions, oblique axial acquisitions alternated between
phase encoding in a right-to-left direction and phase encoding in
a left-to-right direction.

Postprocessed fMRI datasets were used in the present study,
which consisted of standard processing methods using FSL
(Jenkinson et al., 2002, 2012). Below briefly summarizes the
HCP processing pipeline (Glasser et al., 2013). First, gradient-
nonlinearity-induced distortion was corrected for all images.
Next, FMRIB’s Linear Image Registration Tool (FLIRT) was
used for motion correction using the single-band reference
(SBRef) image as the target. The FSL toolbox “topup” (Andersson
et al., 2003) was used to estimate the distortion field in the
functional images. The SBRef image was used for EPI distortion
correction and is registered to the T1w image. One-step spline
resampling from the original EPI frames to MNI space was
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applied to all transforms. Lastly, image intensity was normalized
to mean of 10,000 and bias field was removed. Data was
cleaned using ICA+ FIX (Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014), which included linear detrending, regression of
24 motion parameters, and ICA noise components removed.
This method better removes artifacts than regressing out white
matter and/or CSF signal directly, as well as using the “scrubbing”
method (Pruim et al., 2015). Global signal was not removed.
Importantly, while choosing methods to preprocess resting-state
fMRI data can be controversial, studies have shown that group
differences in MSE are quite robust to variations in preprocessing
methodologies (Smith et al., 2015).

Multiscale Entropy (MSE) Analysis
The processed time series were extracted at each point on the
normalized brains and averaged together if they fell within
distinct resting-state networks (RSN) using the parcellation of
24 networks from the Power atlas (Power et al., 2011). This
network approach was taken since networks are often defined
by the similarity of their time series, thus resulting in a similar
pattern of complexity within a given network (McDonough and
Nashiro, 2014). Deriving MSE from networks offers a simplified
and theoretically driven approach to investigating MSE across
the brain. After the time series from each RSN was extracted,
the complexity of each network (separately for each of the four
resting-state scans) was estimated using MSE. MSE estimates
sample entropy at different time scales. First, fine to more coarse-
grained time series were created by down-sampling the original
time series (i.e., averaging neighboring data points within non-
overlapping windows). Second, sample entropy was estimated for
the time series at each time scale (1–25 scales). The first time
scale represents the original time series (sampled every 720 ms
for 1200 time points) and the last time scale representing the
average time series across 18 s for each time point across 48
time points. Sample entropy is defined as the natural logarithm
of the conditional probability that a given pattern of data of
a specified length (m) repeats at the next time point for the
entire time series at a given scale factor (of a dataset with a
total length N). It considers subsequent patterns to be a repeat
of the given pattern if they match within a certain tolerance (r)
such that larger tolerance values increase the number of matches
(Richman and Moorman, 2000; Lake et al., 2002). A time series
with a greater number of pattern matches is more predictable
and the entropy value is lower (less complexity). In contrast, a
smaller number of pattern matches is characterized as being less
predictable, yielding a greater entropy value (greater complexity).
We selected our parameters based on those used in prior studies
investigating MSE using fMRI, m = 2 and r = 0.5 (Smith et al.,
2013; Sokunbi et al., 2013; McDonough and Nashiro, 2014).
Previous investigations using the data from the HCP revealed
qualitatively similar patterns of MSE estimations regardless of
the parameters chosen (McDonough and Nashiro, 2014). This
consistency is similar to other studies who have found that
the choice of parameters leads to relatively robust estimations
over a broad range of possible values (Richman and Moorman,
2000; Lake et al., 2002; Sokunbi et al., 2013). The resulting MSE
estimations for each of the four runs were then averaged together

to obtain a more robust estimation of MSE for each time scale
within each network.

Global Correlation Analyses
Pearson correlations were implemented to test for whole-
brain associations between WM microstructure and MSE. This
analysis provides a more global perspective on the relationships
between the measures, which was followed by a regional/network
approach. WM values were averaged across ROIs separately for
FA, AD, MD, and RD. Similarly, MSE was averaged across all
RSNs and three levels of MSE were determined based on patterns
from both previous studies (e.g., McDonough and Nashiro, 2014)
and the present study. Specifically, fine-grained MSE values
were determined by averaging scales 1 and 2, mid-grained MSE
values were determined by averaging scales 3–14, and coarse-
grained MSE values were determined by averaging scales 15–25.
Bootstrapping was implemented to determine 95% confidence
intervals.

Partial Least Squares (PLS) Analyses
PLS was used to determine the regional WM associations with
MSE across RSNs. PLS is a multivariate technique designed to
identify latent factors that account for most of the variance in
a data set (McIntosh et al., 1996). For the PLS analysis, the X
matrix was organized in the form of (Subjects × Time Scale
in Network), resulting in a 123 × 600 matrix that represented
network complexity in the 24 RSNs with 25 time scales for each
network for each subject. The Y matrix was organized in the form
of (Subjects × tracts in DTI measure), resulting in a 123 × 120
matrix that represented DTI values across the 30 different tracts
for FA, AD, MD, and RD for each subject. Each matrix was
grand-mean centered and normalized prior to conducting the
analysis.

The cross product of the X and Y matrices was then
decomposed into a set of mutually orthogonal factors using
singular value decomposition, resulting in a set of orthogonal
latent variables (LVs). An LV consists of three components: (1)
a singular value, (2) a vector of weights representing the pattern
of time scales in the LV (i.e., salience values), and (3) a vector of
weights representing the degree to which each subject expresses
the given LV (i.e., brain scores). Brain scores were calculated
by multiplying the salience scores by the network complexity
values for each subject and then summing these values. Each
LV was statistically evaluated two ways. First, we assessed the
significance of the relationship between network complexity and
the DTI measures by computing 10,000 permutation tests in
which network complexity values were randomly assigned within
subjects. A measure of significance was calculated by estimating
the proportion of times the permuted singular value was higher
than the observed singular value. Second, to assess the reliability
of the corresponding distribution across subjects (i.e., saliences),
we resampled subjects with replacement (10,000 bootstrap
samples). A bootstrap ratio was then calculated by dividing
the saliences by the standard error of the generated bootstrap
distribution. The bootstrap ratio is approximately equivalent to
a z-score, whereby an absolute bootstrap ratio greater than 1.96
corresponds roughly to p < 0.05. When bootstrapped confidence
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intervals did not cross zero, we considered those values to be
statistically significant.

RESULTS

After forming the three groups, preliminary analyses across all
three groups revealed five outliers that had at least one DTI
measure (averaged across the whole brain) greater than 7.5
standard deviations from the mean, resulting in final group sizes
of 121 (primary group), 122 (matched group), and 121 (non-
matched group). We first report the PLS analyses on the primary
group to determine the extent that network complexity was
associated with WM integrity. Finally, we report whether any of
the findings replicated in the separate matched and non-matched
samples.

Network Complexity and WM Integrity
On the global level, few of the WM measures significantly
correlated with the global MSE measures (Figure 1). Greater
global complexity at mid time scales was associated with higher
AD (r = 0.23, p = 0.012). No other relationships were significant.
Because lower AD is often associated with better WM integrity,
this finding is consistent with the prediction of an inverse
relationship between WM integrity and distributed network
complexity.

PLS analyses were next conducted to reveal region and
network specific associations. The PLS analysis resulted in
four significant LV’s that explained 78.57, 10.01, 5.27, and
2.33% of the covariance in the data, respectively. Because
the first two LV’s comprised almost 90% of the covariance,
we focused on these LV’s. For the first LV (p = 0.009), a
Pearson correlation conducted between the network-complexity
brain scores and the WM brain scores confirmed a moderate
effect size between the two factors (r = 0.39, p < 0.001).
As seen in Figure 2 (top panel), the first LV pattern was
characterized by greater network complexity at fine time
scales and lower network complexity at mid and coarse
time scales. Furthermore, this pattern was strongest in the
following networks: default mode, frontoparietal, salience,
cingulo-opercular, dorsal and ventral attention, “unknown
Nelson 2010,” and “unknown with memory retrieval.” These
functional networks have been implicated in higher-order
cognition (Seeley et al., 2007; Buckner et al., 2008; Dosenbach
et al., 2008; Vincent et al., 2008) and most of these networks
contain key regions within the prefrontal cortex. In regards
to WM, this LV pattern was associated with lower FA
and lower AD across most of the tracts, and lower MD
in a smaller subset of tracts. In contrast, this LV was
associated with weaker and more mixed relationships with
RD. The tracts that most exhibited this WM pattern (and
had confidence intervals that did not include zero) consisted
of projection and association tracts and were left lateralized
including left anterior corona radiata, posterior corona radiata,
posterior thalamic radiata, external capsule, superior fronto-
occipito fasciculus, superior longitudinal fasciculus, uncinate
fasciculus. The right hemisphere consisted of anterior corona

FIGURE 1 | Pearson correlations between the four DTI measures of white
matter (FA, AD, MD, and RD) averaged across all tracts and network
complexity averages across all resting state networks. Network complexity
scales were separated and averaged into fine time scales (time scale 1 and 2),
mid time scales (scales 3–14), and coarse time scales (scales 15–25). The
primary sample is presented in the top panel, the matched sample in the
middle panel, and the non-matched sample in the bottom panel.

radiata, and superior longitudinal fasciculus. Like network
complexity, many of these WM tracts contain connections with
prefrontal cortex. In sum, individuals with greater network
complexity at fine time scales and lower complexity at mid
and coarse time scales also had lower FA, AD, and MD
values.
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FIGURE 2 | LV 1 (top) and LV 2 (bottom) from the partial least squares analysis in the primary sample. The left panels represent bootstrap ratio (BSR) values for
network complexity as measured by multiscale entropy across 25 time scales. The right panels represent the correlation values for each of the DTI measures (FA,
AD, MD, and RD). For the LV 1, greater network complexity values at the fine time scale (shown in green in the left panel) were associated with lower FA, AD, and MD
values (shown in blue in the right panel), but higher RD values in many of the tracts (shown in green in the right panel). In contrast, greater network complexity values
at the mid and coarse time scales (shown in blue in the left panel) were associated with lower FA, AD, and MD values, but higher RD values. For LV 2, greater
network complexity values at the fine time scales, but lower network complexity at mid and coarse time scales were associated with both lower (in blue) and higher
(in green) DTI values depending on the measure and tract. LV 1, latent variable 1; LV 2, latent variable 2; FA, fractional anisotropy; AD, axial diffusivity; MD, mean
diffusivity; RD, radial diffusivity.

The second LV (p = 0.019) had a weak effect size between
network complexity and white matter (r = 0.25, p < 0.005).
As shown in Figure 2 (bottom panel), this LV pattern was
characterized by greater network complexity at the second
time scale (across almost every network) and lower network
complexity at coarse time scales largely in sensorimotor networks
including visual, auditory, hand, and mouth networks. The
pattern of white matter was characterized by lower FA, AD, and
MD, but greater RD, in only a few major tracts. Specifically, the
FA relationships (that had confidence intervals excluding zero)
were lowest in left and right anterior corona radiata, and left
uncinate fasciculus. The AD and MD relationships were lowest
in left anterior and posterior corona radiata, left superior fronto-
occipital fasciculus, and left superior longitudinal fasciculus. The
RD relationships were greatest (and negative) in the right anterior
corona radiata, left uncinate fasciculus, and right cingulum.
Together, the results from these two LV’s are consistent with the

predictions that greater WM integrity would be associated with
greater local network complexity (i.e., entropy at fine time scales),
but less distributed network complexity (i.e., entropy at coarse
time scales).

Replication of Effects: Matched Sample
We next conducted the global correlations on the matched
sample (Figure 1). Greater global complexity at fine time scales
was associated with lower RD (r = −0.20, p = 0.029). Greater
global complexity at mid time scales was associated with higher
MD (r = 0.20, p = 0.027). Greater global complexity at coarse time
scales was associated with higher MD (r = 0.23, p = 0.012) and
higher RD (r = 0.20, p = 0.016). While no relationships with AD
were significant, the inference is consistent: better WM integrity
(lower RD) is associated with greater network complexity at fine
(local) time scales and lower network complexity at mid and
coarse (distributed) time scales.
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FIGURE 3 | LV 1 (top) and LV 2 (bottom) from the partial least squares analysis in the matched sample. The left panels represent bootstrap ratio (BSR) values for
network complexity as measured by multiscale entropy across 25 time scales. The right panels represent the correlation values for each of the DTI measures (FA,
AD, MD, and RD). For the LV 1, greater network complexity values at the fine time scale (shown in green in the left panel) were associated with lower AD, MD, and
RD values (shown in blue in the right panel), but higher FA values in many of the tracts (shown in green in the right panel). In contrast, greater network complexity
values at the mid and coarse time scales (shown in blue in the left panel) were associated with lower AD, MD, and RD values, but higher FA values. For LV 2, greater
network complexity values at the fine time scales, but lower network complexity at mid and coarse time scales were associated with lower MD and RD values (in
blue), but higher FA and AD values (in green) across many of the tracts. LV 1, latent variable 1; LV 2, latent variable 2; FA, fractional anisotropy; AD, axial diffusivity;
MD, mean diffusivity; RD, radial diffusivity.

The PLS analysis for the matched sample (Figure 3) revealed
that, the first LV explained 66.55% of the covariance and
was marginally significant (p = 0.057). Importantly, a Pearson
correlation between the network-complexity brain scores and the
WM brain scores exhibited a similar, moderately sized correlation
(r = 0.31, p < 0.001). The pattern of network complexity
also was quite similar as in the primary sample; major higher-
order networks involving prefrontal cortex were characterized
by greater network complexity at the finest time scale and
lower network complexity at the mid and coarse time scales.
Like in the primary data set, this LV also was characterized by
lower AD and MD in many of the same tracts including left
anterior left anterior corona radiata, posterior thalamic radiata,
superior fronto-occipito fasciculus, and superior longitudinal
fasciculus. Unlike the primary group, the first LV in the matching
group was characterized by higher FA values and many more
consistent lower RD values. Thus, while differences did exist, the

network-complexity measures and two of the WM measures (AD
and MD) were quite consistent with the analysis in the primary
group.

The second LV explained 21.89% of the covariance
(p < 0.001). The Pearson correlation between the brain
scores revealed a weak correlation as in the second LV from
the primary group (r = 0.26, p < 0.005), and the pattern of
network complexity also was similar. Network complexity
was characterized by greater complexity at the second time
scale across most networks and lower complexity at mid and
coarse time scales in many of the networks, but failed to
reach significance in the sensorimotor networks (BSR ≤ 1.96).
However, the pattern of WM was different. Specifically, this
pattern consisted of greater FA and AD values, and lower MD
and RD values. Only the MD values were in a direction consistent
with the primary group, but the tracts were different (largest
correlations in right posterior corona radiata and right posterior
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thalamic radiation). Thus, while the second LV did show a
significant relationship between network complexity and WM
integrity, the different white matter tracts support only a partial
replication.

Replication of Effects: Non-matched
Sample
Finally, we conducted the same sets of analyses on the non-
matched sample. On the global level, greater global complexity
at fine time scales was associated with lower MD (r = −0.26,
p = 0.004) and RD (r = −0.26, p = 0.004). Greater global
complexity at mid time scales was associated with higher AD
(r = 0.24, p = 0.007) and MD (r = 0.28, p = 0.002). Greater
global complexity at coarse time scales was associated with higher
AD (r = 0.18, p = 0.044), MD (r = 0.28, p = 0.002), and RD
(r = 0.23, p = 0.011). Similar with the other two groups, better

WM integrity (lower AD, MD, and RD) is associated with greater
network complexity at fine (local) time scales and lower network
complexity at mid and coarse (distributed) time scales (Figure 1).

The PLS analyses can be found in Figure 4. The first LV
(p = 0.005) explained 77.85% of the covariance. The Pearson
correlation between two brain scores had a moderate effect
size (r = 0.37, p < 0.001). The network-complexity patterns
largely resembled the previous two analyses, whereas the
WM patterns largely resembled the previous, matched-sample
analysis. Specifically, the pattern consisted of greater FA, but
lower AD, MD, and RD values in many of the same tracts as the
matched-sample analysis. The second LV (p < 0.001) explained
13.98% of the covariance and the Pearson correlation between
the two brain scores had a weak effect size (r = 0.23, p = 0.011).
The pattern of network complexity was similar as the other two
analyses with the second time scale across most networks, but the
mid and coarse time scales in the sensorimotor networks failed

FIGURE 4 | LV 1 (top) and LV 2 (bottom) from the partial least squares analysis in the non-matched sample. The left panels represent bootstrap ratio (BSR) values for
network complexity as measured by multiscale entropy across 25 time scales. The right panels represent the correlation values for each of the DTI measures (FA,
AD, MD, and RD). For the LV 1, greater network complexity values at the fine time scale (shown in green in the left panel) were associated with lower AD, MD, and
RD values (shown in blue in the right panel), but higher FA values in many of the tracts (shown in green in the right panel). In contrast, greater network complexity
values at the mid and coarse time scales (shown in blue in the left panel) were associated with lower AD, MD, and RD values, but higher FA values. For LV 2, greater
network complexity values at the fine time scales, but lower network complexity at mid and coarse time scales were associated with lower MD and RD values (in
blue), but higher FA values (in green) across many of the tracts. AD measures showed both positive and negative associations with network complexity in LV2. LV 1,
latent variable 1; LV 2, latent variable 2; FA, fractional anisotropy; AD, axial diffusivity; MD, mean diffusivity; RD, radial diffusivity.
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to reach significance (as in the Matched-sample analysis). The
pattern of white matter consisted of greater FA, mixed AD, and
lower RD and MD values. In relation to the other analyses, the
specific tracts that show negative relationships with AD and MD
values are consistent with the analyses in the primary group and
the tracts with the greatest FA values were consistent with the
analysis in the matched sample.

Cross-Sample Summary
To better depict which relationships were significant across
each of the three samples and between each region/network,
conjunction maps were created for both LV’s (Figure 5). For
network complexity, BSR’s values at least | 1.96| (corresponding
to p = 0.05) that were consistent across two or three samples
were included. For DTI measures, r values of at least | 0.20| (also
corresponding to p = 0.05) that were consistent across two or
three samples were included. For LV 1, the network complexity
pattern was consistently significant in all three samples for almost
every time scale and most networks with the largest exception
being in the sensory networks (visual, auditory, hand, and
mouth). However, the DTI pattern was only consistent across the

three samples in left anterior corona radiata (AD), left posterior
thalamic radiation (AD and MD), left superior fronto-occipital
fasciculus (MD), left superior longitudinal fasciculus (MD). For
LV 2, network complexity was replicated in time scale 2 for the
majority of the networks (many of which overlapped with the
significant networks in LV 1), followed by time scale 3 and 4.
None of the DTI measures for LV 2 were consistently significant
across the three samples, but several were consistent in two of the
three samples. These tracts included left anterior corona radiata
(AD), left and right posterior thalamic radiata (MD), and left
superior frontal-occipital fasciculus (AD). However, it should
be noted that this conjunction analysis is quite conservative,
equating to a joint p-value of 0.000125 for commonalities across
all three samples and a joint p-value of 0.0025 for commonalities
across two of the three samples. These stricter thresholds explain
the sparse overlap across the three samples.

DISCUSSION

While it is clear that brain structure influences brain function,
how this happens is far from understood. In the present study,

FIGURE 5 | Cells in green represent replications of significant correlations between MSE and WM microstructure across all three samples for LV 1 (top) and LV 2
(bottom). The left panels represent brain networks across 25 time scales. The right panels represent the DTI measures (FA, AD, MD, and RD). LV 1, latent variable 1;
LV 2, latent variable 2; FA, fractional anisotropy; AD, axial diffusivity; MD, mean diffusivity; RD, radial diffusivity.
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we took an individual differences approach to test the notion
that people with greater WM integrity would exhibit greater
localized processing, but less distributed processing than people
with less WM integrity. To do this, we assessed brain structure
using four measures of WM integrity including FA, AD, MD,
and RD – all of which provide complementary information
regarding the integrity of WM. To capture brain function across
multiple time scales, we used multiscale entropy to estimate
the complexity of the BOLD signal across 24 resting-state
networks. This network complexity might represent the richness
or integration of information processing signals that underlie
processing efficiency (Vakorin et al., 2011; Nakagawa et al.,
2013; McDonough and Nashiro, 2014; McIntosh et al., 2014).
Using a multivariate analysis technique, we found that WM
integrity across many tracts was significantly associated with
network complexity across many resting-state networks (RSNs).
We elaborate on the details of these findings below.

Global Associations Between White
Matter Integrity and Network Complexity
The global associations between WM integrity and average
network complexity were strongest and most consistent at
mid time scales. Consistent with our predictions, reductions
in average network complexity were associated with better
WM integrity as measured by AD in the primary and non-
matched samples and MD in the matched and non-matched
samples. Lower AD and MD are believed to correspond with
greater axonal density or fiber coherence (Song et al., 2002,
2005; Dubois et al., 2008). Better WM integrity might facilitate
interconnectivity among local neural populations, perhaps at
the expense of long-range interactions across distributed neural
populations (Vakorin et al., 2011; McDonough and Nashiro,
2014; McIntosh et al., 2014). This idea is consistent with
previously found positive correlations between WM integrity and
brain activity in regions spatially adjacent to one another, but
negative correlations when the regions being measured are more
distal from one another (Bennett and Rypma, 2013). While the
direction of the patterns was the same for coarse time scales, the
measures of WM integrity were weakly associated with average
network complexity in the primary sample and occurred most
consistently in MD and RD in the matched and non-matched
samples. Similarly, while the patterns at fine time scales were
consistent with predictions (i.e., greater network complexity was
numerically associated with greater WM integrity), the findings
were weaker and varied across the types of WM tracts. These
global trends suggest that the relationship between WM integrity
and network complexity might vary with specific RSNs and tracts.
Below we discuss these network and tract specific findings.

Latent Variable 1: White Matter Integrity
Influences Network Complexity in the
Prefrontal Cortex Networks
We next aimed to better understand how brain structure integrity
influences the capacity of information processing within specific
functional brain networks via network complexity measures and
within specific white matter tracts. In the first latent variable of

the PLS analysis, greater network complexity at fine time scales
and lower network complexity at mid and coarse time scales were
associated with greater WM integrity (i.e., lower AD and MD).
This latent variable was consistent across the three samples.

The WM tracts that had the greatest associations with
network complexity can be divided into two categories: anterior
association tracts and posterior projection tracts. The anterior
association tracts – connected to the prefrontal cortex (Catani
et al., 2002; Jellison et al., 2004) – consisted of the left
superior fronto-occipital fasciculus and the superior longitudinal
fasciculus and are related to working memory (Karlsgodt
et al., 2008; Vestergaard et al., 2011). The posterior projection
tracts comprise of portions of the internal capsule (anterior
corona radiata and posterior thalamic radiation), connecting
the thalamus to both prefrontal and occipital cortex. These
tracts have been primarily implicated in perceptual and motor
functions (Toosy et al., 2004). In regards to brain function,
the latent variable indicated that the strongest effects were
in RSNs that included the prefrontal cortex including the
default mode, frontoparietal, salience, cingulo-opercular, dorsal
attention networks. While there are many regions that comprise
each of these networks, we focus on the prefrontal cortex which
is shared by all of the networks. Moreover, each of these RSNs
has been implicated in higher-order cognition (e.g., attention,
working memory, and executive function), which often involves
the use of the prefrontal cortex (Seeley et al., 2007; Buckner
et al., 2008; Dosenbach et al., 2008; Vincent et al., 2008). In
regards to WM integrity, greater WM integrity fosters faster
information processing. For example, lower values of AD and
MD in various tracts including the anterior thalamic radiation
have been associated with faster response times during a speeded
continuous performance task (Fjell et al., 2011). Other studies
also have found relationships with WM integrity (i.e., FA) and
processing speed (Turken et al., 2008; McKenna et al., 2015) and
attention (Ystad et al., 2011; Deprez et al., 2012). Importantly,
the tracts in these studies overlapped with the tracts here
including the superior longitudinal fasciculus and corona radiata.
Because of their broad nature, these structural and functional
relationships may form the basis for processing efficiency across
a variety of cognitive domains. Together, these results suggest
that two primary components of brain structure – an executive-
prefrontal component and a perceptuo-occipital component –
affect brain function within the prefrontal cortex (Figure 6).

Latent Variable 2: White Matter Integrity
Affects Complexity Independent of
Network
After accounting for the majority of the covariance between brain
structure and function, a second latent variable revealed that
greater WM integrity (i.e., lower AD and MD) was associated
with greater network complexity at fine scales, although the
exact time scale was shifted to the second time scale. While
many WM tracts were associated with this latent variable
pattern, the left superior fronto-occipital fasciculus and superior
longitudinal fasciculus were most consistently found across the
three samples. Both of these tracts contain long-range fibers
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FIGURE 6 | Two primary components of brain structure – an executive-prefrontal component and a perceptuo-occipital component – affect network complexity
within the prefrontal cortex. The top panel shows high and low white matter integrity from anterior white matter tracts (left superior longitudinal fasciculus and left
superior fronto-occipital fasciculus) for both AD and MD on the x-axis with sample entropy on the y-axis for fine time scales (scale 1), mid time scales (scales 3–14)
and coarse time scales (scales 15–25) in the primary sample. The bottom panel shows the same for high and low white matter integrity from posterior white matter
tracts (left anterior corona radiata and left posterior thalamic radiation) for both AD and MD. Greater white matter integrity was associated with higher network
complexity than poorer white matter integrity at fine time scales, but was associated with lower network complexity at mid and coarse time scales.

and connect the prefrontal cortex with other cortical brain areas
including parietal and occipital regions (Catani et al., 2002;
Jellison et al., 2004; Wakana et al., 2004). Neural complexity
associated with this latent variable was found across almost
every network and the three samples in the second time
scale.

Interpreting Network Complexity
Previous studies suggest that greater local WM integrity is
associated with greater local brain activity, but reduced distal
brain activity (Bennett and Rypma, 2013). While the present
results are consistent with those notions, the network complexity
measures used here provide a complementary approach to
measure local and distal interactions between brain regions
and provide additional information as to how the richness of
information processing is impacted by WM integrity. Also novel
is the interaction between time coarse and the direction of
the structure-function relationship – an effect that would not
have been easily predicted directly from previous studies using
non-complexity measures. As reviewed by Shen et al. (2015),

some studies have suggested that brain function emerges from
brain structure, but is best reflected at coarse timescales and
is only weakly correlated at finer time scales (Honey et al.,
2007). The present findings suggest that brain structure at
multiple time scales including finer time scales as applicable to
the BOLD signal, which might be considered a coarser time
scale in itself. Specifically, we found that greater complexity
at fine time scales is associated with greater within-region
processing whereas greater complexity at coarser time scales
is associated with more distributed processing across tracts
or networks (Vakorin et al., 2011; McDonough and Nashiro,
2014; McIntosh et al., 2014). For example, McIntosh and
colleagues (McIntosh et al., 2014) found that complexity at fine
time scales was associated with more within-hemisphere (local)
functional connectivity, but complexity at coarse time scales
was associated with more between-hemisphere (distributed)
functional connectivity. Thus, the greater WM integrity would be
interpreted as facilitating local interconnectivity and inhibiting
or interfering with distributed connectivity. This interpretation
assumes that individual differences in WM integrity lead to
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quantitative differences functional interactions. That is, the brain
operates in fundamentally similar ways whether one has a high or
low level of structural integrity.

A different interpretation is that people with high or low level
of structural integrity utilize functional networks in qualitatively
different manners. People with greater WM integrity might
rely more on local neural processing, whereas people with
poorer WM integrity might rely more on distributed neural
processing. To the extent that local WM integrity is high,
less information might be lost when “in transit” from one
neighboring gray matter region to the next, resulting in a
maintenance of rich information processing. In contrast, if local
WM integrity is low, more information might be lost when
it is being processed within neighboring regions, resulting in
less rich information processing. In response to this degraded
information, people with poor WM integrity might need to
draw resources from other brain regions in surrounding areas
(non-local).

Relying less on local neural processing and more on
distributed neural processing has implications for individual
differences in intelligence and network resiliency to aging or
disorders that impact the brain. For instance, studies have shown
that more intelligent young adults show less distributed neural
processing (Jung and Haier, 2007; Neubauer and Fink, 2009;
Deary et al., 2010). However, as people get older and their
intellectual faculties begin to decline, older adults rely on more
distributed neural processing, which has been argued to either
compensate for structural declines (Cabeza et al., 1997; Reuter-
Lorenz et al., 2000) or simply be a measure of less efficiency in
the neural system (Li and Lindenberger, 1999; McDonough et al.,
2013). Consistent with these ideas, Daselaar et al. (2013) recently
found that older adults with lower executive function exhibited
an increase in distributed neural processing, which was in turn
associated with reduced white-matter integrity. Gao et al. (2014)
found similar results in older adults and patients with Alzheimer’s
disease. They found that white-matter integrity of short-range
fibers contributed to more brain activity and lower cognitive
efficiency. A limitation to these interpretations, however, is the
fact that much of the foundational work investigating the nature
of MSE has been done in EEG and MEG, leaving much research
to be conducted on the exact nature of MSE patterns in the BOLD
signal (McDonough and Nashiro, 2014; Courtiol et al., 2016).

Reliability and Strength of the Findings
Neuroscience and psychological research has been under fire
for failing to replicate key findings (Ioannidis, 2005; Open
Science Collaboration, 2015). Here, we used multiple methods
to obtain reliable results including using bootstrapping, large
sample sizes (relative to most neuroimaging studies), and three
different samples. With stringent criteria for replication, we
found four of seven of the strongest correlations were replicated
twice and three of seven of the strongest correlations were
replicated once. Specifically, in Figure 2 we can see that the
strongest correlations were for AD in left superior fronto-
occipital fasciculus (r = −0.36), left superior longitudinal
fasciculus (r =−0.33), left anterior corona radiata (r =−0.30), left
posterior corona radiata (r = −0.31), and left posterior thalamic

radiation (r = −0.29), and for MD in left superior fronto-
occipital fasciculus (r = −0.31) and left superior longitudinal
fasciculus (r = −0.27). Given that the first seven of the strongest
correlations were replicated at least once at a very stringent
threshold, we feel that reproducibility was quite good for the
strongest relationships.

Despite these strengths, we only partially replicated our
analyses. While the association between network complexity and
two of the measures of WM integrity (AD and MD) replicated
across the three samples, the direction of FA and RD were more
similar between the two replication samples than in the primary
sample. Because of this inconsistency, we have chosen not to
interpret the FA and RD effects. It may be the case that some
measures are not as reliable as one might hope and many studies
that do not attempt to take these steps to enhance or validate its
reliability may lead to inaccurate inferences. It is also possible
that critical characteristics (other than age, education, sex, and
race) that differed across the three samples masked potential
relationships.

The strength of even the most reliable relationships was
weak to moderate. On the one hand, these low correlation
strengths might indicate that WM integrity does not influence
network complexity (i.e., there is not a one-to-one connection
between the two modalities). Instead, other factors might have
a stronger impact on network complexity including the density
of neurons, the number of synapses per neuron, blood flow,
brain metabolism, among others (Bullmore and Sporns, 2012).
On the other hand, many studies investigating structure-function
relationships find weak to moderate sized correlations in the same
upper range that we found (r = 0.31–0.39) (Persson et al., 2006;
Putnam et al., 2008; Honey et al., 2009; Daselaar et al., 2013; Gao
et al., 2014). Interestingly, in those studies finding much greater
structure-function correspondences, the populations tend to be
older (Madden et al., 2007; Chen et al., 2009; Fling et al., 2012;
Goble et al., 2012) or have a disorder that impacts the brain
(Koch et al., 2011). These increases in correlation strength are
often attributed to the greater variability in both structure and
function that is necessary to detect individual differences in those
populations.

Different sources of noise for both DTI and fMRI also can
contribute to the low correlations. Interestingly, Honey et al.
(2009) compared structure-function relationships using low-
resolution maps and high-resolution maps and found that brain
image resolution impacted those relationships. Specifically, the
strength of the relationship was about half the size in the high-
resolution map compared with the low-resolution map (r = 0.36
vs. 0.66, respectively). The authors attributed this difference
to inter-individual differences in anatomical and functional
locations, which benefitted from the “blurring” of the low-
resolution maps analogous to “smoothing” of data, which is
a common preprocessing step in most neuroimaging analysis
pipelines. Consistent with these interpretations, we utilized high-
resolution data from HCP, which may have ironically decreased
our ability to find strong connections. In balance, we interpret the
weak to moderately sized correlations in the present study as real
correlations, but also acknowledge that WM integrity obviously
is one of multiple factors that impact network complexity.
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CONCLUSION

We suggest that network complexity provides a novel window
into the dynamics of brain functioning that mean activity and
functional connectivity do not provide. Using multiscale entropy,
the present study reveals new relationships between brain
structure and function on multiple time scales. While evidence
is gathering that greater WM integrity facilitates information
processing in neighboring brain regions, this facilitation may
come at a cost or disrupts a balance in how local WM integrity
affects information processing across more distributed (distal)
brain regions. The present findings support computational
simulations of structure-function interactions, but also implicate
two separate pathways through which WM integrity affects
brain function in the prefrontal cortex – an executive-prefrontal
pathway and a perceptuo-occipital pathway. This dual-structural
path provides a framework to investigate how lesions or
deterioration of these pathways differentially affects cognition
in aging or clinical disorders. Future work should be aimed to
test how these two pathways impact information processing at
the behavioral level both in normal adults as well as changes in
behavior as a function of age and disorders.

AUTHOR CONTRIBUTIONS

IM conceived and designed the experiments. All authors analyzed
the data, contributed analysis tools, and wrote the paper.

FUNDING

This work was supported by the National Institutes of Health
Centers that support the NIH Blueprint for Neuroscience
Research (Grant no. 1U54MH091657); the McDonnell Center
for Systems Neuroscience at Washington University. Aspects of
these data were presented at the 13th International Conference
on Cognitive Neuroscience in San Francisco, CA, United States.

ACKNOWLEDGMENTS

Data was taken from the Human Connectome Project, WU-
Minn Consortium (Principal Investigators: David Van Essen and
Kamil Ugurbil).

REFERENCES
Andersson, J. L. R., Skare, S., and Ashburner, J. (2003). How to correct susceptibility

distortions in spin-echo echo-planar images: application to diffusion tensor
imaging. Neuroimage 20, 870–888. doi: 10.1016/S1053-8119(03)00336-7

Baird, A. A., Colvin, M. K., Vanhorn, J. D., Inati, S., and Gazzaniga, M. S. (2005).
Functional connectivity: integrating behavioral, diffusion tensor imaging, and
functional magnetic resonance imaging data sets. J. Cogn. Neurosci. 17,
687–693. doi: 10.1162/0898929053467569

Bennett, I. J., and Rypma, B. (2013). Advances in functional neuroanatomy: a
review of combined DTI and fMRI studies in healthy younger and older
adults. Neurosci. Biobehav. Rev. 37, 1201–1210. doi: 10.1016/j.neubiorev.2013.0
4.008

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s default
network: anatomy, function, and relevance to disease.Ann. N.Y. Acad. Sci. 1124,
1–38. doi: 10.1196/annals.1440.011

Bullmore, E., and Sporns, O. (2012). The economy of brain network organization.
Nat. Rev. Neurosci. 13, 336–349. doi: 10.1038/nrn3214

Cabeza, R., Grady, C. L., Nyberg, L., McIntosh, A. R., Tulving, E., Kapur, S.,
et al. (1997). Age-related differences in neural activity during memory encoding
and retrieval: a positron emission tomography study. J. Neurosci. 17, 391–400.
doi: 10.1523/JNEUROSCI.17-01-00391.1997

Catani, M., Howard, R. J., Pajevic, S., and Jones, D. K. (2002). Virtual in vivo
interactive dissection of white matter fasciculi in the human brain. Neuroimage
17, 77–94. doi: 10.1006/nimg.2002.1136

Chen, N. K., Chou, Y. H., Song, A. W., and Madden, D. J. (2009). Measurement
of spontaneous signal fluctuations in fMRI: adult age differences in intrinsic
functional connectivity. Brain Struct. Funct. 213, 571–585. doi: 10.1007/s004
29-009-0218-4

Costa, M., Goldberger, A. L., and Peng, C. K. (2005). Multiscale entropy analysis
of biological signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71:021906.
doi: 10.1103/PhysRevE.71.021906

Courtiol, J., Perdikis, D., Petkoski, S., Müller, V., Huys, R., Sleimen-Malkoun, R.,
et al. (2016). The multiscale entropy: guidelines for use and interpretation
in brain signal analysis. J. Neurosci. Methods 273, 175–190. doi: 10.1016/j.
jneumeth.2016.09.004

Daselaar, S. M., Iyengar, V., Davis, S. W., Eklund, K., Hayes, S. M., and Cabeza, R. E.
(2013). Less wiring, more firing: low-performing older adults compensate for
impaired white matter with greater neural activity. Cereb. Cortex 25, 983–990.
doi: 10.1093/cercor/bht289

Deary, I. J., Penke, L., and Johnson, W. (2010). The neuroscience of human
intelligence differences. Nat. Rev. Neurosci. 11, 201–211. doi: 10.1038/nrn2793

Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al.
(2012). Longitudinal assessment of chemotherapy-induced structural changes
in cerebral white matter and its correlation with impaired cognitive functioning.
J. Clin. Oncol. 30, 274–281. doi: 10.1200/JCO.2011.36.8571

Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., and Petersen, S. E.
(2008). A dual-networks architecture of top-down control. Trends Cogn. Sci. 12,
99–105. doi: 10.1016/j.tics.2008.01.001

Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J. F., Cointepas, Y.,
Duchesnay, E., et al. (2008). Asynchrony of the early maturation of white matter
bundles in healthy infants: quantitative landmarks revealed noninvasively by
diffusion tensor imaging. Hum. BrainMapp. 29, 14–27. doi: 10.1002/hbm.20363

Fjell, A. M., Westlye, L. T., Amlien, I. K., and Walhovd, K. B. (2011). Reduced white
matter integrity is related to cognitive instability. J. Neurosci. 31, 18060–18072.
doi: 10.1523/JNEUROSCI.4735-11.2011

Fling, B. W., Kwak, Y., Peltier, S. J., and Seidler, R. D. (2012). Differential
relationships between transcallosal structural and functional connectivity in
young and older adults. Neurobiol. Aging 33, 2521–2526. doi: 10.1016/j.
neurobiolaging.2011.11.018

Gao, J., Cheung, R. T., Chan, Y. S., Chu, L. W., Mak, H. K., and Lee, T. M. (2014).
The relevance of short-range fibers to cognitive efficiency and brain activation
in aging and dementia. PLoS One 9:e90307. doi: 10.1371/journal.pone.0090307

Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W. S., Lindenberger, U.,
McIntosh, A. R., and Grady, C. L. (2013). Moment-to-moment brain signal
variability: a next frontier in human brain mapping? Neurosci. Biobehav. Rev.
37, 610–624. doi: 10.1016/j.neubiorev.2013.02.015

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,
Andersson, J. L., et al. (2013). The minimal preprocessing pipelines for
the human connectome project. Neuroimage 80, 105–124. doi: 10.1016/j.
neuroimage.2013.04.127

Goble, D. J., Coxon, J. P., Van Impe, A., Geurts, M., Van Hecke, W., Sunaert, S., et al.
(2012). The neural basis of central proprioceptive processing in older versus
younger adults: an important sensory role for right putamen.Hum. BrainMapp.
33, 895–908. doi: 10.1002/hbm.21257

Goldberger, A. L., Peng, C.-K., and Lipsitz, L. A. (2002). What is physiologic
complexity and how does it change with aging and disease? Neurobiol. Aging
23, 23–26. doi: 10.1016/S0197-4580(01)00266-4

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud, G.,
Sexton, C. E., et al. (2014). ICA-based artefact removal and accelerated

Frontiers in Integrative Neuroscience | www.frontiersin.org 13 September 2018 | Volume 12 | Article 43

https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1162/0898929053467569
https://doi.org/10.1016/j.neubiorev.2013.04.008
https://doi.org/10.1016/j.neubiorev.2013.04.008
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1038/nrn3214
https://doi.org/10.1523/JNEUROSCI.17-01-00391.1997
https://doi.org/10.1006/nimg.2002.1136
https://doi.org/10.1007/s00429-009-0218-4
https://doi.org/10.1007/s00429-009-0218-4
https://doi.org/10.1103/PhysRevE.71.021906
https://doi.org/10.1016/j.jneumeth.2016.09.004
https://doi.org/10.1016/j.jneumeth.2016.09.004
https://doi.org/10.1093/cercor/bht289
https://doi.org/10.1038/nrn2793
https://doi.org/10.1200/JCO.2011.36.8571
https://doi.org/10.1016/j.tics.2008.01.001
https://doi.org/10.1002/hbm.20363
https://doi.org/10.1523/JNEUROSCI.4735-11.2011
https://doi.org/10.1016/j.neurobiolaging.2011.11.018
https://doi.org/10.1016/j.neurobiolaging.2011.11.018
https://doi.org/10.1371/journal.pone.0090307
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1002/hbm.21257
https://doi.org/10.1016/S0197-4580(01)00266-4
https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-12-00043 September 20, 2018 Time: 13:52 # 14

McDonough and Siegel Network Complexity and White Matter Microstructure

fMRI acquisition for improved resting state network imaging. Neuroimage 95,
232–247. doi: 10.1016/j.neuroimage.2014.03.034

Honey, C. J., Kötter, R., Breakspear, M., and Sporns, O. (2007). Network structure
of cerebral cortex shapes functional connectivity on multiple time scales. Proc.
Natl. Acad. Sci. U.S.A. 104, 10240–10245. doi: 10.1073/pnas.0701519104

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., et al.
(2009). Predicting human resting-state functional connectivity from structural
connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040. doi: 10.1073/pnas.
0811168106

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Med.
2:e124. doi: 10.1371/journal.pmed.0020124

Jellison, B. J., Field, A. S., Medow, J., Lazar, M., Salamat, M. S., and Alexander, A. L.
(2004). Diffusion tensor imaging of cerebral white matter: a pictorial review of
physics, fiber tract anatomy, and tumor imaging patterns. Am. J. Neuroradiol.
25, 356–369.

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved
optimization for the robust and accurate linear registration and motion
correction of brain images. Neuroimage 17, 825–841. doi: 10.1006/nimg.2002.
1132

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., and Smith, S. M.
(2012). FSL. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Jung, R. E., and Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-
FIT) of intelligence: converging neuroimaging evidence. Behav. Brain Sci. 30,
135–154. doi: 10.1017/S0140525X07001185

Karlsgodt, K. H., van Erp, T. G., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H.,
and Cannon, T. D. (2008). Diffusion tensor imaging of the superior longitudinal
fasciculus and working memory in recent-onset schizophrenia. Biol. Psych. 63,
512–518. doi: 10.1016/j.biopsych.2007.06.017

Koch, K., Wagner, G., Dahnke, R., Schachtzabel, C., Gullmar, D., Reichenbach,
J. R., et al. (2010). Structure–function relationships in the context of
reinforcement-related learning: a combined diffusion tensor imaging-
functional magnetic resonance imaging study. Neuroscience 168, 190–199.
doi: 10.1016/j.neuroscience.2010.03.026

Koch, K., Wagner, G., Schachtzabel, C., Schultz, C. C., Güllmar, D., Reichenbach,
J. R., et al. (2011). Neural activation and radial diffusivity in schizophrenia:
combined fMRI and diffusion tensor imaging study. Br. J. Psychiatry 198,
223–229. doi: 10.1192/bjp.bp.110.081836

Lake, D. E., Richman, J. S., Griffin, M. P., and Moorman, J. R. (2002). Sample
entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr.
Comp. Physiol. 283, R789–R797. doi: 10.1152/ajpregu.00069.2002

Li, S. C., and Lindenberger, U. (1999). “Cross-level unification: A computational
exploration of the link between deterioration of neurotransmitter systems and
dedifferentiation of cognitive abilities in old age,” in Cognitive Neuroscience of
Memory, eds L.-G. Nilsson and H. Markowitsch (Toronto: Hogrefe), 103–146.

Lippé, S., Kovacevic, N., and McIntosh, A. R. (2009). Differential maturation of
brain signal complexity in the human auditory and visual system. Front. Hum.
Neurosci. 3:48. doi: 10.3389/neuro.09.048.2009

Madden, D. J., Spaniol, J., Whiting, W. L., Bucur, B., Provenzale, J. M., Cabeza, R.,
et al. (2007). Adult age differences in the functional neuroanatomy of visual
attention: a combined fMRI and DTI study. Neurobiol. Aging 28, 459–476.
doi: 10.1016/j.neurobiolaging.2006.01.005

McDonough, I. M., and Nashiro, K. (2014). Network complexity as a measure of
information processing across resting-state networks: evidence from the human
connectome project. Front. Hum. Neurosci. 8:409. doi: 10.3389/fnhum.2014.
00409

McDonough, I. M., Wong, J. T., and Gallo, D. A. (2013). Age-related differences in
prefrontal cortex activity during retrieval monitoring: testing the compensation
and dysfunction accounts. Cereb. Cortex 23, 1049–1060. doi: 10.1093/cercor/
bhs064

McIntosh, A. R., Bookstein, F. L., Haxby, J. V., and Grady, C. L. (1996).
Spatial pattern analysis of functional brain images using partial least squares.
Neuroimage 3, 143–157. doi: 10.1006/nimg.1996.0016

McIntosh, A. R., Vakorin, V., Kovacevic, N., Wang, H., Diaconescu, A., and
Protzner, A. B. (2014). Spatiotemporal dependency of age-related changes
in brain signal variability. Cereb. Cortex 24, 1806–1817. doi: 10.1093/cercor/
bht030

McKenna, B. S., Theilmann, R. J., Sutherland, A. N., and Eyler, L. T. (2015).
Fusing functional MRI and diffusion tensor imaging measures of brain function

and structure to predict working memory and processing speed performance
among inter-episode bipolar patients. J. Int. Neuropsych. Soc. 21, 330–341.
doi: 10.1017/S1355617715000314

Nakagawa, T. T., Jirsa, V. K., Spiegler, A., McIntosh, A. R., and Deco, G.
(2013). Bottom up modeling of the connectome: linking structure and function
in the resting brain and their changes in aging. Neuroimage 80, 318–329.
doi: 10.1016/j.neuroimage.2013.04.055

Neubauer, A. C., and Fink, A. (2009). Intelligence and neural efficiency. Neurosci.
Biobehav. Rev. 33, 1004–1023. doi: 10.1016/j.neubiorev.2009.04.001

Olesen, P. J., Nagy, Z., Westerberg, H., and Klingberg, T. (2003). Combined analysis
of DTI and fMRI data reveals a joint maturation of white and grey matter in a
fronto-parietal network. Cogn. Brain Res. 18, 48–57. doi: 10.1016/j.cogbrainres.
2003.09.003

Open Science Collaboration (2015). Estimating the reproducibility of psychological
science. Science 349:aac4716. doi: 10.1126/science.aac4716

Park, D. C., and McDonough, I. M. (2013). The dynamic aging mind revelations
from functional neuroimaging research. Perspect. Psychol. Sci. 8, 62–67.
doi: 10.1177/1745691612469034

Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L. G., Ingvar, M., et al. (2006).
Structure–function correlates of cognitive decline in aging. Cereb. Cortex 16,
907–915. doi: 10.1093/cercor/bhj036

Pincus, S. M., and Goldberger, A. L. (1994). Physiological time-series analysis:
what does regularity quantify? Am. J. Physiol. 266, H1643–H1656. doi: 10.1152/
ajpheart.1994.266.4.H1643

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,
et al. (2011). Functional network organization of the human brain. Neuron 72,
665–678. doi: 10.1016/j.neuron.2011.09.006

Pruim, R. H., Mennes, M., Buitelaar, J. K., and Beckmann, C. F. (2015). Evaluation
of ICA-AROMA and alternative strategies for motion artifact removal in
resting state fMRI. Neuroimage 112, 278–287. doi: 10.1016/j.neuroimage.2015.0
2.063

Putnam, M. C., Wig, G. S., Grafton, S. T., Kelley, W. M., and Gazzaniga, M. S.
(2008). Structural organization of the corpus callosum predicts the extent and
impact of cortical activity in the non dominant hemisphere. J. Neurosci. 28,
2912–2918. doi: 10.1523/JNEUROSCI.2295-07.2008

Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C.,
et al. (2000). Age differences in the frontal lateralization of verbal and spatial
working memory revealed by PET. J. Cogn. Neurosci. 12, 174–187. doi: 10.1162/
089892900561814

Richman, J. S., and Moorman, J. R. (2000). Physiological time-series analysis using
approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol.
278, H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L.,
and Smith, S. M. (2014). Automatic denoising of functional MRI data:
combining independent component analysis and hierarchical fusion of
classifiers. Neuroimage 90, 449–468. doi: 10.1016/j.neuroimage.2013.11.046

Salthouse, T. A. (1996). The processing-speed theory of adult age differences in
cognition. Psychol. Rev. 103, 403–428. doi: 10.1037/0033-295X.103.3.403

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H.,
et al. (2007). Dissociable intrinsic connectivity networks for salience processing
and executive control. J. Neurosci. 27, 2349–2356. doi: 10.1523/JNEUROSCI.
5587-06.2007

Shen, K., Hutchison, R. M., Bezgin, G., Everling, S., and McIntosh, A. R. (2015).
Network structure shapes spontaneous functional connectivity dynamics.
J. Neurosci. 35, 5579–5588. doi: 10.1523/JNEUROSCI.4903-14.2015

Smith, R. X., Jann, K., Ances, B., and Wang, D. J. J. (2015). Wavelet-based regularity
analysis reveals recurrent spatiotemporal behavior in resting-state fMRI. Hum.
Brain Mapp. 36, 3603–3620. doi: 10.1002/hbm.22865

Smith, R. X., Yan, L., and Wang, D. J. J. (2013). Multiple time scale complexity
analysis of resting state FMRI. Brain Imaging Behav. 8, 284–291. doi: 10.1007/
s11682-013-9276-6

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E.,
Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis
of multi-subject diffusion data. Neuroimage 31, 1487–1505. doi: 10.1016/j.
neuroimage.2006.02.024

Sokunbi, M., Fung, W., Sawlani, V., Choppin, S., Linden, D., and Thome, J. (2013).
Resting state fMRI entropy probes complexity of brain activity in adults with
ADHD. Psychiatry Res. 214, 341–348. doi: 10.1016/j.pscychresns.2013.10.001

Frontiers in Integrative Neuroscience | www.frontiersin.org 14 September 2018 | Volume 12 | Article 43

https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1073/pnas.0701519104
https://doi.org/10.1073/pnas.0811168106
https://doi.org/10.1073/pnas.0811168106
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1017/S0140525X07001185
https://doi.org/10.1016/j.biopsych.2007.06.017
https://doi.org/10.1016/j.neuroscience.2010.03.026
https://doi.org/10.1192/bjp.bp.110.081836
https://doi.org/10.1152/ajpregu.00069.2002
https://doi.org/10.3389/neuro.09.048.2009
https://doi.org/10.1016/j.neurobiolaging.2006.01.005
https://doi.org/10.3389/fnhum.2014.00409
https://doi.org/10.3389/fnhum.2014.00409
https://doi.org/10.1093/cercor/bhs064
https://doi.org/10.1093/cercor/bhs064
https://doi.org/10.1006/nimg.1996.0016
https://doi.org/10.1093/cercor/bht030
https://doi.org/10.1093/cercor/bht030
https://doi.org/10.1017/S1355617715000314
https://doi.org/10.1016/j.neuroimage.2013.04.055
https://doi.org/10.1016/j.neubiorev.2009.04.001
https://doi.org/10.1016/j.cogbrainres.2003.09.003
https://doi.org/10.1016/j.cogbrainres.2003.09.003
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1177/1745691612469034
https://doi.org/10.1093/cercor/bhj036
https://doi.org/10.1152/ajpheart.1994.266.4.H1643
https://doi.org/10.1152/ajpheart.1994.266.4.H1643
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuroimage.2015.02.063
https://doi.org/10.1016/j.neuroimage.2015.02.063
https://doi.org/10.1523/JNEUROSCI.2295-07.2008
https://doi.org/10.1162/089892900561814
https://doi.org/10.1162/089892900561814
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1037/0033-295X.103.3.403
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1523/JNEUROSCI.4903-14.2015
https://doi.org/10.1002/hbm.22865
https://doi.org/10.1007/s11682-013-9276-6
https://doi.org/10.1007/s11682-013-9276-6
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.1016/j.pscychresns.2013.10.001
https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-12-00043 September 20, 2018 Time: 13:52 # 15

McDonough and Siegel Network Complexity and White Matter Microstructure

Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., and Cross,
A. H. (2002). Dysmyelination revealed through MRI as increased radial (but
unchanged axial) diffusion of water. Neuroimage 17, 1429–1436. doi: 10.1006/
nimg.2002.1267

Song, S. K., Yoshino, J., Le, T. Q., Lin, S. J., Sun, S. W., Cross, A. H.,
et al. (2005). Demyelination increases radial diffusivity in corpus callosum
of mouse brain. Neuroimage 26, 132–140. doi: 10.1016/j.neuroimage.2005.0
1.028

Sotiropoulos, S. N., Jbabdi, S., Xu, J., Andersson, J. L., Moeller, S., Auerbach,
E. J., et al. (2013). Advances in diffusion MRI acquisition and processing
in the human connectome project. Neuroimage 80, 125–143. doi: 10.1016/j.
neuroimage.2013.05.057

Tononi, G., Edelman, G. M., and Sporns, O. (1998). Complexity and coherency:
integrating information in the brain. Trends Cogn. Sci. 2, 474–484. doi: 10.1016/
S1364-6613(98)01259-5

Tononi, G., Sporns, O., and Edelman, G. M. (1994). A measure for brain
complexity: relating functional segregation and integration in the nervous
system. Proc. Natl. Acad. Sci. U.S.A. 91, 5033–5037. doi: 10.1073/pnas.91.11.
5033

Toosy, A. T., Ciccarelli, O., Parker, G. J., Wheeler-Kingshott, C. A., Miller, D. H.,
and Thompson, A. J. (2004). Characterizing function-structure relationships in
the human visual system with functional MRI and diffusion tensor imaging.
Neuroimage 21, 1452–1463. doi: 10.1016/j.neuroimage.2003.11.022

Turken, U., Whitfield-Gabrieli, S., Bammer, R., Baldo, J. V., Dronkers, N. F.,
and Gabrieli, J. D. (2008). Cognitive processing speed and the structure of
white matter pathways: convergent evidence from normal variation and lesion
studies. Neuroimage 42, 1032–1044. doi: 10.1016/j.neuroimage.2008.03.057

Ugurbil, K., Xu, J., Auerbach, E. J., Moeller, S., Vu, A. T., Duarte-Carvajalino,
J. M., et al. (2013). Pushing spatial and temporal resolution for functional
and diffusion MRI in the human connectome project. Neuroimage 80, 80–104.
doi: 10.1016/j.neuroimage.2013.05.012

Vakorin, V. A., Lippé, S., and McIntosh, A. R. (2011). Variability of brain signals
processed locally transforms into higher connectivity with brain development.
J. Neurosci. 31, 6405–6413. doi: 10.1523/JNEUROSCI.3153-10.2011

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., and
Ugurbil, K. (2013). The WU-minn human connectome project: an overview.
Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

Vestergaard, M., Madsen, K. S., Baaré, W. F., Skimminge, A., Ejersbo, L. R.,
Ramsøy, T. Z., et al. (2011). White matter microstructure in superior
longitudinal fasciculus associated with spatial working memory performance
in children. J. Cogn. Neurosci. 23, 2135–2146. doi: 10.1162/jocn.2010.21592

Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., and Buckner, R. L. (2008).
Evidence for a frontoparietal control system revealed by intrinsic functional
connectivity. J. Neurophysiol. 100, 3328–3342. doi: 10.1152/jn.90355.2008

Wakana, S., Jiang, H., Nagae-Poetscher, L. M., Van Zijl, P. C., and Mori, S. (2004).
Fiber tract–based atlas of human white matter anatomy. Radiology 230, 77–87.
doi: 10.1148/radiol.2301021640

Yang, A. C., Huang, C. C., Liu, M. E., Liou, Y. J., Hong, C. J., Lo, M. T., et al.
(2014). The APOE ε4 allele affects complexity and functional connectivity of
resting brain activity in healthy adults. Hum. Brain Mapp. 35, 3238–3248.
doi: 10.1002/hbm.22398

Yang, A. C., Huang, C.-C., Yeh, H.-L., Liu, M.-E., Hong, C.-J., and Tu, P.-C.
(2012). Complexity of spontaneous BOLD activity in default mode network is
correlated with cognitive function in normal male elderly: a multiscale entropy
analysis. Neurobiol. Aging 34, 428–438. doi: 10.1016/j.neurobiolaging.2012.0
5.004

Yang, A. C., and Tsai, S. J. (2013). Is mental illness complex? From behavior to
brain. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 253–257. doi: 10.1016/
j.pnpbp.2012.09.015

Ystad, M., Hodneland, E., Adolfsdottir, S., Haász, J., Lundervold, A. J., Eichele, T.,
et al. (2011). Cortico-striatal connectivity and cognition in normal aging: a
combined DTI and resting state fMRI study. Neuroimage 55, 24–31. doi: 10.
1016/j.neuroimage.2010.11.016

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 McDonough and Siegel. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Integrative Neuroscience | www.frontiersin.org 15 September 2018 | Volume 12 | Article 43

https://doi.org/10.1006/nimg.2002.1267
https://doi.org/10.1006/nimg.2002.1267
https://doi.org/10.1016/j.neuroimage.2005.01.028
https://doi.org/10.1016/j.neuroimage.2005.01.028
https://doi.org/10.1016/j.neuroimage.2013.05.057
https://doi.org/10.1016/j.neuroimage.2013.05.057
https://doi.org/10.1016/S1364-6613(98)01259-5
https://doi.org/10.1016/S1364-6613(98)01259-5
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1016/j.neuroimage.2003.11.022
https://doi.org/10.1016/j.neuroimage.2008.03.057
https://doi.org/10.1016/j.neuroimage.2013.05.012
https://doi.org/10.1523/JNEUROSCI.3153-10.2011
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1162/jocn.2010.21592
https://doi.org/10.1152/jn.90355.2008
https://doi.org/10.1148/radiol.2301021640
https://doi.org/10.1002/hbm.22398
https://doi.org/10.1016/j.neurobiolaging.2012.05.004
https://doi.org/10.1016/j.neurobiolaging.2012.05.004
https://doi.org/10.1016/j.pnpbp.2012.09.015
https://doi.org/10.1016/j.pnpbp.2012.09.015
https://doi.org/10.1016/j.neuroimage.2010.11.016
https://doi.org/10.1016/j.neuroimage.2010.11.016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles

	The Relation Between White Matter Microstructure and Network Complexity: Implications for Processing Efficiency
	Introduction
	Materials and Methods
	Participants
	DTI Procedures
	fMRI Procedures
	Multiscale Entropy (MSE) Analysis
	Global Correlation Analyses
	Partial Least Squares (PLS) Analyses

	Results
	Network Complexity and WM Integrity
	Replication of Effects: Matched Sample
	Replication of Effects: Non-matched Sample
	Cross-Sample Summary

	Discussion
	Global Associations Between White Matter Integrity and Network Complexity
	Latent Variable 1: White Matter Integrity Influences Network Complexity in the Prefrontal Cortex Networks
	Latent Variable 2: White Matter Integrity Affects Complexity Independent of Network
	Interpreting Network Complexity
	Reliability and Strength of the Findings

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


