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We compared the performance of different Deep learning-convolutional neural network (DL-CNN) models for
bladder cancer treatment response assessment based on transfer learning by freezing different DL-CNN lay-
ers and varying the DL-CNN structure. Pre- and posttreatment computed tomography scans of 123 patients
(cancers, 129; pre- and posttreatment cancer pairs, 158) undergoing chemotherapy were collected. After
chemotherapy 33% of patients had T0 stage cancer (complete response). Regions of interest in pre- and
posttreatment scans were extracted from the segmented lesions and combined into hybrid pre -post image
pairs (h-ROIs). Training (pairs, 94; h-ROIs, 6209), validation (10 pairs) and test sets (54 pairs) were ob-
tained. The DL-CNN consisted of 2 convolution (C1-C2), 2 locally connected (L3-L4), and 1 fully connected
layers. The DL-CNN was trained with h-ROIs to classify cancers as fully responding (stage T0) or not fully
responding to chemotherapy. Two radiologists provided lesion likelihood of being stage T0 posttreatment.
The test area under the ROC curve (AUC) was 0.73 for T0 prediction by the base DL-CNN structure with
randomly initialized weights. The base DL-CNN structure with pretrained weights and transfer learning (no
frozen layers) achieved test AUC of 0.79. The test AUCs for 3 modified DL-CNN structures (different C1-C2
max pooling filter sizes, strides, and padding, with transfer learning) were 0.72, 0.86, and 0.69. For the
base DL-CNN with (C1) frozen, (C1-C2) frozen, and (C1-C2-L3) frozen, the test AUCs were 0.81, 0.78, and
0.71, respectively. The radiologists’ AUCs were 0.76 and 0.77. DL-CNN performed better with pretrained
than randomly initialized weights.

INTRODUCTION
Bladder cancer is the fourth most common cancer in men. The
American Cancer Society estimates that in 2018, 81 190 (men,
62 380; women, 18 810) new cases of bladder cancer will be
diagnosed in the United States, with 17 240 (men, 12 520;
women, 4720) deaths (1). Early treatment of bladder cancer is
important to reduce morbidity and mortality, as well as reduce
costs.

Radical cystectomy is considered the gold standard for
treatment of patients with localized muscle-invasive bladder
cancer. However, about 50% of such patients develop metasta-
ses within 2 years after cystectomy and subsequently die of the
disease (2). Neoadjuvant chemotherapy of muscle-invasive
operable bladder cancer has been shown to be beneficial for
treating micrometastases and improving resectability of larger
neoplasms before radical cystectomy (3-5). Chemotherapy in-
volving methotrexate, vinblastine, doxorubicin, and cisplatin
(MVAC) followed by radical cystectomy increases the probabil-
ity of finding no residual cancer at surgery compared with

radical cystectomy alone and improves survival among patients
with locally advanced bladder cancer (6, 7). In clinical trials,
downstaging with drugs before surgery was shown to have
significant survival benefits (7, 8). Current standard of care uses
the neoadjuvant protocol consisting of 12 weeks of chemother-
apy preceding radical cystectomy.

Although patients with advanced disease can benefit from
neoadjuvant chemotherapy, there are drawbacks. Chemother-
apy with the MVAC regimen has substantial toxicity and side
effects (9). Significant toxicities, primarily leucopenia, culture-
negative fever at the time of granulocytopenia, sepsis, and
mucositis are associated with MVAC combination chemotherapy.
Side effects such as nausea, vomiting, malaise, and alopecia are
common. In addition, chemotherapy is expensive. However, be-
cause no reliable method yet exists for predicting the response of an
individual case to chemotherapies such as MVAC, some patients
may suffer from adverse reactions to the drugs without achieving
beneficial effects, often also missing the opportunity for alternative
therapy when their physical condition deteriorates.
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Early assessment of therapeutic efficacy and prediction of
failure of the treatment would help physicians decide whether to
discontinue chemotherapy at an early phase and thus reduce
unnecessary morbidity and improve the quality of life of the
patient, and reduce costs. The ultimate goal is to improve sur-
vival for those with a high risk of recurrence while minimizing
toxicity to those who will have minimal benefit.

The development of an accurate predictive model for the
effectiveness of a specific therapy and clinical evaluation of the
predictive model are of critical importance for patients with
bladder cancer. In addition, if a patient can be reliably identified
as having complete response to treatment, the treatment option
of preserving the bladder may be considered, which would
drastically reduce the morbidity of the patient and improve
his/her quality of life as compared to the current standard
treatment by cystectomy.

Pathologic evaluation performed at the time of radical cys-
tectomy is considered a “gold standard” for estimation of treat-
ment response. However, this method cannot be used during the
course of chemotherapy. Noninvasive evaluation of the treat-
ment response can be performed during the course of chemo-
therapy (after 1 or 2 cycles) with computed tomography (CT) or
magnetic resonance imaging (MRI) by measuring tumor size. CT
provides accurate anatomical images of the tumor and is be-
coming the main tool for evaluation of bladder cancer.

We are developing a computerized decision support system
(CDSS-T) for monitoring of bladder cancer treatment response.
Machine learning techniques are used to integrate the image
information into an effective predictive model. The purpose of
the CDSS-T is to provide noninvasive, objective, and reproduc-
ible decision support for identifying nonresponders so that the
treatment may be stopped early to preserve their physical con-
dition or to identify full responders for organ preservation.

DL-CNN can be used to build pattern recognition models
using large image data sets (10-12). There are an increasing
number of DL-CNN applications in medical imaging field for
lesion segmentation, characterization, and diagnosis of diseases
in different organs (13).

Cha et al. (14) proposed DL-CNN-based method for treat-
ment response assessment of bladder cancers. In their paper, the
DL-CNN was trained directly on a pre- and posttreatment set of
82 patients with 87 bladder cancers and deployed on a test pre-
and posttreatment set of 41 patients with 43 cancers.

In medical imaging where training image data sets are
generally small, a commonly used approach for building robust
DL-CNN models is transfer learning (15). This approach uses a
large data set from a different domain (for example, natural
scene images) to initially train the DL-CNN. Then most of the
structures and the parameters of the DL-CNN are kept fixed and
only a small part of the DL-CNN is retrained with the smaller
data set from the specific domain of the task at hand, for which
the model is designed. This approach has shown a lot of promise
in a number of medical imaging applications (16-18).

In this study we have explored different DL-CNN models for
bladder cancer treatment response assessment based on transfer
learning by freezing different DL-CNN layers and varying the
DL-CNN structure. We also compared the DL-CNN models to
radiomics-based models.

METHODS
Data Set
Pre- and posttreatment CT scans of 123 patients (with 129 total
cancers) undergoing chemotherapy were collected with IRB ap-
proval. In total, 33% of patients were determined to have T0
stage cancer (complete response) after chemotherapy.

After the chemotherapy treatment, each patient underwent
cystectomy. The final cancer stage after treatment was deter-
mined on the basis of the pathology obtained from the bladder at
the time of the surgery. The pathological cancer stage was used
as the reference standard for response to treatment: complete
response (stage T0) or not complete response (stage � T0).

The CT scans were acquired with GE Healthcare LightSpeed
MDCT scanners (120 kVp; 120–280 mA). The pixel size range
was 0.586 to 0.977 mm and the slice thickness range was 0.5 to
7.5 mm.

The lesions on the pre- and posttreatment scans were seg-
mented using our previously developed autoinitialized cascaded
level sets system (19). ROIs of pre- and posttreatment scans of
these patients were extracted from segmented lesions as 32- �
16-pixel images, and pre- and posttreatment images of patients
were combined to make hybrid pre–post image pairs in the form
of 32- � 32-pixel image ROIs. Figure 1 gives an example of a
�T0 lesion pair and how it is generated. Multiple ROIs were
extracted from pre- and posttreatment images of the lesion and
combined to obtain a number of hybrid pre–post image pairs for
the same lesion. Each hybrid ROI was labeled as T0 (complete

Figure 1. Example of a prepost
lesion pair generated ROI. In this
example the case was stage T2 in
pretreatment, and stage T1 in
post-treatment, resulting in a label
of �T0.
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Figure 3. TensorFlow graph of base deep learning-convolutional neural network (DL-CNN) structure with different lay-
ers marked. The hybrid pre–post lesion pair ROIs were input to the DL-CNN, which then predicted a likelihood score of
a complete response (T0) as an output.

Figure 2. Subset of 6209 total regions of
interest (ROIs) used in training set. Cases with
complete response (T0) to treatment (A).
Cases that did not fully respond (�T0) to
treatment (B).
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response after treatment) or �T0 (the cancer did not respond
completely after treatment) as determined by pathology.

The data set was split into training, validation, and test sets.
The training set consisted of 77 lesions from 73 patients, where
19 lesions were stage T0, and 58 lesions were stage �T0. The 77
lesions formed 94 lesion pairs, and 6209 hybrid ROIs were
generated. The validation set consisted of 10 lesions (stage T0, 5;
stage �T0, 5) that formed 10 pre- and posttreatment cancer
pairs and generated 521 hybrid ROIs. The test set was composed
of 42 lesions from 41 patients, where 12 lesions were stage T0,
and 30 lesions were stage �T0. The 42 lesions formed 54 pre-
and posttreatment cancer pairs. Figure 2 displays 2 mosaics of
different pre–post lesion pairs used in the training, with the left
mosaic (Figure 2A) containing T0 pairs and the right (Figure 2B)
containing �T0 pairs.

Two experienced radiologists, blinded to the clinical treat-
ment outcome, also evaluated each pair of pre- and posttreat-
ment CT scans in the test data set, displayed on 2 medical-grade
monitors side by side, and provided ratings for the likelihood of
the posttreatment lesions being stage T0 cancer.

Network Structures
The DL-CNN structure used in this study was based on AlexNet
(10) and implemented and validated in the TensorFlow frame-
work. The base structure of the DL-CNN consisted of 2 convo-

lution layers (C1 and C2) followed by 2 locally connected layers
(L3 and L4) and a fully connected layer (FC10). The output from
the DL-CNN was trained to classify cases as fully responding
(stage T0) or not fully responding (stage � T0) to chemotherapy
based on the hybrid ROIs. Within C1 and C2, convolution filter-
ing with 64 “5 � 5” kernels and a stride of 1 was performed,
followed by local response normalization and max pooling with
a 3 � 3 filter of stride 2. Layer L3 consisted of 64 “3 � 3” kernels,
and L4 consisted of 32 “3 � 3” kernels. The output from L4 was
input to the FC10, which was a softmax linear layer. The FC10
layer produced a numerical likelihood score from 0 to 1, with 0
corresponding to a stage � T0 case, and 1 corresponding to a
stage T0 case. Figure 3 shows a labeled map of the DL-CNN
generated by TensorBoard, a visualization tool for TensorFlow.

We first trained the DL-CNN with randomly initialized
weights. We then explored the use of transfer learning. The
DL-CNN with pretrained weights from the CIFAR10 image set
were used. The CIFAR10 image set consists of 10 classes (air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck) and 60 000 total 32 � 32 images collected by Krizhevsky
et al. Each class contains 6000 images (20). We also performed
alterations to the DL-CNN structure to study its effect on the
DL-CNN performance. The modifications of the structures took
place in layers C1 and C2, and these involved the filter size, filter

Table 1. Modifications in Layers C1 and C2 for Each Structure Variation

Base DL-CNN-1 DL-CNN-2 DL-CNN-3

C1

Convolution

Size 5 � 5 5 � 5 5 � 5 5 � 5

Stride 1 1 2 1

Max Pooling

Size 3 � 3 5 � 5 3 � 3 3 � 3

Stride 2 2 2 2

Padding Valid Valid Valid Same

C2

Convolution

Size 5 � 5 5 � 5 5 � 5 5 � 5

Stride 1 1 1 1

Max Pooling

Size 3 � 3 2 � 2 2 � 2 4 � 4

Stride 2 1 1 2

Table 2. Test AUC Values for DL-CNN Models with Modified Structures

DL-CNN Type

Base DL-CNN
Structure

(Random Weights)

Base DL-CNN
Structure

(Pretrained Weights) DL-CNN-1 DL-CNN-2 DL-CNN-3

AUC 0.73 � 0.08 0.79 � 0.07 0.72 � 0.08 0.86 � 0.06 0.69 � 0.09
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stride, and padding type of the convolutions and max pooling
performed in each layer. Three different structures were studied
(DL-CNN-1, DL-CNN-2, and DL-CNN-3), and the modifications
performed can be observed in Table 1.

In addition, we trained the network with one (C1) or more
(C1, C2, L3) layers frozen. Freezing a layer during training
prevents its weights from being altered, and it may be necessary
to preserve the starting weights for some layers of the network to
optimize training results (21). All of the experiments with frozen
layers used the CIFAR10 transfer learning and the original
DL-CNN network structure.

Training and Testing Process
The DL-CNN models were trained first for 10 000 epochs by
using the training data set. For every 100 epochs, the trained
DL-CNN model was deployed on the validation set. The area
under the ROC curve (AUC) was calculated as a performance
measure, and the validation AUC results were recorded. To
reduce the likelihood of overfitting, a line plot of the validation
AUC results was created and a training epoch number around
where the validation AUCs peaked (usually around 2000 epochs)
was selected. The final DL-CNN model was trained on the com-
bined training set (comprising the merged training and valida-
tion sets) up to the selected epoch. The trained DL-CNN model
was then deployed on the test set and the AUC was estimated.

Training for 10 000 epochs for 1 experiment typically took
about 8.3 hours with an NVidia GeForce GTX 1080 Ti GPU. Final
training with the combined set took about 1.7 hours. Deploy-
ment on the test set took less than 1 minute per case.

Evaluation
The AUC results of our experiments were compared with those of
the 2 radiologists, as well as those from 2 radiomics feature-
based classification methods (RF-SL and RF-ROI) by Cha et al.
(14). The radiomics-based methods involved predicting the re-
sponse of cases based on the estimated changes in automatically
extracted features (including morphological, gray level, and
texture features) between lesions in pre- and posttreatment
scans. Cha et al. (14) also evaluated the performance of a simi-
larly structured DL-CNN. The results of the variations in the
DL-CNN structure and the transfer learning schemes were com-
pared with those of the base structure. We generated ROC curves
for each experiment and used 2 statistical significance tests,
ROC-kit from the University of Chicago, and the DeLong Test, to
estimate the statistical significance of the differences between
AUC values of the corresponding experiments. In addition, us-
ing the ROC curves, we calculated the sensitivity and accuracy
of the test results at specificity of 80%, and statistical signifi-
cance of the differences was also estimated. The specificity of

Table 3. Test AUC Values for DL-CNN Models with Transfer Learning and Different Frozen Layers

DL-CNN Type
Base DL-CNN Structure
(Pretrained Weights) C1 Frozen C1, C2 Frozen C1, C2, L3 Frozen

AUC 0.79 � 0.07 0.81 � 0.07 0.78 � 0.08 0.71 � 0.08

Figure 4. Test ROC curves of different DL-CNN models. ROC graph comparing base DL-CNN model (base structure) to
DL-CNN models with modified structure (A). ROC graph comparing base DL-CNN model (base structure) with pretrained
weights but no frozen layers to DL-CNN models with frozen layers (B).
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80% was selected by an experienced urologist (A.W.), as a
possible clinically meaningful value.

RESULTS
The AUCs for our experiments are shown in Tables 2 and 3, and
the ROC curves are shown in Figure 4. For the base DL-CNN
structure with randomly initialized weights, the test AUC for T0
prediction was 0.73 � 0.08. For the base DL-CNN structure, with
transfer learning using CIFAR10 pretrained weights and no
frozen training layers, the test AUC was 0.79 � 0.07. The test AUCs
for the DL-CNN-1, DL-CNN-2, and DL-CNN-3 modified structures
(with transfer learning and no frozen layers) were 0.72 � 0.07,
0.86 � 0.06, and 0.69 � 0.09, respectively. The only statistical
significance difference observed was between DL-CNN-2 and DL-
CNN-3 (P � .007, DeLong; P � .006, ROC-kit).

With the first layer (C1) of the base DL-CNN frozen, the test
AUC was 0.81 � 0.07. With the first 2 layers (C1 and C2) frozen,
the test AUC was 0.78 � 0.08. With the first 3 layers (C1, C2, and
L3) frozen, the test AUC was 0.71 � 0.08. None of the differences
in AUC between the DL-CNN with frozen layers and the base
structure with no layers frozen reached statistical significance.

Table 4 shows the AUC of the base DL-CNN with randomly
initialized weights versus the radiologists and methods from the
Cha et al. study (14). The AUCs of radiologist 1 and radiologist 2
were 0.76 � 0.08 and 0.77 � 0.08, respectively. The AUCs of the
radiomics-based methods RF-SL and RF-ROI were 0.77 � 0.08
and 0.69 � 0.08, respectively. The network structure used in the
study by Cha et al. achieved an AUC of 0.73 � 0.08.

Table 5 shows the sensitivity and accuracy of each model at
a specificity of 80%. The corresponding sensitivities ranged
from 41.7% to 75.0%, while the corresponding accuracies
ranged from 64.1% to 78.9%. Neither of the differences in
sensitivities and accuracies between models reached statistical
significance.

DISCUSSION
The results of this study show the feasibility of DL-CNN in
estimating bladder cancer treatment response in CT. The DL-
CNN performed better with pretrained weights from the CI-
FAR-10 image set than with randomly initialized weights, while
the AUC from the randomly initialized weights matched that
of the network structure used in the previous Cha et al. study
(14). The base DL-CNN and its modified structures all performed
similarly to the radiologists, and in a few cases, performing
better with higher AUCs. The AUCs of the base DL-CNN and its
variations were comparable to the AUCs of the radiomics-based
methods from the Cha et al. study. Only 1 network variation
(DL-CNN-2) resulted in a statistically significant improvement
in performance compared to the base structure.

Figure 5 shows examples of pre- and postlesion pairs pre-
dicted correctly and incorrectly by the base DL-CNN with
CIFAR10 weights.

The performance of the DL-CNN generally decreased as
more training layers were frozen. Freezing layer C1 resulted in a
slight, but not statistically significant, improvement in perfor-
mance. According to a study by Yosinski et al. (22), the first
layer of neural networks trained on natural images aims, in
general, to capture more universal features (such as edges and
curves), while proceeding layers aim to capture features more
specific to the input image set (in this case, bladder lesions). As
a result, allowing the first layer to train and change its weights
may have minimal or adverse effects on the results of the
training. Such a phenomenon may have been observed in our
experiments, given the performance increase in our network
with layer C1 frozen.

Similar trends were observed by Samala et al. (23) for the
task of classification of malignant and benign breast masses on
mammograms and tomosynthesis.

In our statistical significance tests, we found that one of our
structure modifications, DL-CNN-2 (with the highest AUC value
of all structures), achieved statistically significant improvement
in performance compared to DL-CNN-3 (with the lowest AUC
value of all structures). We will perform further testing to con-
firm the validity of our results and measure the performance of
the structure with a larger data set.

There are limitations in this study. We are currently working
with a relatively small data set in training, validation and testing
of our DL-CNN models, which may also be a reason for achiev-

Table 4. Test AUC Values for Radiologists and Methods Used in Cha et al. Study

DL-CNN Type

Base DL-CNN
Structure

(Random Weights) Radiologist 1 Radiologist 2 DL-CNN (Cha) RF-SL RF-ROI

AUC 0.73 � 0.08 0.76 � 0.08 0.77 � 0.08 0.73 � 0.08 0.77 � 0.08 0.69 � 0.08

Table 5. Test Sensitivity and Accuracy of
DL-CNN Models at a Specificity of 80%

Sensitivity (%) Accuracy (%)

Base Structure
(Pretrained weights) 59.5% 64.1%

Base Structure
(Random Weights) 41.7% 71.5%

Structure Modifications

DL-CNN-1 50.0% 73.3%

DL-CNN-2 75.0% 78.9%

DL-CNN-3 50.0% 73.3%

Layer Freezing

C1 Frozen 58.3% 75.2%

C1, C2 Frozen 58.3% 75.2%

C1, C2, L3 Frozen 58.3% 75.2%
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ing statistical significance for only 1 comparison. In the
future, we will continue to collect a larger data set with new
cases (both T0 and non-T0) in our networks. Another limita-
tion is that we have evaluations from only 2 radiologists on
the test set. Additional classifications from different radiol-
ogists would be needed to study the variability in the accu-
racy of such readings.

Our network was trained using the CIFAR-10 data set,
which produces favorable results, but is not relevant in the field
of medical imaging. A better approach for training with transfer
learning would be to use CT scan images, ideally bladder scans,
as pretrained weights. Several networks pretrained using CT
scans exist, and we may, in the future, explore the use of such
networks in training with our data set.

The pixel sizes of the CT scans used in our data set vary in
the range of 0.586 to 0.977 mm2, and slice thicknesses vary from
0.5 to 7.5 mm. While the nonuniform nature of the scans may be
seen as a limitation, in that it may bias the training results,
learning different sizes would help the network better handle
variability which would be present in real clinical applications.
While scans would ideally take place under the same conditions
using the same scanner, this is very difficult to achieve in

clinical settings. Nevertheless, we may try in the future to match
voxel sizes of scans using methods such as interpolation.

It is important to accurately assess a bladder cancer’s re-
sponse to treatment based on pre- and posttreatment lesion
scans to determine what further treatment a patient will require,
if any at all. While our current network structure has shown to
classify cases with considerable accuracy, we will further im-
prove the model and validate its generalizability in unknown
cases. Because of the small data set, we used DL-CNNs of rela-
tively small structures in this study. We will investigate if deeper
DL-CNN models such as GoogLeNet Inception (24) and ResNet
(25) may provide better performance when a large data set
becomes available.

In conclusion, our results showed that DL-CNN can effec-
tively predict the response of a bladder cancer lesion to chemo-
therapy, with many of our experiments comparing favorably
to the performance of the radiologists. Adjusting the structure of
the base network and freezing certain layers of the network
during training may further improve the performance. This
study suggests that the DL-CNN may be useful in conjunction
with medical professionals as decision support for bladder can-
cer treatment response assessment.
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