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Abstract

Motivation: Increasingly comprehensive characterization of cancer-associated genetic alterations has paved the way
for the development of highly specific therapeutic vaccines. Predicting precisely the binding and presentation of pep-
tides to major histocompatibility complex (MHC) alleles is an important step toward such therapies. Recent data sug-
gest that presentation of both class I and II epitopes are critical for the induction of a sustained effective immune re-
sponse. However, the prediction performance for MHC class II has been limited compared to class I.

Results: We present a transformer neural network model which leverages self-supervised pretraining from a large
corpus of protein sequences. We also propose a multiple instance learning (MIL) framework to deconvolve mass
spectrometry data where multiple potential MHC alleles may have presented each peptide. We show that pretraining
boosted the performance for these tasks. Combining pretraining and the novel MIL approach, our model outper-
forms state-of-the-art models based on peptide and MHC sequence only for both binding and cell surface presenta-
tion predictions.

Availability and implementation: Our source code is available at https://github.com/s6juncheng/BERTMHC under a
noncommercial license. A webserver is available at https://bertmhc.privacy.nlehd.de/

Contact: s6juncheng@gmail.com or bmmalone@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The adaptive immune system plays a central role in immune re-
sponse against foreign molecules, such as pathogens or cancerous
cells. The adaptive immune system is classically divided into two
components (Janeway et al., 2001): humoral immunity, which con-
cerns antibody generation by mature B cells, and cell-mediated im-
munity, which entails stimulation of cytotoxic CD8þ T cells among
other things. The major histocompatibility complex (MHC) class II
plays an important role in both humoral and cell-mediated immunity
(Janeway et al., 2001); the human leukocyte antigen (HLA) is the
human version of MHC. The primary role of MHC class II is to bind
to and then present peptide sequences from exogenous proteins on
the cell surface. This MHC–peptide complex leads to the stimulation
of CD4þ T cells, or ‘helper T cells’. The helper T cells may then
stimulate either the humoral or cell-mediated immune response
pathways (Al-Daccak et al., 2004). MHC class II molecules are
mostly found in professional antigen presenting cells (Lang et al.,
2001), such as dendritic cells. Among the MHC class II molecules,

each person typically has multiple alleles from HLA-DP, HLA-DQ
and HLA-DR (Rock et al., 2016). Importantly, different people have
different MHC alleles, although some alleles are more common than
others. Further, class II MHCs are encoded by genes characterized
by a very high level of polymorphism (Neefjes et al., 2011). The dif-
ferent MHC alleles have different amino acid sequences and struc-
tures, leading to the presentation of different specificity and different
presented repertoire across individuals.

This high level of polymorphism is an evolutionary trait allowing
the immune system to react against a very large number of patho-
gens at the individual level. The corollary implication of this high
level of polymorphism is that each individual will eventually present
different peptides. This has critical implications when attempting to
design vaccines and select antigens. Historically, vaccine develop-
ment involved the use of large antigens, representative of the target
pathogen. Because of their size, these antigens are likely to contains
peptides sequences that will be presented by a wide spectrum of
HLA genotypes. More recent vaccines, and in particular vaccines
directed to cancer cells, are targeted at restricted sequences as the
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pathogen—the cancer cell—is minimally different from the host cell
(Tanyi et al., 2018). In order to increase vaccine efficiency, it is crit-
ical to identify sequences that are likely to be presented by the class
II HLA in the individuals that will receive the vaccine.

The presentation of peptides to T cells involves a series of proc-
esses. Important steps include binding between MHC molecules and
peptides, as well as presentation of the MHC–peptide complex to
the cell surface. Experimental assays have been developed to study
and quantify many of these processes. The binding affinities between
MHC molecules and peptides can be measured by in vitro binding
assays (Sidney et al., 2013). Mass spectrometry can be used to detect
peptides eluted from the cell surface to determine peptide presenta-
tion (Purcell et al., 2019). Thousands of data points have been gener-
ated by such assays for hundreds of different MHC molecules (Vita
et al., 2019). However, all these wet lab methods remain labor inten-
sive and subject to a number of biases.

Given the importance of the problem and the availability of the
data, many methods have been developed to predict MHC–peptide
binding and peptide presentation (Peters et al., 2020). In some
approaches, a single model is trained specifically for each MHC al-
lele; other approaches instead train a single model (a pan model)
covering all MHC alleles. The prediction performances of MHC
class I models have reached a high level (auROC > 0:95, O’Donnell
et al., 2020; Peters et al., 2020; Reynisson et al., 2020b). On the
other hand, models for class II still have limited performance.
Despite recent progress (Reynisson et al., 2020b), there is still a need
for better performing models. One significant limiting factor for
MHC class II models is the limited amount of training data com-
pared to class I. Thus, models that can efficiently use all of the lim-
ited available data and transfer knowledge from other sources are
extremely valuable.

Recent advances in natural language processing have enabled
techniques to train complex models that understand semantics from
text without labels (self-supervised learning) (Devlin et al., 2019;
Peters et al., 2018). Such models are trained to predict words
masked out in a sentence or to predict the next word or sentence fol-
lowing some context. Similar techniques have also been applied to
proteins (Heinzinger et al., 2019; Nambiar et al., 2020; Rao et al.,
2019). Since these models do not require labels to train, they can be
trained on very large corpora of protein sequences across many spe-
cies. One example of these models is the TAPE model (Rao et al.,
2019), which was trained with 31 million protein sequences from
the Pfam database (El-Gebali et al., 2019). The model has been
shown to be helpful in a variety of downstream tasks such as remote
protein homology prediction and stability prediction. Detailed ana-
lysis of the model has shown that it captures long-range interactions
in 3D structure (Vig et al., 2020). It is highly relevant to explore
whether pretrained protein sequence models can be helpful for
MHC–peptide binding and presentation prediction, especially for
MHC class II where much less data are available.

As mentioned, each person has multiple MHC class II molecules;
thus, typical mass spectrometry experiments cannot precisely iden-
tify the MHC molecule to which a peptide was bound. In designing
personalized vaccines, we are also interested in the likelihood of re-
sponse given all the MHC alleles an individual carries. Therefore, it
is important to develop algorithms to predict the likelihood of pres-
entation for a peptide given a set of MHC molecules.

Here, we focus on developing models for predicting MHC–pep-
tide binding and presentation for MHC class II. We show that mod-
els taking advantage of self-supervised pretraining from large
corpora of protein sequences can achieve better performance on
both binding and presentation prediction tasks. We found pretrain-
ing to be extremely valuable in the case where training data are lim-
ited. Additionally, we propose a novel multiple instance learning
(MIL) algorithm to account for the limitation that mass spectrom-
etry data often cannot precisely identify the exact MHC molecule to
which a peptide was bound. We foresee our work to be valuable in
T-cell-based immunotherapy and provide new directions for training
peptide binding and presentation models with limited training data.

2 Materials and methods

2.1 MHC class II binding data
To train the MHC class II binding model, we used the data from
Jensen et al. (2018), since it has been designed to minimize the over-
lap between the training and evaluation sets. The original data were
collected from the Immune Epitope Database (IEDB, Vita et al.,
2019, accessed on June 30, 2020) up to the year 2016. The data con-
sist of 134 281 data points and covers HLA-DR, HLA-DQ, HLA-DP
and H-2 mouse MHC allele. The affinity labels were transformed
from IC50 to values between 0 and 1 with the formula
1� logðIC50Þ= logð50 000Þ.

2.2 Independent MHC class II binding data
The data from Jensen et al. were collected from IEDB up to the year
2016. To benchmark on an independent dataset where no model has
been used for training or validation, we collected quantitative bind-
ing data from IEDB and filtered out data already used in Jensen
et al. In addition, we collected further independent binding data
from the Dana–Farber repository (Zhang et al., 2011). In the end,
we collected 2 413 additional MHC–peptide pairs covering 47
MHC class II alleles. The complete list of benchmark data is avail-
able in Supplementary Table S1.

2.3 MHC class II presentation data
To train the MHC class II mass spectrometry presentation model,
we used the data curated from Reynisson et al. (2020b). The original
data were curated from IEDB and other public sources. The data
cover 41 MHC class II alleles with peptide lengths ranging from 13
to 21. Each data point consists of the peptide ligand, the source pro-
tein and list of possible MHC class II alleles bound to the peptide.
The data points where only one MHC allele is unambiguously given
are referred to as single-allele (SA) data, whereas the data points
where multiple potential alleles are given are referred to as multial-
lele (MA) data. Reynisson et al., selected negative peptides by ran-
domly sampling from the UniProt database. Peptide lengths for the
negatives are sampled uniformly from 13 to 21.

2.4 Independent MHC class II benchmark presentation

data
We also filtered for further independent datasets from IEDB (accessed
on June 30, 2020) on which no existing models had been trained or
evaluated. All data presented in the training and evaluation set of
Reynisson et al. were filtered out. We only kept 8 170 peptides with
length between 13 and 21, in line with Reynisson et al., and alleles
which have more than 50 positive peptides. To generate negative mass
spectrometry decoys, we randomly sampled 10� negative peptides from
the human proteome with the same peptide length distribution as the
positive peptides per allele. This evaluation data of 95 638 peptides is
provided in Supplementary Table S2.

2.5 Patient mass spectrometry data
To evaluate our model on an independent set of data, we generated
a dataset of HLA class II presented peptides from six patients with
cancer. Briefly, cancer tissue was collected on surgical material in
patients undergoing nonsmall cell lung cancer resection. The collec-
tion of biological material was performed in accordance to inter-
national and local clinical research regulation and subject to ethical
review boards approvals. Accordingly, participation to the study
was contingent to informed consent from individual patients. After
tissue lysis, solubilized HLA complexes were purified with antibody-
conjugated resin (clone L243). HLA-bound peptides were eluted in
acidic condition, further purified and desalted before final mass
spectrometric analysis. Eluted peptides were analyzed by data-
dependent mass spectrometry on an HF-X hybrid quadrupole-
Orbitrap mass spectrometer. Peptides were identified with
MaxQuant (Cox and Mann, 2008) (Supplementary Methods). In
total 15 277 unique peptides were identified. Between 1 500 and
7 000 unique peptide sequences were identified from each sample
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(Supplementary Table S3). The detailed HLA types of all patients
are provided in Supplementary Table S3.

2.6 Pretrained protein BERT model
We use the pretrained bidirectional encoder representations
from transformers (BERT, Devlin et al., 2019) neural network
from the TAPE repository to model the input amino acid
sequences. The TAPE model was trained with self-supervised
learning from a dataset of over 31 million protein sequences.
Briefly, each amino acid is encoded as a token. The input pro-
tein sequence is encoded as a sequence of tokens:
x ¼ ðx1; . . . ;xLÞ. Taking unlabeled protein sequence as input,
the TAPE model was trained with two tasks. One task is bidir-
ectional next-token prediction (predicting pðxijx1; x2; . . . ;xi�1Þ
and pðxijxiþ1;xiþ2; . . . ;xLÞ), and the other task is masked-token
prediction (predicting pðxmaskedjxunmaskedÞ). The BERT model
masks 15% of the input tokens randomly for prediction. The
model has 12 layers with 12 self-attention heads [Equation (1)]
in each layer, which enables the model to learn long distance
interactions. For an input amino acid sequence x, the outputs of
the model are L continuous vectors of dimension 768 corre-
sponding to the input amino acids. We refer to Rao et al.
(2019), for details of the pretrained protein BERT model.

Self-Attention: Self-attention learns the interaction (attention) of
all possible amino acid pairs in the input sequence. Specifically, for
each input amino acid sequence x ¼ ðx1; . . . ; xLÞ, self-attention
learns an attention score aij > 0 for each pair of amino acids i, j
where

P
j aij ¼ 1. The attention scores are computed from the nor-

malized dot product of query vectors and key vectors followed by a
softmax operation. The output of a self-attention layer is a weighted
sum of the value vector by the attention weights. The operations of a
self-attention layer written in matrix form are as follows:

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi

dk

p
 !

V; (1)

where dk is the dimension of the key vectors (chosen as 64), Q is a
query matrix, K is a key matrix and V is a value matrix. The query,
key and value matrices in this case are different trainable linear pro-
jections of the layer input. Instead of a single attention function, 12
such attention heads are used. In each layer, the outputs from each
of the 12 self-attention heads are concatenated to give a final con-
tinuous vector of dimension 768 for each amino acid. The query,
key and value matrices of each self-attention head are independent.
Each self-attention layer transforms the original input sequence into
a deeper representation of the same length. We refer to the original
publication (Vaswani et al., 2017) for more details on the complete
transformer architecture.

2.7 Supervised training of MHC class II models
We trained two BERT models, one each for MHC class II binding
and presentation prediction. Both models were initialized with the
BERT model parameters from the TAPE repository. Both models are
pan models, and they take as input the concatenated amino acid
sequences for the MHC pseudosequences (Jensen et al., 2018;
Reynisson et al., 2020b) followed by the peptide. Because peptides
have variable lengths, we pad all sequences to the same length with
an input padding token. The target for the binding prediction model
is the (real-valued) binding affinity between the peptide and MHC,
while the target for the presentation models is binary (presented or
not).

As shown in Figure 1, our model architecture consists of three
main components: the BERT component, a pooling layer, and a final
multilayer perceptron (MLP) block. The MHC pseudosequences all
have the same length by design, and input peptides are padded or
truncated to length of 24. The concatenated input sequence is toke-
nized and used as input for the BERT component. We inherited the
BERT architecture from the pretrained TAPE model (Rao et al.,
2019) without modification. As described previously, the BERT
model produces a set of continuous vectors. The vectors

corresponding to padding tokens are masked, and the remaining vec-
tors are then pooled by taking the mean over the sequence dimen-
sion. This vector is then used as input for the MLP, which consists of
two fully connected layers with hidden dimension of 512. The MLP
is then used to predict either the MHC binding affinity (regression)
or cell surface presentation (classification). We use the standard
mean squared error loss function for the binding model and the
weighted cross-entropy loss function (weight 10 for the positive
class) for the presentation model when training with SA data. The
loss function for training with MA data is described in Section 2.8.
We train the model end-to-end with backpropagation; i.e. we also
optimize the parameters from the pretrained TAPE model.

For both the binding and presentation models, we used random
search to identify the best hyperparameter combinations on the first
cross-validation fold. The random search for hyperparameters
entailed randomly drawing a set of hyperparameters, including the
learning rate, batch size, weight decay, MLP dimension and peptide
encoding length. The best performing hyperparameters in the held-
out evaluation set were used for the remaining analysis. We used an
initial learning rate of 0.15 for the binding model and 0.01 (with
weight decay 0.0001) for the presentation model. All models were
trained with stochastic gradient descent with momentum of 0.9; the
learning rate was reduced by a factor of 0.1 after 2 epochs of no per-
formance improvement. After identifying high-quality hyperpara-
meters, we use them to train three models with different
initializations for each cross-validation fold for the binding model;
only one model per fold was trained for the presentation task. The
two tasks were trained independently.

2.8 MA deconvolution with MIL
In the MA presentation data, each peptide is associated with a bag
of alleles. The bag is labeled as positive if at least one of the alleles
presented the peptide; otherwise, the bag is labeled as negative.
Training from such data has been performed in other research, and
is sometimes referred to as deconvolution (Alvarez et al., 2019;
Bassani-Sternberg and Gfeller, 2016; Reynisson et al., 2020a,b).

We model the training of the prediction model fh from the MA
data as an MIL problem. We denote the ith bag with m alleles as
Ai ¼ fai1; ai2; . . . ; aimg and the corresponding peptide sequence as si.
At each training step, we predict the probability pðyij ¼ 1jxijÞ for
every instance xij ¼ ðaij; siÞ in the bag as ŷij ¼ fhðaij; siÞ with our
neural network model fh. A symmetric pooling operator h is used to

Fig. 1. (A) Encoding of MHC and peptide sequences. MHC and peptide sequences

were first encoded into tokens with a tokenizer, where each token corresponds to a

single amino acid. Peptide sequences are padded to the same length (24) with a pad

token. Peptides longer than 24 are trimmed from the end. Each token is then

embedded into a 768-dimensional vector with a trainable embedding layer. The

tokens are integer values corresponding to the entries of the embedding matrix

(parameters) of the embedding layer. (B) BERTMHC model architecture. The

encoding layer is followed by 12 multihead self-attention layers with 12 attention

heads at each layer. The outputs of the 12 heads are concatenated. Each self-atten-

tion layer transforms the input sequence into a deeper representation of the same

768 dimensions (each head transforms the input into dimension of 64). The output

of the BERT architecture is then mean-pooled along the sequence dimension. A 2-

layer feed forward neural network uses that to predict either binding affinity or

presentation
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calculate the prediction of the bag from the predictions of instances
within it.

We further propose to incorporate the confidence of the decon-
volution operation. Since predicted probabilities by machine learn-
ing models are often uncalibrated, they do not correspond to the
true model confidence (Niculescu-Mizil and Caruana, 2005). We
calibrate the predicted probabilities p̂i to Cðp̂iÞ. The probability cali-
bration step is performed with isotonic regression (Barlow et al.,
1972, implemented in scikit-learn) at the beginning of each training
epoch. Specifically, the isotonic regression model was fit with the
predicted logits as the covariate and the labels on the training set as
the response variable. At each training epoch, we weight each posi-
tive data point i from deconvolution by the calibrated predicted
probability of being positive Cðp̂iÞ. We do not weight the negative
sets since there is no ambiguity with their labels. Therefore, we com-
pute the loss for the MA data as follows:

ŷi ¼ hffhðai1; siÞ; fhðai2; siÞ; . . . ; fhðaim; siÞg

‘ðhÞ ¼ � 1

NPos

XNPos

i¼0

ðCðp̂iÞ �w � logðŷiÞÞ

� 1

NNeg

XNNeg

i¼0

ðEj�PiðXiÞ logð1� ŷijÞÞ;

(2)

where p̂i is the prediction of pðyi ¼ 1jAi; siÞ from the previous epoch
of the model, C is the calibration function, and w is the weight for
the mass spectrometry positive class for compensating class imbal-
ance in the dataset. We use w¼ 10 for all presentation models. We
used max pooling as the pooling operator h, although other pooling
operations, such as attention-based pooling (Ilse et al., 2018), are
also applicable. For computational reasons, we perform negative
sampling with a probability distribution PiðXiÞ instead of using all
negative samples. We use the most likely positive example predicted
by the current model from the negative bag. Therefore, the sampling
distribution PiðXiÞ ¼ Piðxi1;xi2; . . . ;ximÞ is defined as

PiðxijÞ ¼ f
1; if fhðxijÞ ¼ maxðfhðxi1Þ; fhðxi2Þ; . . . ; fhðximÞÞ
0; otherwise:

(3)

In addition, we follow a two-stage training procedure. Before multiple
instance training with MA data, we first train the model only with SA
data. After eight epochs, we combine SA and MA data and train them
jointly with MIL, where the bag for SA data has only one element. We
stop the training process if the model performance [average precision
(AP)] on the evaluation set does not improve after five epochs. Algorithm
1 summarizes the probability reweighted MIL algorithm.

Algorithm 1: Probability Reweighted Multiple Instance Learning

Predictions on MA data in the test sets were performed as fol-
lows: for each bag of alleles and peptide xi ¼ ðAi; siÞ, predictions ŷij

are made with each candidate allele separately. The label of the bag
is predicted as

ŷi ¼ maxfŷijgj21...m
:; (4)

where m is the number of potential alleles which may have presented
the peptide. ŷij ¼ fhðaij; siÞ is the predicted score for peptide si and al-
lele aij using model fh.

Meanwhile, the allele label for the bag is assigned as

aAi
¼ argmax

j
fŷijgj21...m

: (5)

All of the following evaluation metrics are reported with the bag
label yi, the predicted bag label ŷi and the assigned allele aAi

. When
evaluating the performance per allele, we exclude the alleles with
<50 either positive or negative samples.

2.9 Evaluation metrics
Several evaluation metrics were used to compare models. For the
binding affinity prediction task, Pearson correlation (R) and area
under the receiver operating characteristic curve (auROC) were
used. We used a cutoff of 500 nM to determine binding and non-
binding. For the mass spectrometry presentation prediction task,
auROC and AP were used for evaluation. AP is the weighted mean
of precisions achieved at each threshold. It computes the area under
the precision–recall curve without linear interpolation as with the
trapezoidal rule. We used the python package scikit-learn to com-
pute these metrics (Pedregosa et al., 2011).

3 Results

3.1 Self-supervised pretraining improves the prediction

of MHC–peptide interaction
Self-supervised pretraining has been shown to boost model perform-
ance for natural language processing and computer vision tasks
(Chen et al., 2020; Devlin et al., 2019). Recent research has also
shown the potential benefits of self-supervised pretraining on protein
related tasks (Nambiar et al., 2020; Rao et al., 2019), such as con-
tact prediction. However, the application of self-supervised pretrain-
ing on MHC–peptide related tasks has been less explored.

We first asked whether self-supervised pretraining helps with our
prediction tasks. We investigated this in depth with the MHC–pep-
tide binding affinity prediction task since all of the binding affinity
values come from actual experiments, compared to presentation
which entails sampling negatives. For this comparison, we binarized
affinity values using the widely used threshold of 500 nM. We com-
pared four strategies of training the same model architecture with
the same hyperparameters:

• Random. Randomly initialized model trained end-to-end
• Pretrain. Model initialized with pretrained parameters from

TAPE and trained end-to-end
• Feature. Model initialized with pretrained parameters from

TAPE, but only the MLP classifier was trained. The BERT com-

ponent was frozen during training and can be thought of as a

kind of feature extractor
• Random Feature. Randomly initialized model, but only the MLP

classifier was trained

When comparing Pretrain with Random, the pretrained model
not only achieved a better performance (auROC 0.872 versus
0.853), but also converged much faster (Fig. 2). Indeed, the pre-
trained model performed similarly as the best randomly initialized
model after only a single training epoch (auROC 0.851 versus
0.853). The pretrained model reached a good performance
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(auROC>0.85) even at the first epoch whereas the randomly initial-
ized model had poor performance at the start of the training process.

Based on these results, we use Pretrain for the remaining
analysis.

3.2 Improved MHC class II binding prediction with

transformers
We trained our MHC class II binding model with the dataset curated
by Jensen et al. We used the same cross-validation folds so that pep-
tides appearing in both training and testing folds are minimized. We
compare our method (BERTMHC) against the sate-of-the-art class
II peptide binding model NetMHCIIpan3.2 (Jensen et al., 2018),
which was trained with the same cross-validation splits. Our model
outperformed NetMHCIIpan3.2 in terms of auROC for most of the
alleles (48 out of 61, Fig. 3). We also compared our model with
PUFFIN (Zeng and Gifford, 2019b), which is a convolutional neural
network model trained on the same dataset. BERTMHC
(auROC ¼ 0:8822;R ¼ 0:759) outperformed both PUFFIN-mean
(auROC ¼ 0:8774;R ¼ 0:754) and PUFFIN-BL (auROC ¼ 0:8795)
(Zeng and Gifford, 2019b).

We also used our independent MHC class II benchmark binding
set, described in Section 2, to further benchmark the models. When
evaluated on this independent data, our model
(auROC ¼ 0:72;R ¼ 0:39) performed better than NetMHCIIpan3.2
(auROC ¼ 0:68;R ¼ 0:30), PUFFIN (auROC ¼ 0:69;R ¼ 0:37) and
MHCnuggets (auROC ¼ 0:58;R ¼ 0:15) in terms of classifying pepti-
des into binders and nonbinders.

Since our model takes both the MHC and peptide sequence as in-
put, it can generalize to unseen MHC alleles. To test this generaliz-
ability, we evaluated our model under a leave-one-molecule-out
(LOMO) setting. We performed the LOMO experiments with data
from Jensen et al. (2018) under the same fivefold cross-validation
split. To test the LOMO performance of an allele, a model was
trained on the training set with data from the allele removed and
evaluated on the evaluation set with only the test allele kept. Out-of-
fold predictions from all fivefolds are combined to compute a final
LOMO performance for each allele. We performed LOMO experi-
ments for all 61 alleles in Jensen et al. (2018) and compare our per-
formance against NetMHCIIpan3.2 with their self-reported auROC
values. BERTMHC outperforms NetMHCIIpan3.2 for 35 out of 61
evaluated alleles (Fig. 4). Our mean LOMO auROC across alleles is
0.784, outperforming 0.775 for NetMHCIIpan3.2. The complete
data including Pearson correlation per allele for BERTMHC can be
found in Supplementary Table S4.

3.3 Improved MHC class II presentation prediction with

transformers
We then asked whether the same approach can be applied to train
a better model to predict peptide presentation. Mass spectrom-
etry is typically used to detect presentation of peptides on the cell
surface. We trained our model on all the curated mass spectrom-
etry elution data from Reynisson et al. (2020b), using the same
cross-validation splits. We also trained a model with SA data
only (BERTMHC-SA) to compare with the version trained on the
complete SA and MA dataset with MIL strategy (referred to as
BERTMHC). We compared our models with the latest
NetMHCIIpan4.0 model which was trained on the same dataset.
Since the out-of-fold predictions of NetMHCIIpan4.0 were not
provided, we compared our out-of-fold predictions against the
prediction of the public stand-alone version of
NetMHCIIpan4.0, which is an ensemble of models trained on all
cross-validation folds. Note that this comparison is in favor of
the competing model since its training used our evaluation data.
We used Score_EL of NetMHCIIpan4.0 without the context
encoding throughout this work.

For the MA data, we take the maximum prediction among the
alleles in each bag of the prediction for that bag (see Section 2).
Evaluated on both SA and MA data, NetMHCIIpan4.0 performed
only slightly better in terms of both auROC and AP, even though the
model was trained with the evaluation data while we performed out-
of-fold prediction (Table 1). Both models outperform
NetMHCIIpan3.2; this is not surprising, since NetMHCIIpan3.2 is
only trained on binding data (Table 1).

We next evaluated the models on SA data only, where the labels
are unambiguous. We observe that all models performed better in
this setting compared with including the MA data in the evaluation
(Table 2). BERTMHC is better or on par with NetMHCIIpan4.0 in
terms of both auROC and AP but consistently better than
NetMHCIIpan3.2 (Table 2). The version only trained on SA data
(BERTMHC-SA) does not perform as well as BERTMHC which
was trained on the complete dataset (Table 2).

To further investigate the potential pros and cons of our model
compared with others, we investigated the results for each allele
with the SA data. We outperform NetMHCIIpan4.0 for most alleles
in terms of auROC (12 out of 19) while NetMHCIIpan4.0 is better
in terms of AP (13 out of 19) (Fig. 5). Training BERTMHC includ-
ing MA data with MIL again further improved the performance for
most alleles both in terms of auROC and AP (Supplementary Fig.
S2). We also show with an LOMO experiment on the SA data for 19
alleles that our presentation model generalize well to unseen alleles
(Supplementary Table S5).

Overall we show that our model is able to perform well both
when the allele labels are unambiguous and also when deconvo-
lution is needed. Furthermore, our MIL strategy not only expands
the model training to MA data but also effectively improves the
performance on the SA data with a larger training set. We found
that BERTMHC under out-of-fold prediction to have comparable
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performance with NetMHCIIpan4.0 which was trained on all the
data.

We next compared the methods on an independent mass spec-
trometry presentation dataset with no overlapping data from the
training and evaluation set (see Section 2). Our model outperforms
NetMHCIIpan4.0 in terms of both auROC (0.89 versus 0.83) and
AP (0.60 versus 0.53) (Fig. 6). BERTMHC-SA performed better
than NetMHCIIpan4.0 but worse than BERTMHC on this inde-
pendent SA data (auROC¼0.87, AP¼0.57), further suggesting that
our MIL strategy on MA data can further improve the performance
on SA data.

To further evaluate our model under the multiple instance set-
ting, which is often the case when applying our model to real patient
data, we generated mass spectrometry data from peptides eluted
from six patient samples (Section 2). In total, 15 277unique peptides

presented by HLA-DR molecules were eluted from six patients, with
a median of 3 964 peptides per patient. Each patient had two HLA-
DR alleles determined. We compared BERTMHC against
NetMHCIIpan4.0 on this MA data. Negative peptides were ran-
domly sampled from the human proteome by matching the length
distribution of positive peptides. We sampled 10 negative peptides
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Table 1. Presentation performance on both MA and SA data from

Reynisson et al. (2020b), with all alleles combined

Method auROC AP

BERTMHC 0.954 6 0.0004 0.807 6 0.001

BERTMHC-SA 0.902 6 0.0006 0.625 6 0.002

NetMHCIIpan4.0 0.956 6 0.0004 0.810 6 0.001

NetMHCIIpan3.2 0.704 6 0.001 0.257 6 0.002

Note: The performances for BERTMHC (trained on MA and SA data) and

BERTMHC-SA (trained on SA data) are reported by out-of-fold prediction

under cross-validation while NetMHCIIpan4.0 was trained on all the data. 6

indicates the range of 95% confidence interval estimated by bootstrapping.

Table 2. Presentation performance on SA data only from Reynisson

et al. (2020b), with all alleles combined

Method auROC AP

BERTMHC 0.9656 0.0008 0.8636 0.002

BERTMHC-SA 0.960 6 0.0009 0.847 6 0.003

NetMHCIIpan4.0 0.961 6 0.002 0.8656 0.004

NetMHCIIpan3.2 0.796 6 0.001 0.385 6 0.0025

Note: The performances for BERTMHC (trained on MA and SA data) and

BERTMHC-SA (trained on SA data) are reported by out-of-fold prediction

under cross-validation while NetMHCIIpan4.0 was trained on all the data. 6

indicates the range of 95% confidence interval estimated by bootstrapping.

Fig. 5. Comparing BERTMHC with NetMHCIIpan4.0 under cross-validation on SA

data from Reynisson et al. (2020b) only. Each dot represents one MHC class II al-

lele. The auROC (left) and AP (right) for the BERTMHC model (y-axis) are com-

pared with the NetMHCIIpan4.0 model (x-axis). BERTMHC was trained with both

SA and MA data. Predictions of BERTMHC were made out-of-fold under cross-val-

idation while NetMHCIIpan4.0 was trained on all data

Fig. 6. Comparing BERTMHC, BERTMHC-SA and NetMHCIIpan4.0 on inde-

pendent mass spectrometry data from IEDB. (left) ROC curve for BERTMHC (yel-

low), BERTMHC-SA (green) and NetMHCIIpan4.0 (blue). (right) Precision–recall

curve for BERTMHC (yellow), BERTMHC-SA (green) and NetMHCIIpan4.0

(blue). The number in the legend gives the area under the curve for that method
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for each positive peptide. Peptide scores were predicted as described
in Equation (4) for both models. When evaluated on all patients
combined, BERTMHC outperforms NetMHCIIpan4.0 both in
terms of auROC (0.95 versus 0.89) and AP (0.78 versus 0.66)
(Fig. 7). When evaluated per patient, BERTMHC again outperforms
NetMHCIIpan4.0 in all patients with maximum auROC improve-
ment by 14.8% (Supplementary Fig. S3) and maximum AP improve-
ment by 61.0% (Supplementary Fig. S4). BERTMHC-SA performs
consistently better than NetMHCIIpan4.0 but worse than
BERTMHC both overall (Fig. 7) and per patient (Supplementary
Figs S3 and S4), again highlighting the importance of training includ-
ing the MA data with MIL.

We note that the HLA-DR antibody used in the mass spectrom-
etry experiment for patients binds to all HLA-DR alleles. We eval-
uated all model predictions based only on the HLA-DRB1 alleles of
the patients (Supplementary Table S3), though some of the peptides
in the dataset may have instead been bound and presented by other
HLA-DR molecules, such as HLA-DRB3.

4 Discussion

Predicting MHC–peptide binding has been a long-standing problem,
and many other approaches have also been developed. For example,
embedding the input sequences for MHC-related tasks with self-
supervised learning has also been explored in other directions.
DeepLigand (Zeng and Gifford, 2019a) trained a language model
from positive mass spectrometry peptides using the ELMo architec-
ture (Peters et al., 2018). The peptide embedding was shown to pro-
vide additional predictive information other than what binding
assays provide. Similarly, using embedding layers pretrained via lan-
guage modeling on peptides was shown to benefit MHC–peptide
binding prediction (Phloyphisut et al., 2019; Vielhaben et al., 2020).
Here, we used a pretrained network with a more effective architec-
ture and trained from a large corpus of protein sequences instead of
only positive peptides. Moreover, our pretrained embedding model
was applied to a concatenated sequence from both MHC and pepti-
des, so that the model can potentially capture long distance interac-
tions between MHC and peptide sequences.

Models with attention mechanisms have also been applied to
MHC–peptide interaction prediction tasks. ACME (Hu et al., 2019)
combines convolution and attention for MHC class I, MHCAttnNet
(Venkatesh et al., 2020) uses attention on top of a bidirectional
LSTM (Venkatesh et al., 2020) for both class I and class II. These
models used one-layer attention, for which the attention weights are
more interpretable. Here, we used multiple layers of self-attention,
which is less interpretable but performed better in these tasks.

Despite the extensive existing work, previous models still have
limited performance on MHC class II molecules. In this work, we
have demonstrated that self-supervised pretraining of a transformer
model leads to state-of-the-art performance for MHC class II

binding and presentation prediction. We further provided a novel
MIL strategy to address limitations of typical mass spectrometry
assays for assessing eluted peptides. We conducted a thorough set of
empirical experiments to compare the performance of the models for
both binding and presentation tasks. For presentation, we consider
both the SA setting, in which the exact MHC molecule to which a
peptide is bound is known, as well as the multiple allele setting, in
which only a set of possible MHCs to which a peptide was bound
are known. In both cases, we show that our approach leads to state-
of-the-art performance.

Our approach to predicting peptide presentation is solely based
on the peptide and MHC sequences. Other studies have shown that
the original context of the peptides and the peptide expression level
are both important features for peptide presentation prediction
(Chen et al., 2019; Reynisson et al., 2020b). Models using this add-
itional information might be able to outperform our model on the
presentation task. Moreover, T-cell epitope prediction is important
in real applications. Future work could integrate BERTMHC with
other relevant features such as the gene expression to have more pre-
cise epitope prediction.

The proposed approach is applicable to other sequence-based
predictions as well. We anticipate this approach to be useful to the
community not only as a strategy for training binding and presenta-
tion models, but also as an approach to train protein sequence-based
models for other challenges in immunology, such predicting T-cell
response. Considering that immune response assays are typically
costly, a modeling strategy that improves data efficiency by perform-
ing self-supervised learning is valuable. The self-supervised pretrain-
ing step was not specific to downstream tasks, and was trained from
generic protein sequences that may have very distinct biochemical
properties compared to the sequences of our task. Nevertheless, the
pretraining step was very beneficial. Preliminary work has been
done to interpret the models trained from protein sequences with
self-supervised learning (Heinzinger et al., 2019; Vig et al., 2020).
This is a promising direction for future research in order to better
understand what the models have learned and how that can guide
better treatment decisions.
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