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Abstract: In this study, we used density functional theory (DFT) and natural bond orbital (NBO) anal-
ysis to determine the structural, electronic, reactivity, and conformational features of 2,5,5-trimethyl-
1,3,2-di-heteroatom (X) phosphinane-2-sulfide derivatives (X = O (compound 1), S (compound 2), and
Se (compound 3)). We discovered that the features improve dramatically at 6-31G** and B3LYP/6-
311+G** levels. The level of theory for the molecular structure was optimized first, followed by the
frontier molecular orbital theory development to assess molecular stability and reactivity. Molecular
orbital calculations, such as the HOMO–LUMO energy gap and the mapping of molecular elec-
trostatic potential surfaces (MEP), were performed similarly to DFT calculations. In addition, the
electrostatic potential of the molecule was used to map the electron density on a surface. In addition
to revealing molecules’ size and shape distribution, this study also shows the sites on the surface
where molecules are most chemically reactive.

Keywords: natural bond orbitals; density functional theory; density of states; stereoelectronic interactions;
generalized anomeric effect

1. Introduction

Chemical compounds containing organic segments that are bonded to phosphorus
either directly or indirectly (e.g., via sulfur, oxygen, or nitrogen) are known as organo-
phosphorus compounds (OPs) [1]. They are one of the most commonly encountered
compounds and are used worldwide in a variety of agricultural [2], industrial [3], medi-
cal [4], and veterinary applications [5]. In the 19th century, the first OPs were synthesized
by Lassaigne and Clermont [4]. Insecticides and chemical warfare agents were created in
the 20th century by Gerhard Schrader. Chemical warfare agents, eye medications, pesti-
cides, and lubricants are manufactured from OPs. Most researchers have recently been
interested in computational methods to detect chemical species evidence [6–8]. Theoretical
approaches are often used to study chemical processes and the molecular characteris-
tics of compounds. Aside from that, theoretical approaches are often used to determine
newly synthesized chemical species [9,10]. This work aims to thoroughly study the com-
putational calculation for 2,5,5-trimethyl-1,3,2-dihetereophosphinane-2-sulfide, where the
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heteroatom is one of the O, S, or Se atoms. No theoretical studies have yet been performed
on 2,5,5-trimethyl-1,3,2-dihetereophosphinane-2-sulfide and its derivatives.

The conformational equilibrium is influenced by stereoelectronic interactions, which
have long been recognized [11,12]. However, Praly and Lemieux define anomeric effect (AE)
based on a difference between equatorial (eq.) and axial (ax.) conformers’ total endo- and exo-
anomeric effects [13,14]. This phenomenon is known as a “Generalized Anomeric Effect”
(GAE) or “negative hyperconjugation” [12]. Experimental and theoretical approaches were
used for the in-depth study of the AE [15,16]. Furthermore, depending on the relative
amount of the distinct GAEeq. and GAEax. contributions to the total GAE, the GAE associated
with electron delocalization can have negative or positive values [17]. As a result, Equation
(1) can compute the total GAE for components (1–3) [18,19].

GAE = ∑(GAE)eq. −∑(GAE)ax. (1)

The GAE influences the reactivity and conformational behavior of saturated hetero-
cyclic systems [20]. Although several literature reports argue for the primary importance
of electrostatic factors, Wiberg and Rable acknowledge the complexity of the AE but ad-
vocate for the greater importance of bond polarization and electrostatics [21]. In addition,
Mo and co-workers use Block Localized Wavefunction (BLW) analysis to disprove the
hyperconjugation explanation for the GAE [22,23]. Then, several authors accept the ex-
istence of hyperconjugation but conclude that the electrostatic effects are more effective
than hyperconjugation. Many studies on the conformations of six-membered rings, includ-
ing phosphorus and sulfur, have provided convincing evidence that GAE can propagate
through centers other than carbon atoms [24–26]. The more likely an electron donor is
to donate to an electron acceptor, the more conjugation throughout the system. It will
happen when the electron density moves from a Lewis-type NBO orbital (lone pair or
bond) to an orbital that should be unoccupied (Rydberg or anti-bond). In this case, the
donor–acceptor interaction keeps the electron density stable. The anomeric effect changes
the conformational equilibrium around the anomeric center. It also changes the stereo-
chemical output of several events at the anomeric center. As a result, the stereoelectronic
interactions of n(X)®σ*(P-S)app (P=S orientation is ax.) and n(X)®σ*(P-C)app (P=C orienta-
tion is eq.) (X = O, S, and Se) were investigated. The 1,3,2-dioxaphosphorinane derivatives
are interesting compounds because of their biological activities [27,28]. Numerous studies
of the structures and conformations of 1,3,2-dioxaphosphorinanes and related heterocycles
have been reported [29–32]. They demonstrated that anti-bonding orbitals play a role in
molecules with low acceptor orbitals, such as the P=O or P=S. However, the structural,
electrical, and reactive properties of these compounds, which have been examined in the
literature, are limited and need more investigation.

Herein, we study the structural, reactivity, and conformational (ax. 
 eq.) features
of the 2,5,5-trimethyl-1,3,2-di-heteroatom phosphinane-2-sulfide derivatives (Scheme 1,
heteroatoms = O (-oxa-), S (-thia-), and Se (-selena-)). These compounds were studied
computationally using the DFT approach and natural bond orbital (NBO) analyses. These
analyses were used to examine the effects of different hetero atoms in rings with different
P=S orientations (ax. 
 eq.) and the anomeric effect in 1,3,2-dihetereo-2-sulfide (as an
example of O, S, and Se-substituted analogs) on the anomeric effect. After that, compounds’
chemical reactivity and reactive site selectivity (1–3) were thoroughly investigated using
DFT, molecular electrostatic potential, and density of states (DOS).

It should be known that compounds’ conformational properties affect stabilization
energies. It was interesting to study the stabilization energies correlated with the electronic
delocalization and the electronic structures of the model compounds (1–3) by NBO analy-
sis [33–35]. The stabilization energies obtained with electronic delocalization neqX®σ*P-S,
naxX®σ*P-S, naxX®σ*P-C, σX-C6®σ*P-C, σX-C6®σ*P-S, neqS®σ*P-X, and neqS®σ*P-C are
shown in Scheme 2.
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2. Computational Models

The compounds (1–3) were thoroughly optimized using Gauss-View 5.0 molecular vi-
sualization software from Gaussian 03 software at the B3LYP/6-31G and B3LYP/6-311+G**
levels of theory. For all computations, the DFT technique was used, which combines
Becke’s hybrid gradient-corrected (three-parameter nonlocal) exchange functional [36]
with Lee, Yang, and Parr’s gradient-corrected (nonlocal) correlation functional [37]. The



Molecules 2022, 27, 4011 4 of 14

natural bonding orbitals (NBO) 3.1 program was then used to perform an NBO analysis
ax. 
 eq. conformations of compounds. NBO studies, including orbital population, Wiberg
bond orders, and charge transfer stabilization energies at the identical B3LYP/6-31G** and
B3LYP/6-311+G** levels, were conducted using the NBO 3.1 program, which is part of the
Gaussian 03 software package [38].

3. Results and Discussion
3.1. Conformational Preferences

The compounds (1–3) in the chair conformations are more stable in the B3LYP approach
than in the twist-boat conformations. As shown in Figures 1 and 2, the total corrected
energies (∆E0, Hartree), the differences in enthalpies (∆H, kcal mol−1), entropies (∆S,
cal mol−1 K−1), and Gibbs free energy (∆G, kcal mol−1) at the standardized conditions
(25 ◦C, 1 atm) between the ax. 
 eq. conformations for compounds (1–3) were calculated
at the levels of B3LYP/6-311+G** and B3LYP/6-31G**. Interestingly, ∆G values in the ax.
conformations are lower than in eq. conformations. This is true for all methods used in this
study, using complete geometry optimization.
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Figure 1. Total energies (E0, in Hartree) that are calculated for the (ax. 
 eq.) conformations of
compounds (1–3).

As shown in Figure 3, the calculated ∆Geq-ax values for compounds at the B3LYP/6-
311+G level were somewhat like the ∆Geq-ax values obtained at the B3LYP/6-31G level.
∆Geq-ax values between (ax. 
 eq.) conformations at the B3LYP/6-311+G level of theory
were found to be 4.14, 0.25, and 1.00 kcal mol−1 for compounds (1), (2), and (3), respec-
tively. However, ∆Geq-ax values for compounds (1), (2), and (3) at the B3LYP/6-31G** level
were calculated to be 4.04, 1.97, and 1.19 kcal mol−1, respectively. Notably, there is an
apparent agreement between these sequences with the experimental data published in the
literature for compound (1) [39]. Further, it is shown that the preference for ax. confor-
mations compared to their equivalent eq. conformations decrease from compound (1) to
compound (3).
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Since the hyperconjugation of two electrons and orbitals occurs, stabilization is sig-
nificant [40]. The effect of the molecule geometry on the energy gap, the ability of the
empty orbital to receive, and the ability of the filled orbital to donate are essential parts of
this scenario [41,42]. The resonance values of the energies related to naxX®σ*P-Selectron
delocalization are 12.48, 9.86, and 8.12 kcal mol−1 for the ax. conformations of compounds
(1), (2), and (3), respectively. These stereoelectronic orbital interaction forms also indicate
the preference of compounds (1–3) more efficiently for the ax. conformation. In addition,
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Generalized Anomeric Effects (GAE) values for compounds (1), (2), and (3) are 5.56, 3.40,
and 2.90 kcal mol−1, respectively.

The stereoelectronic effects, which correlated to n2X→σ*P-C electron delocalization in
the eq. conformations and the n2X→σ*P-S electron delocalization in the ax. conformations,
have the most considerable degree of stability energy. The orientation of the electron’s lone
pairs of the O, S, and Se atoms in the heterocyclic ring and the P-C (in eq. conformations)
or P-S (in ax. conformations) for anti-bonding orbitals is antiperiplanar (ap) (Figure 3).
Several factors influence stereoelectronic effects, such as the difference in energy between
the overlapping donor–acceptor orbitals and their presence in a synclinal arrangement
(sc) [43,44]. As a result, the σX-C6→σ*P-C8 and σX-C6→σ*P-S electron delocalization, as
depicted in Figure 3, cannot have high stability energy. For this reason, the stability
energy values of delocalization for compounds (1–3) in the ax. conformations are not
very important.

It is worth noting that the calculated stabilization energies associated with σX-C6→σ*P-S
electron delocalizations for the eq. conformations of compounds (1–3) are 3.80, 3.40, and
3.50 kcal mol−1, respectively, and do not exist for the ax. conformations. Moreover, the
electron delocalization of σX-C6→σ*P-C8 in the ax. conformation increased from compound
(2) towards compound (3), compared to the value of X = O, which may be due to larger
amounts of s-character and electronegativity [45], and the values decreased in the eq.
conformations from compound (1) to (3). Stereoelectronic effects are negligible in eq.
conformations, while the stability energies of electronic transitions for ax. conformations
are significant. According to NBO studies and thermodynamic data, stereoelectronic
interactions have an important influence on compounds’ behavior.

Further, the results indicate that the values of GAE are more vital for analyzing the
conformational preferences of these compounds than the electrostatic effects, which are less
significant. Further, the results indicate that the values of GAE are more vital for analyzing
the conformational preferences of these compounds than the electrostatic effects, which are
less significant. The dipole moment of compounds was also looked at in both (ax. and eq.)
orientations using the B3LYP/6-311+G computational method.

3.2. Bond Order and Structural Parameters

It is possible to relate the delocalization of electrons to structural factors, such as the
Wiberg Bond Index (WBI) term, which is the sum of squares between off-diagonal density
matrix components linking atoms, using the natural atomic orbitals (NAO) [46,47]. The
findings revealed that compound (1) has an ax’s low (nax.X→σ*P-S) electron delocalization
conformations compared to compound (3), indicating a weakness in the covalent charac-
ter [48]. In contrast, it increases the WBI value of P-X, whereas compound (3) decreases
it, as shown in Figure 4. In addition, compound (3) has a low WBI(eq-ax) value for P=S,
indicating that P=S is increasingly difficult to calculate. For the compounds examined, both
the WBI(P-X) values and GAE agree with each other.
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η = −0.5 (EHOMO − ELUMO) (3)

S = 2η−1 (4)

ω = μ2/2η (5)
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Figure 4. WBI and ∆WBIeq-ax calculation in (ax. 
 eq.) conformations of compounds (1–3) at
B3LYP/6-311+G level.
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3.3. HOMO–LUMO Analysis

Both HOMO and LUMO are crucial parameters in quantum chemistry [49,50]. Typi-
cally, the ionization potential (Eion.) is related to the HOMO energy, while LUMO energy
is proportionate to an electron affinity (Eaff.) [51,52]. The HOMO–LUMO energy gap is
derived by subtracting the HOMO and LUMO energy levels. When the energy gap is large,
it suggests that the molecule has high kinetic stability and minimal chemical reactivity [53].
Furthermore, there is a relationship between the change in the binding nature of the orbitals
engaged in the electronic transition and the bond distance change for each pair of bond
atoms. Figure 5 depicts the energy levels of the HOMO–LUMO boundaries for compounds
(1–3). It was used to measure the electronegativity (χ), chemical potential (µ), chemical
hardness (η) and softness (S), global electrophilicity index (ω), and the measurements are
presented in Figure 6. The formula for determining the calculated parameters is disclosed
in Equations (2)–(5) as follows [54,55].

χ = −0.5 (EHOMO + ELUMO) = − µ (2)

η = −0.5 (EHOMO − ELUMO) (3)

S = 2η−1 (4)

ω = µ2/2η (5)

The purpose of the HOMO–LUMO analysis was to explore the impact of substitution
(O, S, and Se) atoms on the electronic structure of the 2,5,5-Trimethyl-1,3,2-Diheterophosphin-
ane-2-Sulfide compound. Results suggest a sensitivity of the HOMO–LUMO gap to the
type of heteroatom. It was noted that the presence of O atom in the compound can reduce
the HOMO–LUMO gap in eq. conformation. In contrast, S and Se atoms could increase the
HOMO–LUMO gap in eq. conformation. The conclusion is that the effect of the atoms in the
compound cannot be ignored when figuring out what the band gap means. Furthermore,
HOMO–LUMO plots were employed to examine the compound’s hardness of chemical,
chemical potential, and electro-negativity. The energy of the highest occupied molecular
orbital (EHOMO) and the energy of the lowest unoccupied molecular orbital (ELUMO) are
utilized in the Equations (2)–(5), based on the Koopmans approximation. These parameters
are reactivity descriptors and electronic properties. A good, more reactive, the nucleophile
is characterized by a lower value of µ andω. A good electrophile is characterized by a high
value of µ andω.

The thermodynamic characteristics (∆H, ∆S, and ∆G) values in compound 1 are higher
than in compounds 2 and 3. Thus, the ax. conformation has higher reactivity than the
analogous eq. conformation (Figure 2), and the ∆EL-H value decreases as the intruding
heteroatom inside the ring (O→S→Se) switches from compound (1) to compound (3) in
both (ax. 
 eq.) conformations. Depending on the η values, wide HOMO–LUMO gaps
suggest a rigid molecule, while tiny gaps indicate a soft molecule, which is also more
reactive than one with wide gaps. This property is crucial, for example, to understand
the many types of pollutants in terms of how quickly they react and how well they attack
specific sites [56]. It can be seen from Figure 6 that (ax. 
 eq.) conformation of compound
(1) is almost reactive with high hardness values. Furthermore, the low ω values in the
(ax. 
 eq.) conformation of compound (1) demonstrate electrons’ strong current from the
donor moiety to the acceptor. It is important to understand that the energy gaps also
reflect how charge transfer occurs within compounds, which affects biological activity, for
example, and is a measure of the excitability of the molecule.
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The electronegativity and hardness are used extensively to predict the chemical behav-
ior of the compounds. A hard molecule has a large HOMO–LUMO gap and a soft molecule
has a small HOMO–LUMO. The LUMO represents electron(s) accepting ability and HOMO
as electron donating ability of a molecule. Therefore, the 1-ax. confirmation should be a
better nucleophile than 2-ax. and 3-ax.

In comparison to other geometries, the 3-ax. conformation has a smaller energy gap
(4.0805 eV) between the frontier molecular orbitals. This makes it easier for the charge to
transfer [57]. As a result, the HOMO–LUMO bandgap has narrowed due to the electron-
acceptor group’s strong electron-accepting capacity.
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Figure 6. Computed quantum chemical parameters for (ax. 
 eq.) conformations of compounds (1–3)
at the B3LYP /6-311+G level.

3.4. Molecular Electrostatic Potential (MEP) and Density of States (DOS) Analysis

The MEP surface is a property of electronic density that is a critical determinant of
atomic and molecular possession [58]. Hence, MEP has mainly been employed to describe
the chemical reactivity of several biological systems involved in electrophilic and hydrogen
bonding interactions [59,60]. MEP diagram is essential for researchers looking into the
physicochemical characteristics of molecules since it shows the molecule size, shape, and
negative, positive, and natural electrostatic potentials [61]. It was used to figure out where
nucleophilic and electrophilic attacks will most likely [62]. At each given r′(x, y, z) point,
MEP V(r′) is defined as the energy of the interaction between a positive test charge (a proton)
and the electric charge generated by the molecule’s electrons and nuclei, and it can be
calculated via Equation (6).

V
(
r′
)
=

Zα

|Rα − r| −
ρ(r′)

|r′ − r|dr′
(6)

where V(r′) is the electrostatic potential at r′, Zα is the charge on the nucleus allocated at Rα,
and ρ(r′) is the electron density (the first term is due to the nuclear charge and the second
to the electronic distribution).

Distinct colors indicate different electrostatic potential values at the surface; red and
blue regions in the MEP signify electron-rich and electron-poor regions, respectively; green
represents the neutral electrostatic potential [63]. The electrophilic attack region is red
(P=S group in ax. conformations of compounds 1–3) in most MEP diagrams, whereas
the nucleophilic attack region is blue (hydrogen atoms). Negative V(r′) regions are often
associated with a single pair of electronegative atoms. As seen by the MEP map of the
title molecule, areas with a negative potential are located over electronegative atoms
(oxygen and phosphorus), whereas regions with a positive potential are located over
hydrogen atoms. These locations provide information about where the chemicals may
interact intermolecularly.

Figure 7 shows the MEP surfaces using a color code between −3.748 × 10−2 a.u (deep-
est red) to 3.748× 10−2 a.u (deepest blue) for ax. conformations and between−4.594 × 10−2

a.u to 4.594 × 10−2 a.u for eq. conformations of compounds (1–3) at the B3LYP/6-311+G**
level of theory. Figure 7 reveals that hydrogen atoms exhibit the greatest affinity for nu-
cleophilic attacks, whereas oxygen atoms exhibit the greatest repulsion. In addition, the



Molecules 2022, 27, 4011 10 of 14

generated surface shows the molecule size, shape, and electrostatic potential value con-
currently. The areas related to the (P = S)ax. group in ax. conformations have a darker red
color than the (P = S)eq. group in eq. conformations, which means that the ax. conformations
are more reactive than the eq. ones to electrophilic attack. Furthermore, the area in red
in compounds 1 to 3 is decreasing. From compounds 1 to 3, the reactivity of electrophilic
reactions is declining.
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The density of state (DOS, Figure 7) graph was constructed for each compound in the
ax. and eq. conformations. The most common use of DOS graphs is to visualize molecular
orbitals, their bonded, anti-bonded, or non-bonded nature, and their interactions [64,65].
These green and red graphs represent occupied and unoccupied regions, respectively. The
energy differences between HOMO and LUMO are comparable to the values determined
by DFT calculations.

Finally, DFT calculation and NBO analysis provided a clear view from a stereoelec-
tronic perspective of the conformational priority in 2,5,5-trimethyl-1,3,2-dioxaphosphinane
2-selenide, -dithiaphosphinane 2-selenide, and -diselena phosphinane 2-selenide com-
pounds, as reported in our recent work [66]. The findings revealed that thermodynamic
properties with steric effects play a minimal role in explaining conformational behaviors of
compounds, while stereoelectronic effects dominate in the justification of conformational
behaviors. The anomeric effect and the electrostatic model were shown to be more success-
ful than other effects in predicting the conformational behavior of compounds (1–3) in this
study. Interestingly, conformational preference was best explained using GAE rather than
electrostatic. Consequently, the GAE effects significantly control the conformational priority
of compounds (1–3). Therefore, the results of this work are consistent with previously
reported work. In addition, the results of DFT calculations are a good tool for predicting
stereoelectronic behavior and anomeric effects, and the conformational behavior of the
compounds could reasonably account for the electrostatic interactions.

4. Conclusions

In conclusion, the stability of 2,5,5-trimethyl-1,3,2-di-heteroatom (X) phosphinane-2-
sulfide derivatives (X = O, S, and Se) corresponding to their ax. and eq. conformers was
evaluated. The compounds were analyzed employing the DFT approach and the NBO
interpretation. It was found that the ax. chair conformations are more stable than their
corresponding eq. conformations, which could be the reason for the ax. conformational
preferences. Furthermore, thermodynamic parameters revealed that steric effects contribute
to the reasoning of compound conformational behaviors and that stereoelectronic effects
are prominent in steric effects based on conformational behaviors. As a result, the enhanced
stability of the relevant confirmation was ascribed to the generalized anomeric effect. The
calculated GAE values are more important than the electrostatic effects when figuring out
how these compounds like to be in a different geometry. Conformational preference was
best explained using GAE rather than electrostatic or steric influences. Calculations were
also made for the HOMO–LUMO energy gap and other molecular characteristics. Based
on their interpretation of the structure–activity connection, the molecular electronic and
nucleophilic centers may be deduced from the molecule’s interior center. In this way, it was
shown how the parameters could help understand the compounds’ conformational and
chemical properties.
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