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Abstract

Since the concentration of free iron in the human host is low, efficient iron-acquisition mechanisms constitute important
virulence factors for pathogenic bacteria. In Gram-negative bacteria, TonB-dependent outer membrane receptors are
implicated in iron acquisition. It is far less clear how other metals that are also scarce in the human host are transported
across the bacterial outer membrane. With the aim of identifying novel vaccine candidates, we characterized in this study a
hitherto unknown receptor in Neisseria meningitidis. We demonstrate that this receptor, designated ZnuD, is produced
under zinc limitation and that it is involved in the uptake of zinc. Upon immunization of mice, it was capable of inducing
bactericidal antibodies and we could detect ZnuD-specific antibodies in human convalescent patient sera. ZnuD is highly
conserved among N. meningitidis isolates and homologues of the protein are found in many other Gram-negative
pathogens, particularly in those residing in the respiratory tract. We conclude that ZnuD constitutes a promising candidate
for the development of a vaccine against meningococcal disease for which no effective universal vaccine is available.
Furthermore, the results suggest that receptor-mediated zinc uptake represents a novel virulence mechanism that is
particularly important for bacterial survival in the respiratory tract.
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Introduction

The cell envelope of Gram-negative bacteria consists of two

membranes, the inner and the outer membrane, which are

separated by the periplasm containing the peptidoglycan layer.

The outer membrane forms a barrier for harmful compounds from

the environment. Most nutrients can pass the outer membrane by

passive diffusion via abundant channel-forming outer membrane

proteins, collectively called porins. However, diffusion is not an

option when the extracellular concentration of a nutrient is low.

This is usually the case, for example, with iron. Pathogens are

confronted with low concentrations of free iron within the human

host, where iron is bound by iron-transport and -storage proteins,

such as lactoferrin and transferrin. Hence, efficient iron acquisition

mechanisms constitute important virulence factors and have been

studied extensively in many pathogens [1,2].

When grown under iron-limiting conditions, Gram-negative

bacteria induce the synthesis of outer membrane proteins that

function as receptors for the iron-binding proteins of the host, for

heme, or for siderophores, which are small iron-chelating

compounds produced and secreted by the bacteria under iron

limitation. The resolved crystal structures of such receptors

revealed 22-stranded b-barrels, which do not form open channels

but are closed by an N-terminal plug domain [3]. After binding of

the ligand to the receptor, the subsequent uptake of the nutrient is

an active process that requires the energy of the proton gradient

across the inner membrane, which is coupled to the receptors in

the outer membrane via a complex of three proteins, the TonB

complex [4,5].

While iron-acquisition mechanisms have been studied exten-

sively in many Gram-negative bacteria, little is known yet about

the transport of other essential heavy metals, such as zinc and

manganese, across the bacterial outer membrane. The concen-

trations of also these trace elements are low in the human host,

which responds to infections, amongst others, by the production of

metallothioneins and calprotectin, thereby reducing the availabil-

ity of metals to the invading pathogens [6,7]. Therefore, Gram-

negative pathogens likely possess effective mechanisms for the

acquisition of these metals, which may or may not resemble the

iron-acquisition systems.

Neisseria meningitidis is an obligate human pathogen that can

colonize the nasopharyngeal mucosa asymptomatically. Occasion-

ally the bacterium enters the bloodstream and can cause sepsis and

meningitis with a high mortality rate [8]. While vaccines based on

the capsular polysaccharides are available for most pathogenic

serogroups of N. meningitidis, a vaccine against serogroup B

meningococci is lacking. The polysaccharide capsule of the

serogroup B strains is poorly immunogenic due to its resemblance

to human glycoproteins [9]. Thus, subcapsular antigens are being

studied as alternative vaccine components; however, these studies
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are frustrated by the high antigenic variability of the major outer

membrane proteins. Therefore, attention has shifted to minor

antigens, including the TonB-dependent receptors.

When grown under iron limitation, N. meningitidis produces

TonB-dependent receptors for lactoferrin [10], transferrin [11],

hemoglobin [12,13] and enterobactin [14], all involved in the

uptake of iron. Based on homology searches, Turner et al.

identified seven additional genes for putative TonB-dependent

family (Tdf) members in the available genome sequences of three

Neisserial strains [15]. Interestingly, the expression of some of

these tdf genes appeared unaffected by iron availability in various

microarray studies [16,17], indicating that their products might be

implicated in the transport of metals other than iron. Here we

studied the regulation of the synthesis, the function, and the

vaccine potential of one of these receptors and show that this

receptor is involved in the uptake of zinc. We therefore named this

protein, encoded by locus NMB0964 in the genome sequence of

strain MC58 [18], ZnuD for zinc uptake component D.

Results

Regulation of znuD expression by zinc
To study the expression of znuD in N. meningitidis, we raised a

polyclonal antiserum against the protein produced in Escherichia coli

in inclusion bodies. While the antiserum did recognize the protein

produced in E. coli, we could never detect ZnuD when whole cell

lysates of N. meningitidis strain HB-1, an unencapsulated derivate of

serogroup B strain H44/76, were analyzed on Western blots after

growth in tryptic soy broth (TSB) (Figure 1A, lane 1). However,

when the bacteria were grown in chemically defined RPMI

medium, ZnuD was detectable in the lysates (Figure 1A, lane 2).

The specificity of the signal detected was demonstrated by its

absence in a constructed znuD knockout strain (Figure 1A, lane 3).

We noticed that the addition of even small amounts of TSB to

RPMI negatively affected ZnuD synthesis (Figure 1B), suggesting

that TSB contains a compound that represses the transcription of

znuD. RPMI does not contain a source of trace metals. Since Tdf

members are usually regulated by iron availability, we first tested

whether znuD expression could be repressed by adding an iron

source; however, addition of even up to 10 mM FeCl3 to the

medium did not affect ZnuD production (Figure 1C). Next, we

decided to test whether a cocktail of trace metals, consisting of

340 nM ZnSO4, 160 nM Na2MoO4, 800 nM MnCl2, 80 nM

CoCl2 and 80 nM CuSO4 (final concentrations), could repress

znuD expression, which indeed appeared to be the case. Then, all

these metal salts were tested separately, and specifically zinc, even

at sub-mM concentrations, appeared to repress znuD expression

(Figure 1D). Since standard RPMI is not supplemented with a

specific zinc source, the available zinc required for bacterial

growth is presumably derived from the water or the salts used to

constitute the medium. The zinc concentration in the standard

RPMI medium measured by inductively coupled plasma mass

spectrometry (ICP-MS) was found to be ,110 parts per billion

(,1.69 mM), which is apparently sufficient for growth of the

bacteria but insufficient for repression of znuD expression.

The zinc regulation of znuD expression was further evaluated by

supplementing the RPMI medium with the specific zinc chelator

N,N,N9,N9-Tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN),

which resulted in a dose-dependent increase in ZnuD synthesis

(Figure 1E). Concentrations of TPEN above 1 mM totally inhibited

bacterial growth presumably due to total depletion of zinc from

the medium. The growth defect induced by TPEN could be

restored by the addition of zinc (not shown). The zinc-dependent

regulation of znuD expression was further confirmed by real-time

quantitative PCR (RT-qPCR) using total RNA obtained from

cultures grown in RPMI supplemented or not with either 0.5 mM

ZnSO4 or 0.5 mM TPEN. The data showed a 13.861.3-fold

repression in the presence of zinc and a 3.861.2-fold induction in

the presence of TPEN. The fold difference between added TPEN

and zinc was 52.6.

Role of the transcriptional regulator Zur in znuD
expression

In E. coli, the zinc uptake regulator Zur has been shown to

regulate the expression of the znuACB operon. The genes of this

operon encode the periplasmic substrate-binding protein, the

ATPase and the integral inner membrane component, respective-

ly, of an ABC transporter required for the transport of zinc from

the periplasm into the cytoplasm [19]. In the presence of zinc, Zur

binds a Zur-binding element (consensus sequence GAAATGT-

TATANTATAACATTTC) in the promoter of the znuACB

operon and thereby blocks transcription [20].

In the genome sequence of N. meningitidis strain MC58, we

identified homologues of the E. coli zur gene, i.e. NMB1266, and of

a putative znuCBA operon, i.e. NMB0588, NMB0587, and

NMB0586. In addition, we found sequences resembling the E.

coli Zur binding sequence in the regions upstream of the znuD

(GtAATGTTATATaATAACAaact) and znuC (cAAAcGTTATA-

CagTAtCATaTC) (identical nucleotides to the E. coli consensus

are in capital case). To confirm the involvement of Zur in the

regulation of znuD expression, we generated a zur mutant of strain

HB-1, which, indeed, produced ZnuD constitutively (Figure 1F).

Also, RT-qPCR demonstrated the involvement of Zur in the

expression of znuA and znuD, as znuA and znuD expression levels

increased 5.060.8-fold and 34.060.8-fold, respectively, in the zur

mutant compared to its parent strain both grown in RPMI

supplemented with 0.5 mM ZnSO4.

ZnuD facilitates zinc acquisition
Since the expression of znuD is regulated by the availability of

zinc, it seemed likely that ZnuD acts as a receptor for zinc or a

Author Summary

The outer membrane protects Gram-negative bacteria
against harmful compounds from the environment.
Nutrients usually pass this barrier by passive diffusion via
pore-forming proteins. However, nutrients that are scarce
in the environment are taken up via an active, receptor-
mediated process. The vast majority of Gram-negative
bacterial receptors described to date are involved in iron
acquisition. Since free iron is scarce in the human host,
these receptors constitute important virulence factors. In a
search for putative vaccine components, we have charac-
terized here a new receptor of Neisseria meningitidis, a
resident of the nasopharynx that occasionally causes sepsis
and meningitis. We show that expression of this receptor is
induced under zinc limitation and that the protein is
involved in the uptake of zinc. Homologues of this protein
are present in many other Gram-negative pathogens,
particularly in those residing in the respiratory tract,
suggesting that receptor-mediated zinc acquisition is
important for bacteria residing in this niche. We also
found that the protein is highly conserved among N.
meningitidis isolates and that it induces bactericidal
antibodies upon immunization of mice. Therefore, the
protein appears an excellent candidate for the develop-
ment of a vaccine against N. meningitidis, for which no
universal vaccine is available yet.

Zinc-Regulated Neisserial Vaccine Candidate
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zinc-containing compound. We first analyzed the amino acid

sequence and constructed a topology model of the barrel domain

of ZnuD using the PROFtmb program at www.rostlab.org [21]

and a 3D structural model of the plug domain based on known

structures of TonB-dependent receptors using 3D-jigsaw [22]

(Figure 2). ZnuD contains two cysteine residues in the putative

extracellular loop L3. When these cysteines form a disulfide bond,

they bring two stretches of amino acid residues, both rich in

histidine and aspartic acid residues, in close proximity (Figure 2).

The resulting His- and Asp-rich domain could be of functional

importance, since also in the periplasmic zinc-binding protein

ZnuA of E. coli, a stretch of His and Asp residues is involved in

binding its ligand [23]. Thus, we considered the possibility that

ZnuD binds free zinc and transports it into the periplasm. To test

this hypothesis, we first determined whether ZnuD could bind

zinc. To this end, N. meningitidis strain CE1523, an H44/76

derivative that lacks porin PorA and the polysaccharide capsule,

was transformed with a plasmid carrying znuD under the control of

an isopropyl-b-D-1-thiogalactopyranoside (IPTG)-inducible pro-

moter. The resultant strain was grown with and without IPTG,

and outer membrane vesicles (OMVs) were isolated (Figure 3A,

left panel) and compared for their capacity to compete with 4-(2-

pyridylazo)resorcinol (PAR) for binding zinc. In the presence of

OMVs containing ZnuD, ,40% more free PAR was measured

than in the presence of OMVs lacking ZnuD, indicating that

ZnuD is capable of binding zinc (Figure 3B). To demonstrate the

involvement of ZnuD in binding zinc directly, ZnuD was

produced in E. coli in inclusion bodies, which were isolated, and

the protein was folded in vitro into its native conformation. Like

many other outer membrane proteins [24], ZnuD displays heat

Figure 1. Regulation of znuD gene expression. Western blots of cell lysates using rabbit antiserum against ZnuD. (A) HB-1 grown in TSB (lane 1),
RPMI (lane 2) and the znuD knockout strain grown in RPMI (lane 3). (B) HB-1 grown in RPMI supplemented with 0, 2, 4, 6 and 8% TSB (lanes 1–5,
respectively). (C) HB-1 grown in RPMI supplemented with 0, 2, 5, and 10 mM FeCl3 (lanes 1–4, respectively). (D) HB-1 grown in RPMI supplemented
with 0, 0.5 or 1 mM ZnSO4 (lanes 1–3, respectively). (E) HB-1 grown in RPMI supplemented with 0, 0.1, 0.5 or 1 mM TPEN (lanes 1–4, respectively). (F)
HB-1 (lanes 1–3) and the zur mutant (lanes 4–6) grown in RPMI (lanes 1 and 4), RPMI with 0.6 mM ZnSO4 (lanes 2 and 5) or TSB (lanes 3 and 6).
doi:10.1371/journal.ppat.1000969.g001

Zinc-Regulated Neisserial Vaccine Candidate

PLoS Pathogens | www.plospathogens.org 3 July 2010 | Volume 6 | Issue 7 | e1000969



modifiability, i.e. the denatured form has a lower electrophoretic

mobility than the correctly folded form, a property that was used

to monitor proper folding (Figure 3A, right panel). The native

protein was then tested alongside the unfolded protein in the PAR

competition assay. The folded protein indeed competed with PAR

for zinc while the unfolded protein did not (Figure 3B) showing the

specificity of the reaction.

If ZnuD is indeed involved in the uptake of free zinc, one would

expect a higher external zinc concentration to be required to

repress expression of znu genes in the znuD mutant than in the

wild-type strain. To test this idea, the znuD mutant and its parent

strain were grown in RPMI medium supplemented with 0.5 mM

ZnSO4, which largely, but not completely represses znuD

expression in the wild-type strain (Figure 1D). The relative levels

of znuD and znuA mRNA were then measured by RT-qPCR. Of

note, the znuD mutant still contains the first 437 nucleotides of the

znuD gene and 100 nucleotides thereof were used for the detection

of znuD gene expression. In the znuD mutant, there was 18.661.1-

fold more znuD and 7.461.1-fold more znuA expressed compared

to the parent strain, showing that indeed the intracellular zinc

concentration in the znuD mutant is lower than that in the parent

strain under the applied growth conditions. Also, Western-blot

analysis showed that a znuA knockout strain produced high levels

of ZnuD in the presence of zinc, confirming that ZnuA is required

to sustain sufficient zinc levels in the cell (Figure 3C).

Finally, we tested whether expression of znuD offers any growth

advantage under zinc limitation. To deplete the internal zinc

stores, the bacteria were first grown overnight on RPMI plates,

supplemented with 100 mM ferric chloride to prevent iron

depletion. Subsequently, they were inoculated in RPMI supple-

mented or not with TPEN. In the absence of TPEN, growth of the

bacteria was only marginally affected by the absence of ZnuD, but,

in contrast to the parental strain, the znuD mutant failed to grow

when 0.3 mM TPEN was added to the medium (Figure 3D). These

Figure 2. Topology model of ZnuD. The 22 b-strands are colored light grey, the 11 extracellular loops are white and the periplasmic turns are
black. The histidine/aspartic acid stretches are boxed. The plug domain was modeled based on known Tdf structures. The amino acid sequence of
loop 3 is shown with the cysteines in bold and the His/Asp-rich stretches underlined. Numbers indicate amino acid positions in the sequence of
mature ZnuD.
doi:10.1371/journal.ppat.1000969.g002
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results indicate that znuD expression is indeed beneficial to the cells

when the available zinc is limiting.

We also assessed whether TonB is required for ZnuD-mediated

zinc acquisition. In growth experiments, a tonB knockout strain grew

less well than the parent but better than the znuD mutant in the

presence of TPEN (Figure 3D). However, in RT-qPCR experiments,

we did not observe increased expression of znuA or znuD after growth

of the tonB mutant in RPMI supplemented with 0.5 mM ZnSO4 and,

consistently, we could not detect more ZnuD under these conditions

by Western-blot analysis (Figure 3E). Together, these results suggest

that TonB facilitates the uptake of free zinc through ZnuD, but that

uptake can take place also independently of TonB.

Vaccine potential of ZnuD
To investigate whether ZnuD could be a candidate component

for a universal N. meningitidis vaccine, we first studied its

Figure 3. Zinc binding and transport by ZnuD. (A) Coomassie-stained SDS-PAGE gels showing the protein content of the OMVs (left) and
purified ZnuD preparation (right) used in the PAR-binding assay. OMVs were isolated from strain CE1523 carrying pEN11-znuD that was either
induced or not with IPTG for znuD expression as indicated. Purified ZnuD from inclusion bodies (IB ZnuD) was refolded in vitro (Folded ZnuD). The
folded ZnuD sample was not heated before SDS-PAGE and the positions of folded and unfolded ZnuD are indicated. (B) Binding of zinc to OMVs
either or not containing ZnuD and to purified ZnuD that was either folded or not was measured in a PAR competition assay. Shown are the
normalized values of the absorption at 500 nm of five independent measurements. (C) Western blot of whole cell lysates of strain HB-1 (lanes 1–3)
and the znuA mutant (lanes 4–6) grown in RPMI (lanes 1 and 4), RPMI with 500 nM ZnSO4 (lanes 2 and 5) or TSB (lanes 3 and 6). (D) Representative
growth curves (n = 5) of the znuD and tonB knockout strains and their parent strain in response to zinc limitation. Cultures contained either 0 or
0.3 mM TPEN. (E) Western blot of whole cell lysates of strain HB-1 (lanes 1–2) and the tonB mutant (lanes 3–4) grown in RPMI (lanes 1 and 3) or RPMI
with 500 nM ZnSO4 (lanes 2 and 4).
doi:10.1371/journal.ppat.1000969.g003
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distribution among various N. meningitidis isolates. ZnuD homologs

were found in all the available N. meningitidis genome sequences

and they showed a strikingly high 97–99% amino acid identity in

the mature part of the protein (Figure S1, Supporting Informa-

tion). The sequence differences are scattered throughout the

protein and are not clustered in predicted extracellular loop

regions, which are often antigenically variable in Neisseria outer

membrane proteins. We subsequently analyzed the presence of

ZnuD in a panel of 32 different N. meningitidis isolates from

different serogroups and different clonal lineages. The strains were

grown in RPMI medium supplemented or not with 0.5 mM

ZnSO4, and whole cell lysates were analyzed by Western blotting

with the antiserum raised against ZnuD of strain H44/76. ZnuD

was detected in all strains tested and in all cases znuD expression

was repressed in the presence of zinc, albeit to different extents

(Figure 4A).

To investigate whether ZnuD is expressed in the human host,

we tested sera from convalescent patients, healthy carriers and

non-carriers [10,25] for the presence of antibodies that recognize

ZnuD on Western blots. The reactivity of the sera was tested

against both the denatured and the refolded form of the ZnuD

protein (Figure 3A, right panel). We could detect ZnuD-specific

antibodies in sera from most convalescent patients and healthy

carriers tested (examples are shown in Figure 4B), although also

some sera were negative (e.g. serum 262658 in Figure 4B). The

positive sera reacted with both the denatured protein and the

protein folded in vitro into its native conformation although the

relative intensity of the reaction with the two forms of the protein

varied (Figure 4B). No ZnuD-specific antibodies were detected in

the sera from non-carriers (results not shown).

Next, we immunized 10 mice with OMVs from a strain

overexpressing this protein (Figure 3A) and tested the resultant

pooled sera for the presence of bactericidal antibodies. Routinely,

we perform serum bactericidal assays on bacteria grown in TSB

medium; however, under these conditions znuD is not expressed.

Therefore, we tested the sera for bactericidal activity on a

derivative of strain H44/76 that expressed znuD from an IPTG-

inducible promoter and compared cultures grown with and

without 1 mM IPTG. The bactericidal titers of the pooled sera

were ,1:100 against bacteria not producing ZnuD, but 1:1042

against bacteria producing ZnuD. Titers in pre-immune sera were

,1:100 independent of whether ZnuD was produced or not.

These data clearly show that ZnuD is able to elicit bactericidal

antibodies. Thus, since ZnuD is highly conserved among N.

meningitidis isolates and elicits bactericidal antibodies, it might be an

attractive vaccine component.

ZnuD homologs in other bacteria
Genes encoding the high-affinity ZnuABC uptake system for

zinc have been identified in many bacteria, but the involvement of

an outer membrane receptor in zinc acquisition has not been

described so far. To investigate whether an outer membrane

receptor might be more generally associated with zinc acquisition,

we searched for ZnuD homologs in other pathogenic bacteria by

performing BLAST searches at NCBI. ZnuD homologs with high

sequence similarity (,96% identity) were found in Neisseria

gonorrhoeae strain FA1090 (locus NGO_1205) and other N.

gonorrhoeae strains. Homologs of ZnuD were also found in other

pathogenic bacteria, including Moraxella catarrhalis, Haemophilus

parasuis, Mannheimia haemolytica, Acinetobacter baumannii, Pasteurella

multocida, Bordetella pertussis, and Actinobacillus pleuropneumoniae

(Table 1). All these ZnuD homologs contain the His- and Asp-

rich regions suspected to be involved in zinc binding (Figure S2,

Supporting Information). Interestingly, in B. pertussis the znuD

homolog is located adjacent to a gene cluster containing homologs

of the znuABC and zur genes, again indicating a functional

relationship between these genes. Thus, it appears that outer

membrane receptor-mediated zinc acquisition is not specific for N.

meningitidis, but is more common among pathogenic Gram-

negative bacteria.

Discussion

The Gram-negative bacterial outer membrane forms a

protective barrier that protects the bacteria against harmful

compounds from the environment, including antibiotics, deter-

gents and digestive enzymes. By the presence of porins, it functions

as a molecular sieve that allows for the passage of hydrophilic

solutes with molecular weights up to ,600 Da by passive

diffusion. Most nutrients can pass the outer membrane via the

porins. However, passive diffusion is effective only when the

external solute concentration is high. The bacteria may also

require nutrients that are present in the environment in low

concentrations or that are too large to pass through the porins. For

such cases, the bacteria have developed active transport systems in

the outer membrane that depend on a Tdf receptor with high

affinity for its ligand and on the TonB complex that delivers

the electrochemical energy of the proton gradient across the

inner membrane to the transport process across the outer

membrane [3–5].

Most Tdf members studied to date are involved in iron

acquisition [1,2], a notable exception being BtuB protein of E. coli,

which mediates the uptake of vitamin B12 [26]. Since the free iron

concentration in the human host is too low to support bacterial

growth, efficient iron-acquisition systems constitute important

virulence factors of pathogenic bacteria. These bacteria usually

can use multiple iron sources including siderophores produced by

themselves or by other micro-organisms, heme, and iron-transport

and -storage proteins of the host. For each iron source, the

bacteria require a specific receptor. However, based on the

available genome sequences, the number of Tdf receptors in a

bacterium can be very high. For example, Pseudomonas aeruginosa

may contain up to 37 different Tdf receptors [27] suggesting that

at least some of these receptors might have functions other than

iron or vitamin B12 transport. Indeed, in Caulobacter crescentus, Tdf

receptors have been described that are involved in the uptake of

carbon sources [28,29]. C. crescentus thrives in nutrient-poor fresh-

water lakes where receptor-mediated active transport across the

outer membrane offers a solution to acquire sufficient nutrients.

Also, very recently, a receptor for nickel has been described in

Helicobacter mustelae [30].

Here, we describe for the first time a Tdf receptor involved in

the acquisition of zinc. Like the levels of free iron in the human

host, those of free zinc are most likely too low to sustain bacterial

growth. For example, although the total concentration of zinc in

human serum is approximately 13 mM, the vast majority of it is

bound by serum proteins such as albumin [31]. In addition, the

human host responds to infections by the production of

metallothioneins and calprotectin, which reduce the availability

of zinc and other metals to the invading pathogens [6,7]. The

high-affinity ZnuABC system for the uptake of zinc across the

inner membrane has been identified in many bacteria, including

Neisseria gonorrhoeae [32] and Salmonella enterica [33] where it was

shown to be associated with virulence [33,34]. Likewise, the outer

membrane receptor for zinc acquisition identified here, ZnuD, is

presumably important for virulence, which, however, is difficult to

establish in N. meningitidis, for which a suitable animal model is

lacking.

Zinc-Regulated Neisserial Vaccine Candidate
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Our results show that ZnuD can bind zinc and that znuD

expression facilitates the uptake of free zinc at low zinc

concentrations. Although ZnuD is a Tdf member, TonB appeared

not to be required for ZnuD-mediated zinc uptake. However, it is

entirely possible that ZnuD, besides its function as a receptor for

free zinc, could additionally recognize a complexed form of zinc,

which may be available in the respiratory tract, in serum and/or in

cerebral fluid. If that is the case, we expect that the TonB system

will be needed for the acquisition of zinc from such ligand.

Previously, znuD expression was reported to be induced in the

presence of active complement [35]. In that microarray study, the

expression profiles were compared of N. meningitidis strain Z5463

grown in the presence of serum that was either inactivated or not

by heat. Expression of znuD (locus tag NMA1161) was found 23-

fold de-repressed in the presence of the untreated serum. A

possible explanation for this observation is the presence in serum

of albumin, which is known to chelate zinc [31]. Heat treatment of

serum will probably release zinc from albumin, which could

Figure 4. ZnuD synthesis in meningococcal isolates and in vivo. (A) Western blots of cell lysates of the indicated strains grown in RPMI with
or without added zinc. a Clonal group designations taken from [40]; –, the strain was typed by Multi-Locus Enzyme Electrophoresis but could not be
assigned to a specific clone; ND, not determined. (B) Reaction of human sera with ZnuD on Western blots. The blots contained both native and
denatured ZnuD. The specific patient sera used are indicated above the lanes and have been described previously [10,25]. Also an example of a non-
reactive patient serum is shown at the right.
doi:10.1371/journal.ppat.1000969.g004
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repress znuD expression, while znuD would be expressed in

bacteria exposed to untreated serum where zinc is chelated.

Consistent with this explanation is the observation in the same

microarray study that also the genes with locus tags NMA1137

and NMA1138, which encode paralogs of the ribosomal proteins

L36 and L31 that are induced in many bacterial species under zinc

limitation [36], were strongly induced in the presence of the

untreated serum [35].

N. meningitidis normally lives as a commensal on the mucosal

surfaces in the upper respiratory tract. Zinc is found on mucosal

surfaces, but the total zinc concentrations or the amount of free

zinc present are not known. However, it is intriguing that ZnuD

homologs were particularly found in bacterial species residing in

the respiratory tract of humans and animals. Probably, the

unbound zinc concentration in the mucosal layers of the

respiratory tract is too low to allow sufficient passive diffusion

through the porins and, therefore, ZnuD may become essential for

bacterial growth and survival particularly in this niche. This

hypothesis is strengthened by the detection of specific antibodies

against ZnuD in the serum from healthy carriers, which indicates

that ZnuD is expressed where the bacteria normally reside, the

nasopharynx.

As a pathogen, N. meningitidis can enter the bloodstream and

cause sepsis and meningitis with a high mortality rate. A vaccine

against serogroup B meningococci is not available, because the

corresponding capsular polysaccharide is poorly immunogenic.

Outer membrane proteins are being studied as alternative vaccine

components, but these studies are frustrated by the high antigenic

variability of the major outer membrane proteins. Since ZnuD is

highly conserved among N. meningitidis isolates and elicits

bactericidal antibodies, it might be an attractive vaccine

component, particularly in combination with other minor outer

membrane proteins due to the synergistic bactericidal activity of

antibodies against such antigens [37].

Materials and Methods

Bacterial strains and growth conditions
Except when indicated otherwise, experiments were performed

with the unencapsulated N. meningitidis strain HB-1 [38] and

mutants thereof. Strain CE1532 was constructed from strain

CE2001, a porA-deficient derivative of H44/76 [39], by inactivat-

ing the capsule locus similarly as described for HB-1 [38]. N.

meningitidis was grown on GC agar (Oxoid) plates containing Vitox

(Oxoid) and antibiotics when appropriate (kanamycin, 100 mg/ml;

chloramphenicol, 10 mg/ml) in candle jars at 37uC. Liquid

cultures were grown in TSB (Difco) or in RPMI (Sigma) at

37uC with shaking. E. coli strains DH5a and TOP10F9 (Invitrogen)

were used for routine cloning. E. coli was propagated on Luria-

Bertani (LB) medium supplemented when appropriate with

100 mg/ml ampicillin, 50 mg/ml kanamycin, or 25 mg/ml chlor-

amphenicol.

Construction of plasmids and mutants
Primers used are listed in Table S1 (Supporting Information).

The znuD gene without the signal sequence-encoding part was

amplified from chromosomal DNA of strain H44/76 by PCR

using the primers 0964-F and 0964-R and cloned into pCRII-

TOPO (Invitrogen), generating pCRII-znuD. From there, it was

subcloned into pET11a (Novagen) using NdeI/BamHI restriction,

resulting in plasmid pET11a-znuD.

To obtain a znuD deletion construct, a kanamycin-resistance

gene cassette was amplified by PCR with the primers Kan-R and

Kan-F from pCR2.1-Kan/Dus [40] and cloned after MluI and

BsrGI digestion into pCRII-znuD digested with the same enzymes.

In the resulting construct, pCRII-znuD::kan, the kanamycin-

resistance cassette substitutes for the region between base pairs

437 and 1344 of znuD. The znuD::kan construct was amplified with

primers 0964-R and 0964-F and used to transform strain HB-1 to

generate a znuD mutant.

For regulated expression of znuD, the entire znuD gene from

H44/76 was amplified with primers ZnuD-F and ZnuD-R. The

PCR product was cloned via pCRII-TOPO into the neisserial

replicative plasmid pEN11-pldA [40] using NdeI and AatII

restriction. In the resulting plasmid, pEN11-znuD, the znuD gene

is under control of an IPTG-inducible tandem lac/tac promoter.

To obtain a tonB knockout construct, DNA fragments upstream

and downstream of tonB (NMB1730) were amplified using primer

couples tonB-1/tonB-2 and tonB-3/tonB-4. The two fragments

were each cloned into pCRII-TOPO and then ligated together

using the AccI restriction site introduced via the primers and the

SpeI site present in the vector. The AccI site was used to insert the

chloramphenicol transacetylase gene obtained from pKD3 [41]

with primers P1 and P2. The resulting construct was amplified

using primers tonB-1 and tonB-4 and the PCR product was used

to transform N. meningitidis HB-1 to generate a tonB mutant. The

zur and znuA genes were knocked out following the same strategy.

The primer couples used to obtain the upstream and downstream

fragments were zur-1/zur-2 and zur-3/zur-4, and znuA-1/znuA-2

and znuA-3/znuA-4.

SDS-PAGE and Western blot analysis
Whole cell lysates were prepared from liquid cultures by

resuspending cell pellets in sample buffer. Proteins were separated

by routine SDS-PAGE or by semi-native SDS-PAGE, which

allows for analysis of outer membrane proteins in their native b-

barrel conformation [40]. After electrophoresis, the gels were

either stained with Coomassie brilliant blue or the proteins were

transferred to nitrocellulose membranes (Protran) using a wet

transfer system (Biorad) in 25 mM Tris-HCl, 192 mM glycine,

20% methanol. Membranes were blocked for 1 h in PBS

containing 0.1% Tween 20 and 0.5% Protifar (Nutricia). Blots

were incubated with antibodies in blocking buffer. Antibody

binding was detected by using peroxidase-conjugated goat anti-

rabbit or anti-human IgG secondary antibodies (Biosource) and

enhanced chemiluminescence detection (Pierce).

Isolation and refolding of recombinant ZnuD
E. coli BL21(DE3) (Invitrogen) containing pET11a-znuD was

grown in LB to an optical density at 600 nm of 0.6 after which

Table 1. Identity and similarity of ZnuD with its homologs.

Strain
Accession
number % identity % similarity

Moraxella catarrhalis AAU94646 41 58

Haemophilus parasuis YP_002474986 40 58

Mannheimia haemolytica AAK29743 46 63

Acinetobacter baumannii YP_001651932 41 61

Pasteurella multocida NP_246018 44 59

Bordetella pertussis NP_881648 35 51

Actinobacillus
pleuropneumoniae

YP_001651932 41 57

Neisseria gonorrhoeae YP_208276 96 97

doi:10.1371/journal.ppat.1000969.t001
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1 mM IPTG was added and growth was continued for 2 h. ZnuD

accumulated in inclusion bodies, which were isolated as described

[24]. The inclusion bodies were dissolved in 20 mM Tris-HCl,

100 mM glycine, 6 M urea (pH 8.3), and residual membranes

were removed by centrifugation for 1 h at 200,000 g. The protein

was then refolded into its native conformation by diluting this

stock solution 20-fold in refolding buffer containing 55 mM Tris-

HCl, 0.21 mM sodium chloride, 0.88 mM potassium chloride,

880 mM L-arginine and 0.5% 3-dimethyldodecylammoniopro-

pane-sulfonate (SB-12) (Fluka), pH 7.0. After refolding overnight,

the sample was dialyzed to 55 mM Tris-HCl, 0.21 mM sodium

chloride, 10 mM L-arginine, and 0.5% SB-12, pH 6.5. The

protein solution was filtered and stored at 4uC. Proper folding was

monitored by semi-native SDS-PAGE where the folded protein

has a higher electrophoretic mobility than the denatured protein.

Immunizations
Preparative SDS-PAGE was used to purify ZnuD from

inclusion body preparations. After staining the gel with Coomassie

brilliant blue, the band corresponding to ZnuD was electro-eluted

(Biorad) and used to immunize rabbits at Eurogentec.

To generate OMVs, strain CE1523 containing pEN11-znuD

was grown in the presence or absence of 1 mM IPTG. OMVs

were prepared by deoxycholate extraction and used to immunize

mice as described [10]. Sera from ten mice per group were

collected after 42 days and pooled.

Ethics statement
All animal experimentations were performed in compliance

with the current Belgian legislation related to the protection and

well-being of animals and the European directive 86/609/CEE

related to the protection of vertebrate animals used for

experimental or other scientific purposes. The experimental

protocols have been approved by GSK Biologicals Ethical

Commission for Animal Experimentation. All experimental

procedures were conducted at the GSK Belgium facilities, which

has a full AAALAC (Association for Assessment and Accreditation

of Laboratory Animal Care) accreditation since October 25th

2004.

RT-qPCR
RT-qPCR was performed using a 7900HT Fast Real-Time

PCR System and SYBR green master mix (Applied Biosystems).

Total RNA was isolated using Trizol (Invitrogen) and further

purified with nucleospin RNA II columns (Macherey-Nagel) and

treated with Turbo DNA-Free (Ambion) to yield DNA-free RNA.

cDNA was generated from 1 mg RNA using transcriptor High

fidelity cDNA synthesis kit (Roche). As a control, samples without

the reverse transcriptase were tested in parallel. PCRs were

performed in triplicate. The primers used are listed in Table S1. A

melting plot was performed to ensure that the signal originated

from the specific amplicon. Data analysis was performed using the

comparative cycle threshold method (Applied Biosystems) to

determine relative expression levels. The rmpM transcript was

used to normalize all data.

ICP-MS
Total zinc concentrations in RPMI medium were measured by

ICP-MS using an X Series 2 ICPMS (Thermo Scientific). Filtered

(0.22-mm) medium was acidified with HNO3 (suprapure, Merck)

prior to the measurements.

Zinc binding assay
In the PAR (Fluka) competition assay, the orange color of a

PAR/zinc complex changes towards yellow in the presence of a

protein that releases zinc from PAR. The assay was performed as

described [42] using 30 mM ZnSO4 and 20 mg OMVs. The assay

with the refolded protein as competitor was carried out in 55 mM

Tris-HCl, 0.21 mM sodium chloride, 10 mM L-arginine, and

0.5% SB-12, pH 6.5; in this assay, 50 mM PAR, 20 mM ZnSO4,

and 16 mg ZnuD were used.

Serum bactericidal assay
Wild type H44/76 carrying pEN11-znuD was inoculated from

overnight grown plates in TSB with 125 mM FeCl3 with or

without 1 mM IPTG in shaking flasks for 3 h at 37uC until an

optical density at 550 nm of 0.5 was reached. Serum bactericidal

assays were performed as described [10]. Bactericidal titers are

defined as the highest serum dilution yielding .50% killing.

Accession numbers
Accession numbers for the meningococcal proteins described in

this study in Genbank are: ZnuD (NMB0964), AAF62323; ZnuA

(NMB0586), AAF41014; ZnuB (NMB0587), AAF41015; ZnuC

(NMB0588), AAF41016; Zur (NMB1266), AAF41643; TonB

(NMB1730), AAF42075. Other accession numbers are provided

in Table 1.

Supporting Information

Figure S1 Alignment of meningococcal ZnuD homologs.

Aligned is the amino acid sequence of N. meningitidis strain

MC58 with those of strains 053422, FAM18 and Z2491, and the

carrier strains a14 and a153. The signal sequence, TonB box (Tb),

plug domain, surface-exposed loops and the transmembrane

domains (Tm) are marked above the sequence and the His- and

Asp-rich stretches are underlined.

Found at: doi:10.1371/journal.ppat.1000969.s001 (0.07 MB PDF)

Figure S2 Alignment of ZnuD homologs. Aligned are the amino

acid sequences of various pathogens. The histidine- and aspartic

acid-rich stretches are highlighted in grey.

Found at: doi:10.1371/journal.ppat.1000969.s002 (0.05 MB PDF)

Table S1 Primers used in this study.

Found at: doi:10.1371/journal.ppat.1000969.s003 (0.05 MB

DOC)
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