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Within-individual variability of repeatedly measured exposures might predict later outcomes (e.g., blood
pressure (BP) variability (BPV) is an independent cardiovascular risk factor above and beyond mean BP).Because
2-stage methods, known to introduce bias, are typically used to investigate such associations, we introduce a joint
modeling approach, examining associations of mean BP and BPV across childhood with left ventricular mass
(indexed to height; LVMI) in early adulthood with data (collected 1990–2011) from the UK Avon Longitudinal Study
of Parents and Children cohort. Using multilevel models, we allowed BPV to vary between individuals (a “random
effect”) as well as to depend on covariates (allowing for heteroskedasticity). We further distinguished within-clinic
variability (“measurement error”) from visit-to-visit BPV. BPV was predicted to be greater at older ages, at higher
body weights, and in female participants and was positively correlated with mean BP. BPV had a weak positive
association with LVMI (10% increase in within-individual BP variance was predicted to increase LVMI by 0.21%,
95% credible interval: −0.23, 0.69), but this association became negative (−0.78%, 95% credible interval: −2.54,
0.22) once the effect of mean BP on LVMI was adjusted for. This joint modeling approach offers a f lexible method
of relating repeatedly measured exposures to later outcomes.

ALSPAC; Bayesian analysis; blood pressure; children; joint model; left ventricular hypertrophy; longitudinal
studies; young adult

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BP, blood pressure; BPV, blood pressure variability;
CrI, credible interval; LVMI, left ventricular mass indexed to height; SBP, systolic blood pressure; SD, standard deviation.

When exposures vary over time—for example, systolic
blood pressure (BP) as measured over the life course—
both the overall mean and the change in the exposure can
affect later health outcomes (1). However, within-individual
variability (i.e., the extent to which an individual’s measure-
ments fluctuates around this trend) might also be a risk factor
(2).

Methodological difficulties have meant that within-
individual variability in time-varying exposures have seldom
been examined, and when they are it is often using 2-stage
procedures, known to introduce bias (3). An alternative, 1-
stage approach is to use joint multilevel models to relate
time-varying exposures (4) to a later outcome (5). These
models have recently been extended to also examine within-

individual variability (3). Such joint models lead to unbiased
parameter estimates and correct standard errors, either when
relating the mean and trajectory (6) or the within-individual
variability (3), of an exposure to a later outcome.

We illustrate this approach by examining the association
of both mean BP and within-individual blood pressure vari-
ability (BPV)—more specifically, the estimated individual
deviation away from the population mean BP and BPV
(adjusted for covariates)—with an established biomarker
of target organ damage: left ventricular mass indexed to
height (LVMI). While BPV can be measured across various
time scales (7), here we focus on the longer term, also called
“visit-to-visit.” In adults, visit-to-visit BPV has been found
to be an important predictor of subsequent cardiovascular
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disease over and above mean level (8). Detecting those at risk
of cardiovascular disease early in life is important in order to
design and administer preventive measures in a timely and
targeted manner (9, 10). Mean systolic BP in childhood is
positively associated with early signs of heart damage, such
as left ventricular hypertrophy (11–13), and there is evidence
from a US cohort of children that higher BPV—as estimated
via the standard deviation (SD) of the measurements across
all visits (conducted every 2–3 years) for each person—is
associated with adult hypertension, independent of mean BP
levels (14). However, there has been little investigation of
the role of BPV on early target-organ damage, despite its
potential utility as a predictive factor (15), and only limited
analysis of the factors associated with childhood BPV
(14, 16).

Our aim was to explore the factors associated with within-
individual BPV in a UK cohort of children using multilevel
analyses, and to extend these to joint models to investigate
the association of both mean BP and BPV with LVMI in
early adulthood. Note that, because the responses are both
Gaussian, the model could also be referred to a multivariate
normal response model, with heteroskedastic error.

METHODS

Participants

The participants were from the UK’s Avon Longitudi-
nal Study of Parents and Children (ALSPAC), an ongoing,
prospective longitudinal birth cohort study (17–19). Preg-
nant women resident in Avon, with expected dates of deliv-
ery of April 1, 1991, to December 31, 1992, were invited
to take part in the study; 14,541 pregnancies, resulting in
13,988 children alive at 1 year of age, were initially enrolled,
later bolstered by further eligible cases who had failed to
join the study originally, increasing the number of enrolled
pregnancies to 15,454, with 14,901 children alive at 1 year
of age. The study website contains details of all available
data through a fully searchable data dictionary and variable
search tool (20).

A total of 5,217 of the participants attended an ALSPAC
study clinic at a mean age of 17.7 years, of whom a random
subsample of 2,047 (all singletons) had their LVMI (left
ventricular mass in grams, indexed to height in meters2.7

(g/m2.7)) measured via echocardiography (21, 22). Exclu-
sion criteria included pregnancy and congenital heart dis-
ease; see below for a comparison of the subsample modeled
with the larger sample enrolled in ALSPAC and Boyd et al.
(17) for a discussion of attrition in ALSPAC. Echocardiogra-
phy was performed using an HDI 5000 ultrasound machine
equipped with a P4-2 Phased Array ultrasound transducer
(Philips Healthcare, Amsterdam, The Netherlands) by one
of 2 experienced echocardiographers using a standard exam-
ination protocol (22).

A total of 1,988 of these participants had their systolic BP
(SBP), and their height, weight, and age recorded on at least
1 prior occasion (research clinic). These clinics’ participants
were approximately 7.5, 9.5, 10.5, 11.5, 13, and 15.5 years
of age. At each clinic, the participant’s SBP (in mm Hg)
was measured at least twice, using a validated electronic

monitoring device and a cuff size appropriate for their upper
arm circumference, with the participant sitting and at rest
with the arm supported. Each of these measurements was
available for our analysis from each clinic, apart from the
clinic at approximately 10.5 years of age, for which only the
mean was available.

Statistical analysis

The covariates we included for SBP were age (for further
details, see below), sex, a term for interaction between age
and sex, weight, height, and a number of maternal character-
istics, including parity (the number of previous pregnancies
resulting in either livebirth or stillbirth), age at delivery,
and highest educational qualification. Sex, age, and weight,
as measured at the clinic at approximately 17.7 years of
age, were included as exposures for LVMI, but height was
not, because LVMI is indexed to height. All continuous
covariates were centered around their grand mean prior to
analysis. Weights, as measured across childhood, and LVMI
were log-transformed prior to analysis.

We used a joint model to relate BPV to subsequent
log(LVMI).Wedescribe this modeling approach below, build-
ing up model complexity using an example that assumes that
SBP increases linearly with age across childhood (we later
relax this assumption in the ALSPAC model). Equation 1
assumes that each individual has 1 measure at each occasion,
but this is relaxed in equation 2 (and in the ALSPAC model).
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In equation 1, y1ij is the repeatedly measured exposure
(SBP) measured at clinic i (i = 1, . . . , nj) for individual
j (j = 1, . . . , J), with the covariate tij indicating the indi-
vidual’s age at that clinic. In the mean function for BP,
there are individual-level random effects for the intercept
(u0j; mean BP at t = 0) and also for rate of change (u1j;
BP slope), with within-individual (between-clinic) error eij.
In standard multilevel models, the variance of the within-
individual error is assumed to be constant (homoskedas-
tic) across all observations (as σ2

e). Here it is allowed to
depend on age (tij) and also on an individual-level random
effect u2j (with a log-link ensuring that the within-individual
variance remains positive). Within-individual variability in
blood pressure, log(BPV), is therefore allowed to change
with age (as estimated here via α1). The random effect
u2j allows each individual to have their own estimate of
log(BPV). It is also possible to allow for coefficients of
covariates within the within-individual variability function
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to randomly vary across individual: for example, allowing
the coefficient for age (tij) to randomly vary to investi-
gate whether its association with BPV differs between peo-
ple (23). The submodel for the longitudinal process is a
mixed-effects location scale model (24, 25). The inclusion
of the individual-level outcome y2j, denoting log(LVMI)
measured at approximately 17.7 years for individual j (j =
1, . . . , J), results in a joint model, with shared random
effects: here via the inclusion of mean BP, BP slope, and
log(BPV) as exposures in the linear model for the mean of
log(LVMI).

The model above has 2 levels, and assumes there is just 1
measurement per person, per clinic. If more than 1 measure-
ment of SBP is taken for each individual at each clinic ses-
sion, however, then the model can be expanded as follows:

y1hij = β0+ β1tij+ u0j+u1jtij + eij +εhij
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In equation 2, y1hij denotes SBP as measured at (within-
clinic) occasion h (h = 1, . . . , nij) for clinic i (i = 1, . . . ,
Ij), for individual j (j = 1, . . . , J). εhij refers to the residual
within-clinic error in the repeatedly measured exposure,
assumed to have constant variance σ2

ε . This within-clinic
measurement error, which we assume is not related to
log(LVMI) (y2j), will incorporate both systematic (e.g.,
white coat effect/habituation) and random error.

Following previous work modeling SBP across these
ALSPAC clinics, we allowed for a nonlinear relationship
between age and mean SBP by fitting a linear spline with
a knot point at 12 years (26, 27). The spline variables were
derived as follows (where tij = age in years) (28):

s1ij =
{

tij tij ≤ 12
12 tij > 12

s2ij =
{

0 tij ≤ 12
tij − 12 tij > 12

These spline terms were fitted as fixed effects in the mean
function for SBP. Because allowing the coefficients of these
terms to randomly vary across individuals led to conver-
gence problems in some models, a linear term for age fitted
across the whole age range was fitted as a random effect. We
assumed that BPV had a linear association with age.

Web Appendix 1 (available at https://doi.org/10.1093/aje/
kwaa224) includes estimates from sensitivity analyses de-
signed to 1) investigate the influence of the submodel for
log(LVMI) on the random effect estimates (Web Table 1); 2)

compare a parameterization modeling clinic mean BP with
current models (Web Table 2); 3) check whether restricting
the analysis sample to those with LVMI measures had any
effect on model for change in SBP, examining possible
selection bias (Web Table 3); and 4) investigate sex as the
only observed covariate (Web Table 4), for comparison with
published findings elsewhere (14, 16).

We used Bayesian estimation via Markov chain Monte
Carlo methods in Stan (2.19.1) (29, 30), called from R (R
Foundation for Statistical Computing, Vienna, Austria) (31)
using the rstan package (32). See Web Appendices 2–3 for
examples and further details of estimation.

Ethical approval for the study was obtained from the
ALSPAC Ethics and Law Committee and the Local Research
Ethics Committees. Informed consent for the use of data
collected via questionnaires and clinics was obtained from
participants following the recommendations of the ALSPAC
Ethics and Law Committee at the time.

RESULTS

Cohort description

Two observations at the individual level, 8 at the clinic
level, and 1 at the measurement level (36 measurement-
level observations in total) were identified as outliers in
quantile-quantile plots of residuals from preliminary models
and were removed from the data set prior to further analyses.
The resulting data set comprised 1,986 individuals attending
10,556 clinic sessions with 19,360 recorded BP measure-
ments.

Table 1 compares the participants included in the analysis
with those 12,318 ALSPAC children who were not included
(but were recruited in an eligible ALSPAC phase, single-
tons, and otherwise recorded as alive at 1 year of age).
There was evidence that those included were more likely
to be female and had mothers who had had fewer children,
were more educated, and were healthier than those not
included.

Figure 1 plots mean SBP against mean age for each clinic
for those included in the model, indicating sample sizes for
each clinic. The mean number of clinics attended was 5.3;
the numbers of clinics attended by participants were 1 (n =
46), 2 (n = 47), 3 (n = 68), 4 (n = 142), 5 (n = 454), and 6
(n = 1,229).

Fixed effects: age and sex

Table 2 summarizes 3-level joint analyses in which both
SBP trajectory and log(LVMI) are simultaneously mod-
eled, with age centered around the sample mean of 11.3
years (with some estimates presented as percentage change
(33), as indicated; see Web Table 5 for original coefficient
estimates). With just age and sex as observed covariates
(model A), mean SBP was predicted to increase with age.
The rate of increase was similar for boys and girls up to
the age of 12 years, with mean BP predicted to increase
more steeply for male participants at older ages. With regard
to within-individual variance, with each year of age, BPV
was predicted to increase by 15.6% (95% credible interval
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Table 1. Comparing Characteristics of Children Later Undergoing Echocardiography, and Included in the Model,
With Those Not Included in the Model, From the Avon Longitudinal Study of Parents and Children, Southwest
England, 1990–2011

Characteristic
Not Included in Model (n = 12,318) Included in Model (n = 1,986)

No. in Sample % Mean (SD) No. in Sample % Mean (SD)

Sex of child

Female 5,887 47.8 1,090 54.9

Male 6,431 52.2 896 45.1

Mother’s educationa,b

CSE/none 2,226 21.7 212 11.5

Vocational 1,048 10.2 148 8.0

O level 3,564 34.8 618 33.4

A level 2,227 21.7 498 27.0

Degree 1,181 11.5 372 20.1

Mother’s BMIa,b 9,508 22.9 (3.9) 1,723 22.9 (3.6)

No. of cigarettes smoked
per day by mothera,b

9,337 2.5 (5.5) 1,710 1.3 (4.3)

Mother’s age at delivery,
yearsb

11,713 27.7 (5.0) 1,895 29.5 (4.6)

Paritya,b 10,745 0.9 (1.0) 1,848 0.7 (0.9)

Child’s birthweight, kgb 11,564 3.4 (0.5) 1,873 3.4 (0.5)

Abbreviations: A Level, Advanced Level; BMI, body mass index; CSE, Certificate of Secondary Education; O
Level, Ordinary Level; SD, standard deviation.

a Mother’s education: highest educational attainment. Mother’s BMI (weight (kg)/height (m)2): at 12 weeks’
gestation. Cigarettes smoked per day by mother: at 32 weeks’ gestation. Parity: mother’s number of previous
pregnancies resulting in either a livebirth or a stillbirth.

b Sample sizes for these variables do not sum to that for the total sample due to missing values.

(CrI): 12.9, 18.4). Girls’ BPV was predicted to be 16.8%
(95% CrI: 4.5, 30.4) greater than that for boys, across all
time points. Age at time of echocardiography was estimated
to have a modest negative association with LVMI, and girls
were predicted to have smaller values of LVMI (Table 2).

Fixed effects: adding weight and height

In model B, mean SBP was predicted to increase with
greater weight and height. BPV was estimated to be larger
with greater log(weight): specifically, for a 10% increase
in weight, BPV was predicted to increase by 5.8% (95%
CrI: 2.1, 9.6). The estimated effect of height on log(BPV)
was negative, with a credible interval including zero (BPV
predicted to decrease by −0.4% (95% CrI: −1.4, 0.7) per
1-cm increase in height). Weight had a positive association
with LVMI (LVMI predicted to increase by 0.7% (95% CrI:
0.6%, 0.8%) per 1-kg-increase in weight) (Table 2).

Fixed effects: adding maternal characteristics

Finally, in model C, maternal characteristics were added
as covariates in the mean function for SBP (with a slight drop
in sample size due to fewer observations for these variables).

This predicted a modest positive association of mean SBP
with mother’s age at delivery, as well as an inverse associa-
tion with higher parity and highest educational qualifications
(Table 2).

Random effects

Model C estimated a small negative correlation (r =
−0.09, 95% CrI: −0.21, 0.03) between mean BP and BP
slope (i.e., those with higher mean BP at 11.3 years were
predicted to have a smaller increase in their mean BP across
age). A large positive correlation (r = 0.50, 95% CrI: 0.33,
0.71) was estimated between mean BP and log(BPV) (i.e.,
individuals with higher mean SBP at 11.3 years also tended
to have more fluctuation in their SBP). The correlation
between BP slope and log(BPV) was estimated as negative
and small (r = −0.05, 95% CrI: −0.34, 0.23) (Table 2).

The SD of the BPV random effects on the log scale
was estimated to have a mean of 0.42 mm Hg (95% CrI:
0.29, 0.53). Figure 2 plots examples from this model of 3
individuals randomly drawn from the 25 with the lowest, and
3 from the 25 with the highest, estimated random effect for
log(BPV), with an added constant on both the x- and y-axis to
preserve anonymity, illustrating instances of individual-level
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Figure 1. Mean systolic blood pressure (SBP) at clinic against
mean age for clinics attended by those participants later undergoing
echocardiography, Avon Longitudinal Study of Parents and Children,
Southwest England, 1990–2011. Sample sizes (individuals per clinic),
for the clinic at the youngest mean age through to the clinic at the
oldest mean age, respectively, were n = 1,758, n = 1,804, n = 1,751,
n = 1,791, n = 1,762, and n = 1,690. Bars: 1 standard deviation on
either side of the mean.

patterns of SBP measurements at each end of the observed
range of estimated BPV.

Table 3 contrasts the estimates of the random effects from
model C with those in which the effect of each set of random
effects on log(LVMI) is examined without adjustment for the
other random effects on log(LVMI), but with the remain-
ing structure of the model otherwise remaining the same;
estimates presented as percentage change (33), as indicated
(see Web Tables 6–7 for full estimates, including original
coefficient estimates). When mean BP is the only random
effect included as a predictor of LVMI, higher mean BP is
associated with higher LVMI. The same is true when the ran-
dom slope and the log(BPV) random effects are alternately
added as predictors of LVMI. With regard to the log(BPV)
predictor, a 10% increase in BPV is predicted to increase
LVMI by 0.21% (95% CrI: −0.23, 0.69). When all 3 random
effects are included as predictors of LVMI, the estimated
association between log(BPV) and LVMI becomes negative
and larger in magnitude; specifically, a 10% increase in BPV
is estimated to be associated with a decrease in LVMI by
−0.78% (95% CrI: −2.54, 0.22). This model also estimated
a positive association of mean BP with LVMI (a 1-mm-
Hg increase in BP at the sample mean age was predicted
to increase LVMI by 0.59%, 95% CrI: 0.12, 1.37) and of
change in mean BP with LVMI (a 1-mm-Hg increase in the
slope was predicted to increase LVMI by mean = 3.58%,
95% CrI: 0.01, 7.92).

Sensitivity analyses

As Web Appendix 1 further discusses, a range of sensi-
tivity analyses yielded substantively similar estimates to the
models presented here.

DISCUSSION

Using data from a prospective longitudinal birth cohort
study based in the United Kingdom, we used a joint model-
ing approach to examine the factors associated with visit-to-
visit BPV across childhood and the association of both mean
BP and BPV with an established biomarker of target organ
damage, LVMI, in early adulthood. BPV was estimated to
be larger (i.e., individuals’ SBP was estimated to fluctuate
more greatly) at older ages, in girls, and at greater body
weights. BPV also had a large, positive correlation with
mean BP (at the sample mean age of 11.3 years) but only a
very small correlation with the rate of change in BP (slope)
across age. In a model that did not adjust for the effect of
mean BP and its slope on LVMI, BPV was estimated to
have a weak positive association with LVMI. When mean BP
and its slope were also included as covariates, however, the
direction of association between BPV and LVMI changed
and the magnitude of the estimate increased. These models
further estimated a positive association of mean BP with
LVMI and of change in mean BP with LVMI.

While we are not aware of other studies of subjects in
this age range that have reported on the effect of weight
and height on BPV, the effect of age, sex, and race have
been examined. Investigating BPV in 8- to18-year-old chil-
dren in Massachusetts, Rosner et al. (16) fitted variance
components models to BP measurements taken within and
across visits (up to a maximum of 16 visits over 4 years)
and subsequently examined the effect of age, sex, and BP
level on these 2 variance components in 3-way analyses
of variance. They found “no meaningful effects” of these
covariates on variability of SBP (children with higher BP
level had significantly more within-individual variability
than those with lower BP, but this difference was judged
small; correlation coefficient not reported). More recently, in
an analysis of the Bogalusa Heart Study in the United States,
Chen et al. (14) measured visit-to-visit BPV in children aged
4–19 years by taking the SD of 4–8 measurements of clinic
mean SBP from visits scheduled every 2–3 years. Boys were
estimated to have significantly higher SD(SBP) than girls,
and SD(SBP) was estimated to be significantly greater for
Blacks than for Whites. Our supplementary analyses (Web
Table 4) also indicated that girls were estimated to have
lower BPV than boys but not once the effect of time-varying
covariates were adjusted for. In addition, and in keeping with
our findings, Chen et al. (14) found a positive correlation
(r = 0.15) between mean childhood BP level and SD(SBP).
Such a positive correlation has been characterized in studies
of adults, too (8, 34).

While several studies have found a positive relationship
between adult BPV, independent of mean BP, and later
cardiovascular events such as stroke (8) and all-cause mor-
tality (34), evidence for the relationship between BPV and
target organ damage (as indicated by left ventricular hyper-
trophy, for example) is more equivocal (35, 36). A recent
review described contrasting results with regard to the asso-
ciation of visit-to-visit BPV and cardiovascular outcomes,
suggesting that differences between (adult) study popula-
tions, such as underlying cardiovascular risk, might be an
important determinant of such heterogeneous findings (7).
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Table 2. Estimates From Joint Models With Shared Random Effects, Analyzing Systolic Blood Pressure and Log(Left Ventricular Mass Indexed
to Height) as Outcomes, Presenting the Posterior Parameter Estimates of the Regression Coefficients, Avon Longitudinal Study of Parents and
Children, Southwest England, 1990–2011

Parameter
Model Aa Model Ba Model Ca

Mean 95% CrI Mean 95% CrI Mean 95% CrI

Mean SBP: fixed effects

Intercept 107.95 107.50, 108.40 107.93 107.52, 108.34 108.23 107.29, 109.16

≤12 yearsb 1.71 1.58, 1.85 −0.55 −0.81, −0.30 −0.56 −0.83, −0.30

>12 yearsb 6.00 5.80, 6.21 3.83 3.51, 4.16 3.83 3.49, 4.18

Female −0.43 −1.02, 0.19 −0.40 −0.96, 0.16 −0.22 −0.81, 0.36

Female × ≤12 years 0.07 −0.11, 0.25 −0.15 −0.33, 0.03 −0.17 −0.36, 0.01

Female × >12 years −1.99 −2.28, −1.71 −1.26 −1.57, −0.95 −1.25 −1.58, −0.92

Log(weight, kg) 17.01 15.39, 18.64 16.56 14.84, 18.26

Height, cm 0.04 0.00, 0.09 0.06 0.00, 0.11

Maternal characteristics

Age at delivery, years 0.01 −0.06, 0.09

Parity −0.17 −0.50, 0.17

Vocationalc −0.04 −1.36, 1.30

O Levelc 0.05 −0.95, 1.03

A Levelc −0.64 −1.70, 0.40

Degreec −1.39 −2.50, −0.27

Individual-level random effects for
SBP

SD(mean BP)d 6.12 5.88, 6.37 5.37 5.14, 5.60 5.39 5.16, 5.63

SD(BP slope)d 0.66 0.55, 0.75 0.64 0.54, 0.73 0.65 0.54, 0.74

SD(log(BPV))d 0.41 0.29, 0.51 0.39 0.26, 0.50 0.42 0.29, 0.53

Correlation (mean BP, BP slope)d −0.09 −0.20, 0.02 −0.11 −0.23, 0.00 −0.09 −0.21, 0.03

Correlation (mean BP, log(BPV))d 0.52 0.36, 0.71 0.49 0.31, 0.72 0.50 0.33, 0.71

Correlation (BP slope,
log(BPV))d

−0.06 −0.34, 0.22 −0.04 −0.33, 0.26 −0.05 −0.34, 0.23

BPV: fixed effects

Intercept 3.22 3.12, 3.32 3.15 3.04, 3.25 3.13 3.02, 3.23

Age, yearse 15.61 12.87, 18.39 11.32 5.80, 16.98 10.80 5.05, 16.77

Female sexe 16.84 4.53, 30.40 17.64 4.66, 31.59 20.06 5.99, 35.46

Log(weight, kg)f 5.77 2.10, 9.55 5.24 1.42, 9.20

Height, cme −0.37 −1.40, 0.70 −0.24 −1.36, 0.89

Residual within-clinic SD for SBP 5.62 5.54, 5.70 5.63 5.54, 5.71 5.61 5.53, 5.70

Table continues

With regard to the relationship between childhood BPV
and adult biomarkers, Chen et al. (14) found childhood
visit-to-visit SD (SBP) to be significantly associated with
adult hypertension. This remained the case after adjusting
for mean childhood SBP, although elevated childhood SBP
levels were found to be more predictive of adult hypertension
than childhood BPV. We have previously demonstrated that,
in 17-year-olds, higher body mass index is causally related to
higher LVMI, suggesting that there is meaningful variation
in cardiac structure measurements in early adulthood that is

likely to track across life and relate to later life cardiovascu-
lar health (37). Nevertheless, in the current study only a weak
positive association between childhood BPV and LVMI in
early adulthood was found, and this did not persist once
childhood mean BP had been adjusted for. In fact, within
strata of mean childhood SBP, higher BPV was associated
with smaller values of LVMI. Whether it is appropriate to
adjust for mean BP when assessing the association of BPV
with LVMI somewhat depends on whether one has a causal
model in mind that conceptualizes mean BP as causing
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Table 2. Continued

Parameter
Model Aa Model Ba Model Ca

Mean 95% CrI Mean 95% CrI Mean 95% CrI

Mean for log(LVMI): fixed effects

Intercept 3.36 3.35, 3.37 3.33 3.31, 3.34 3.32 3.31, 3.33

Age, yearse −0.07 −2.85, 2.79 −1.65 −4.2, 0.94 −1.94 −4.61, 0.79

Femalee −11.00 −12.61, −9.36 −5.42 −7.08, −3.73 −4.95 −6.72, −3.17

Weight, kge 0.69 0.62, 0.76 0.70 0.63, 0.78

mean BPd,e 0.85 0.44, 1.44 0.57 0.09, 1.49 0.59 0.12, 1.37

BP sloped,e 4.38 0.88, 8.61 3.63 0.00, 8.35 3.58 0.01, 7.92

Log(BPV)d,f −0.61 −2.05, 0.40 −0.82 −3.08, 0.29 −0.78 −2.54, 0.22

Residual SD for log(LVMI) 0.20 0.19, 0.21 0.19 0.17, 0.19 0.19 0.18, 0.19

Abbreviations: A Level, Advanced Level; BP, blood pressure; BPV, (within-individual) blood pressure variability; CrI, credible interval; LVMI,
left ventricular mass indexed to height; O Level, Ordinary Level; SBP, systolic blood pressure; SD, standard deviation.

a Model A: adjusted for age and sex (1,986 individuals; 10,556 clinic visits; 19,360 BP measurements); model B, model A with the addition
of weight and height (1,986 individuals; 10,556 clinic visits; 19,360 BP measurements); model C: model B with the addition of maternal
characteristics (1,813 individuals; 9,693 clinic visits; 17,777 BP measurements).

b Linear spline terms, corresponding to change per year for ages ≤12 years and for ages >12 years.
c Mother’s highest education qualification (referent: Certificate of Secondary Education/none).
d Mean BP denotes the individual-level, between-clinic, random effects for the intercept (at mean age 11.3 years) in the mean function

for SBP; BP slope denotes the individual-level, between-clinic, random effects for age in the mean function for SBP; log(BPV) denotes the
individual-level, between-clinic, random effects on the log-scale of the within-individual variance (i.e., these are the equivalent of u0, u1, and
u2 in equation 2, respectively).

e Estimates presented as percentage change in BPV/LVMI (on natural scale) per 1-unit increase in covariate, calculated (using posterior
samples) as (exp(coefficient) − 1) × 100; see Web Table 5 for original coefficient estimates.

f Estimates presented as percentage change in BPV/LVMI (on natural scale) per 10% increase in covariate (on natural scale), calculated
(using posterior samples) as ((1.10∧coefficient) − 1) × 100; see Web Table 5 for original coefficient estimates.

both BPV and LVMI (in which case, adjustment for mean
BP as a confounder might be appropriate) or whether no
causal relationship is proposed between mean BP and BPV
(i.e., other, unknown, factors cause mean BP and BPV, and
each in turn has a causal relationship with later LVMI), in
which case it might not be appropriate to adjust for mean
BP. If the purpose is prediction, on the other hand, then by
simultaneously estimating the effect of mean BP, its slope,
and BPV on the later outcome, we allow for a more complete
appraisal of the association of repeatedly measured BP with
LVMI. Note that whether mean BP is adjusted for or not, the
association of BPV with LVMI was estimated to be small,
with appreciable uncertainty as to whether it was nonzero,
or indeed of the opposite sign.

Our results also indicated that mean BP (at the sample
mean age) and change in mean BP were both positively
associated with LVMI in early adulthood. Analyses of the
Georgia Stress and Heart Study and the Bogalusa Heart
Study have also found mean BP in childhood, and its slope
from childhood to young adulthood and in adolescence, to
be positively associated with left ventricular hypertrophy in
adulthood (38–40).

If we assume that selection into our analysis sample
depends only on measured variables such as sex of child
and education and age of mother, then their inclusion as
covariates will result in unbiased models. If, having condi-

tioned on such covariates, inclusion in our analysis sample
is related to the exposure (SBP) and outcome (LVMI), then
there will be bias. A priori, this seems relatively unlikely,
however (e.g., such biomarkers are not readily observable in
a manner that would typically influence one’s participation
in a study). While there were fewer observations for the
maternal (compared with child-based) characteristics, the
proportion of missing data was relatively modest (8%–9%),
and estimates for parameters common to each model were
substantively similar.

Selection bias could also arise from people missing values
for specific measures. Again, this will only cause bias if
the probability of the measure being missing depends on its
(unobserved) value, having conditioned on the observed val-
ues of the exposure, outcome, and covariates included in the
models. This again seems relatively unlikely, however, given
that participants are not typically privy to such biomarkers
in a manner that might influence attendance.

The general class of model we have used could be em-
ployed to examine within-person variability in any repeat-
edly measured exposure, relating it to later individual-level
outcomes of interest within a joint model (e.g., the asso-
ciation between glycemic variability and mortality (41),
variability in gait and risk of falling (42), and variation in
prostate specific antigen and prostate volume (43)). We have
focused on within-individual variability, but interest might
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Figure 2. Observed data and predictions for randomly selected individuals according to random effects estimates for blood pressure variability,
Avon Longitudinal Study of Parents and Children, Southwest England, 1990–2011. A–C) Three individuals with among the lowest estimates; D–F)
3 individuals with among the highest estimates. Note that a constant has been added to each axis to preserve anonymity. SBP, systolic blood
pressure.

lie in characterizing within-clinic (interindividual) variabil-
ity instead. Also, individual-level outcomes (i.e., y2j, in
equations 1 and 2) that are binary, or time-to-event data (3),
etc., can be modeled (with appropriate changes to distribu-

tional assumptions). Furthermore, the repeatedly measured
exposure might instead be intensively sampled, with many
observations per person (24), adjusting for autocorrelation,
if appropriate.

Table 3. Posterior Parameter Estimates From Joint Models in Which Mean Blood Pressure, Blood Pressure Slope, and Log(Blood Pressure
Variability) Are Included as Exposures for Log(Left Ventricular Mass Indexed to Height)a, From the Avon Longitudinal Study of Parents and
Children, Southwest England, 1990–2011

Parameter
Mean BP Only BP Slope Only Log(BPV) Only

Mean BP, BP Slope, Log(BPV)
All Included

Mean, % 95% CrI Mean, % 95% CrI Mean, % 95% CrI Mean, % 95% CrI

Mean BPb,c 0.19 0.00, 0.39 0.59 0.12, 1.37

BP slopeb,c 2.40 −0.51, 5.56 3.58 0.01, 7.92

Log(BPV)b,d 0.21 −0.23, 0.69 −0.78 −2.54, 0.22

Abbreviations: BP, blood pressure; BPV, blood pressure variability; CrI, credible interval; LVMI, left ventricular mass indexed to height.
a These are selected parameter estimates from these models; see Web Tables 6–7 for full models.
b Mean BP denotes the individual-level, between-clinic, random effects for the intercept (at mean age 11.3 years) in the mean function

for SBP; BP slope denotes the individual-level, between-clinic, random effects for age in the mean function for SBP; log(BPV) denotes the
individual-level, between-clinic, random effects on the log-scale of the within-individual variance (i.e., these are the equivalent of u0, u1, and
u2 in equation 2, respectively).

c Estimates presented as percentage change in LVMI (on natural scale) per 1-unit change in covariate, calculated (using posterior samples)
as (exp(coefficient) − 1) × 100; see Web Table 7 for original coefficient estimates.

d Estimates presented as percentage change in LVMI (on natural scale) per 10% increase in covariate (on natural scale), calculated (using
posterior samples) as ((1.10∧coefficient) − 1) × 100; see Web Table 7 for original coefficient estimates.
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While fitting joint models involves greater computational
burden and complexity compared with a 2-stage approach,
the latter is known to introduce bias (3). Note, though,
that a recent methodological development of the 2-stage
approach preserves uncertainty in estimates (44). A 2-stage
approach might appear more logical in cases where it is
not feasible for the later outcome to influence the earlier
longitudinal process, due to fears over allowing the future
to cause the past (44, 45). The joint modeling framework,
however, uses future measurements to improve the model
for the past measurements, rather than to cause the past
measurements. This is the case in a wide range of model
types and applications (5, 46, 47), such as a growth curve
model, where adding later waves revises estimates of true
values for earlier occasions.

We have supplied example code to demonstrate how these
models can be fitted using a Bayesian framework, with
endeavors to fit such models being actively extended to
other software packages (48). Joint models have recently
been employed to examine within-individual variability (3).
We further extend these by investigating the association
of time-varying covariates with within-individual variabil-
ity, allowing us to examine residual BPV unexplained by
known factors, and also by distinguishing between-clinic
from within-clinic variability. As such, the joint modeling
approach we have introduced offers a very flexible method
of exploring the factors associated with within-individual
variability.
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