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Abstract: This work was undertaken in an attempt to ascertain the generic characteristics of fatigue
behavior of friction-stir welded aluminum alloys. To this end, different alloy grades belonging
to both the heat-treatable and non-heat-treatable types in both the cast and wrought conditions
were studied. The analysis was based on the premise that the fatigue endurance of sound welds
(in which internal flaws and surface quality are not the major issues) is governed by residual stress and
microstructure. Considering the relatively low magnitude of the residual stresses but drastic grain
refinement attributable to friction-stir welding, the fatigue performance at relatively low cyclic stress
was deduced to be dictated by the microstructural factor. Accordingly, the fatigue crack typically
nucleated in relatively coarse-grained base material zone; thus, the fatigue strength of the welded
joints was comparable to that of the parent metal. At relatively high fatigue stress, the summary
(i.e., the cyclic-plus residual-) stress may exceed the material yield strength; thus, the fatigue cracking
should result from the preceding macro-scale plastic deformation. Accordingly, the fatigue failure
should occur in the softest microstructural region; thus; the fatigue strength of the welded joint may
be inferior to that of the original material.
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1. Introduction

Due to the high stress concentrations and intrinsic defects, welded structures usually exhibit
poor fatigue performance. This is particularly the case for aluminum welds, whose exceptionally low
characteristics are widely known and even necessitate using a riveting approach for manufacturing of
joint assemblies. However, a recent invention of an advanced friction-stir welding (FSW) technique
may principally change this situation. Because of the solid-state nature of this welding process,
the produced joints contain no solidification defects and are characterized by relatively low residual
stress, as well as the fine-grained recrystallized microstructure [1,2].

Given significant potential of FSW for transportation industry, considerable research effects have
been undertaken to explore fatigue behavior of aluminum friction-stir joints [3–16]. As expected,
their fatigue properties are typically found to be superior to that of comparable fusion welds [3,4].
Based on the analysis of a large array of experimental data, it has been suggested that the fatigue life
of the friction-stir welded (FSWed) aluminum is primarily governed by the following four factors:
(a) welding defects, (b) surface quality, (c) residual stress, and (d) microstructure [2].

It is widely known that the volumetric defects associated with improper FSW conditions could
essentially degrade fatigue strength. In addition to those, however, the so-called “kissing bond”
defect [17] is also of a great concern. Due to a specific character of FSW process, a short segment of
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the unwelded butt surface normally remains at the weld root and may serve as a precursor for the
fatigue crack nucleation [7–9]. This circumstance must be taken into account when considering even a
nominally defect-free joint.

In the light of the well-known initiation of the fatigue failure at the material surface,
the characteristic tool marks, which are normally produced during FSW at the upper weld surface,
may also represent a considerable problem. Due to the relative sharp profile, these marks may give
rise to the stress concentrations during fatigue tests and thus promote the crack nucleation [2,10].

Similar to the conventional fusion welding, FSW results in local material heating. The concomitant
thermal expansion of the hot material gives rise to the tensile residual stress in the weld zone; those are
normally equilibrated by the compressive stresses generated in the base material section. It is well
accepted that the tensile stress promotes the fatigue failure whereas the compression stress suppresses
the fatigues cracks. Despite the magnitude of the FSW-induced residual stress is typically much lower
than that generated during the conventional fusion welding, they, nevertheless, may also exert a
considerable influence on fatigue endurance [2,11–16].

Even accounting for all above factors, the fatigue tests of FSWed aluminum alloys are often
characterized by significant experimental scattering and often show even contradictory results [2].
This effect was probably associated with a diverse character of microstructural changes occurring in
different aluminum alloy grades during FSW. In the heat-treatable aluminum alloys, the microstructural
evolution is well-accepted to be dominated by dissolution and/or coarsening of strengthening
dispersoids which normally leads to material softening [2]. In the non-heat treatable alloys, the structural
response is dictated by the recrystallization process [1,2]. In this case, the hardening/softening outcome
of FSW depends on the initial material condition. In the cast materials, the recrystallization-induced
grain refinement usually provides a strengthening effect. On the other hand, the wrought alloys
typically exhibit material softening due to the elimination of dislocation density.

The present work was undertaken in an attempt to elucidate the common trends in fatigue
behavior of FSWed aluminum alloys. To this end, several different alloy grades belonging to both
the heat-treatable and non-heat-treatable types in both the cast and wrought temper conditions were
employed as program materials.

2. Materials and Methods

2.1. Program Materials

To provide a broad view on fatigue behavior aluminum alloy grades, both non-heat treatable
Al-Mg-Sc alloy and the heat-treatable commercial 6061 alloy were examined in the present study.
The chemical composition of the materials measured by optical emission spectrometry is listed in Table 1.
In both cases, the alloys were produced by semi-continuous casting followed by homogenization
treatment at 360 ◦C (Al-Mg-Sc alloy) or 380 ◦C (6061 alloy) for 12 h. In the Al-Mg-Sc alloy, the obtained
material condition was denoted as cast material.

Table 1. Measured chemical composition of program materials (wt.%).

Alloy Al Mg Mn Si Fe Cu Sc Zr Cr Zn

Al-Mg-Sc
Bal.

6.0 0.35 – – – 0.2 0.08 0.07 –
AA6061 0.88 0.12 0.66 0.72 0.26 – – 0.12 0.09

The homogenized ingots were then either rolled (Al-Mg-Sc alloy) or extruded (6061 alloy) to 75%
of area reduction at the homogenization temperature. In the Al-Mg-Sc alloy, the produced material
condition was referred as hot-rolled material.

To obtain the peak-hardened condition in the 6061 alloy, the extruded material was subjected to
T6 tempering treatment, i.e., solutionized at 550 ◦C for 1 h, water quenched, and then artificially aged
at 160 ◦C for 8 h. The produced material was denoted throughout as 6061 alloy.
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Further details of the material manufacturing (as well as other experimental procedures) have been
described elsewhere [18,19]. The characteristic microstructures of the three above material conditions
are summarized in supplementary Figures S1–S3.

2.2. FSW Process

In all cases, FSW was conducted using an AccuStir 1004 FSW machine (General Tool Company,
Cincinnati, OH, USA). To avoid a formation of the “kissing bond defect”, a double-side FSW was
employed. To this end, two sequent FSW passes in mutually opposite directions were applied on the
upper and bottom sheet surfaces. In each case, particular welding conditions were selected based
on prior experiments [20,21]. The principal directions of FSW geometry were denoted as welding
direction (WD), transverse direction (TD), and normal direction (ND).

In Al-Mg-Sc alloy, the thickness of the welding sheets was 10 mm, and FSW was performed at the
spindle (rotation-) rate of 500 rpm and the feed rate of 150 mm/min. The welding tool consisted of a
shoulder having a diameter of 16 mm and a threaded probe of 6 mm in length and tapered from 6 mm
at the tool shoulder to 4.8 mm at the probe tip.

In 6061 alloy, 3-mm-thickness welding sheets were used. FSW was conducted at the spindle rate
of 1100 rpm and the feed rate of 760 mm/min. The welding tool consisted of a shoulder of 12.5 mm
in diameter and an M5 cylindrical probe of 1.9 in length. To recover mechanical properties of the
produced weldments, these were artificially aged at 160 ◦C for 8 h prior to microstructural observations
and mechanical tests.

In all cases, the particular welding variables for each material condition were selected on the basis
of the authors’ previous experience in tailoring of mechanical properties of the welded joints for static
loading conditions.

2.3. Microstructure Characterization

In all cases, microstructural examinations were conducted by using optical microscopy,
electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). For optical
microscopy, the samples were prepared by mechanical polishing in conventional fashion, followed
by the final etching in Keller’s reagent. A final surface finish for EBSD and TEM was obtained by
electro-polishing in a solution of 25% nitric acid in ethanol.

EBSD analysis was performed using a FEI Quanta 600 field-emission-gun scanning electron
microscope (FEG-SEM) (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a TSL OIMTM

EBSD system (EDAX, Mahwah, NJ, USA). TEM observations were conducted with a JEM-2100EX TEM
(JEOL Ltd., Akishima, Japan).

2.4. Fatigue Tests

To evaluate fatigue performance of the welded joints, dog-bone-shaped specimens were cut
perpendicular to the WD by electrical-discharge machining (EDM). In Al-Mg-Sc alloy, the samples
were machined from the weld mid-thickness and had a gauge section of 14 mm in length, 7 mm in
width, and 3 mm in thickness. In 6061 alloy, the gauge section of the specimens was of 30 mm in length,
8 mm in width, and 3 mm in thickness. In greater detail, the design of the fatigue specimens is given in
supplementary Figure S4. In all cases, the samples were centered at the weld centerline and included
all characteristic microstructural zones of FSW. For comparative purposes, appropriate specimens were
also prepared from all base material conditions.

To achieve a uniform thickness and prevent a potential influence of surface defects on fatigue
properties, the specimens were mechanically polished to a final 2400 grit size SiC emery paper.
Importantly, the lateral surfaces of the specimens remained unpolished and thus retained the
EDM-induced recast layer with relatively high roughness.

The fatigue tests were conducted using an Instron 8801 servo-hydraulic testing system under load
control mode and at ambient temperature. A sinusoidal load-time function with a frequency of 25 Hz
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(in Al-Mg-Sc alloy) or 50 Hz (in 6061 alloy) and a maximum-to-minimum load ratio R = 0.1 was used.
The total statistics of the fatigue tests is given in Table 2.

Table 2. Statistics of fatigue tests.

Fatigue Stress, MPa Number of Tested Specimens

Amplitude
Max

Magnitude

Al-Mg-Sc Alloy, Initial
Cast Condition

Al-Mg-Sc Alloy, Initial
Hot-Rolled Condition 6061 Alloy

Base Metal Weld Base Metal Weld Base Metal Weld

58.5 130 – 2

–

–

– –
63 140 1

67.5 150 2 1 2 5
69.8 155 1

–
– –

70.7 157 1
72 160 1 3 3

74.3 165 1
76.5 170 1 1 2 2 4
77.6 172.5 –

–

1 – –
78.8 175 1
81 180 1 1 3 2

84.5 190

–

2

–

3 3
86.4 192 1

–
–

87.8 195 1
90 200 1 3

94.5 210 1 1 1 3
99 220 1 3 3

103.5 230 1 1 1
108 240 3 3

Fracture surface of the failed specimens was studied with FEI Quanta 600 field-emission-gun
scanning electron microscope (FEG-SEM).

2.5. Static Mechanical Behavior

For the aid of comparison, microhardness measurements and static transverse tensile tests were
conducted. Vickers microhardness measurements were carried out by applying a load of 200 g.
The tensile tests to failure were performed at an ambient temperature and a nominal strain rate of
~10−3 s−1. At least two tensile specimens were tested for each material condition.

3. Results

3.1. Weld Structure

Low-magnification optical images of the weld cross-sections are presented in Figure 1. In all
cases, the distinct stir zones with a clear overlapping between two sequential FSW passes are seen. It is
evident that all produced welds contain no macro-scale flaws including the “kissing bond” defect.
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condition, (b) Al-Mg-Sc alloy in the initial hot-rolled condition, and (c) 6061 aluminum alloy. WD, 

ND, and TD are welding direction, normal direction, and transverse direction, respectively. AS and 

RS are advancing side and retreating side, respectively; digits indicate a number of friction-stir 

welding (FSW) pass. Dotted lines show microhardness profiles. 

 

Figure 2. Typical electron backscatter diffraction (EBSD) grain-boundary maps taken from the stir 
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microscopy (TEM) images of the relevant microstructures are given in the top right corners of the 

maps. In the EBSD maps, low-angle boundaries (LABs) and high-angle boundaries (HABs) are 

depicted as red and black lines, respectively. In (a), the microstructure of the hot-rolled material 

condition is shown. 

A considerable fraction of relatively coarse second-phase particles was also worthy of remark 

(TEM micrographs in the top right corner of Figure 2). As shown in the previous works [18,19], this 

finding reflected an essential coarsening (and even partial dissolution) of the secondary particles 

induced by the weld thermal cycle.  

3.2. Preliminary Analysis of Mechanical Properties 

For preliminary evaluation of mechanical properties of the welded joints, microhardness profiles 

were measured and transverse tensile tests were conducted. The obtained results were summarized 

in Figures 3 and 4 and Tables 3 and 4.  

Figure 1. Optical macrographs of the weld cross-sections: (a) Al-Mg-Sc alloy in the initial cast condition,
(b) Al-Mg-Sc alloy in the initial hot-rolled condition, and (c) 6061 aluminum alloy. WD, ND, and TD are
welding direction, normal direction, and transverse direction, respectively. AS and RS are advancing
side and retreating side, respectively; digits indicate a number of friction-stir welding (FSW) pass.
Dotted lines show microhardness profiles.

Typical microstructures evolved in the stir zone are summarized in Figure 2. In any case, they were
comprised by fine, nearly-equiaxed grains containing low dislocation density. The mean grain size
measured by the conventional intercept method was found to be ~1 µm in Al-Mg-Sc alloy and ~5 µm
in 6061 alloy. Thus, FSW resulted in considerable grain refinement. These observations were the line
with typical FSW literature [1,2] being indicative of a dynamic recrystallization presumably occurred
in the stir zone.
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Figure 2. Typical electron backscatter diffraction (EBSD) grain-boundary maps taken from the stir zone
center of friction-stir welded (a) Al-Mg-Sc alloy and (b) 6061 alloy. Transmission electron microscopy
(TEM) images of the relevant microstructures are given in the top right corners of the maps. In the
EBSD maps, low-angle boundaries (LABs) and high-angle boundaries (HABs) are depicted as red and
black lines, respectively. In (a), the microstructure of the hot-rolled material condition is shown.

A considerable fraction of relatively coarse second-phase particles was also worthy of remark
(TEM micrographs in the top right corner of Figure 2). As shown in the previous works [18,19],
this finding reflected an essential coarsening (and even partial dissolution) of the secondary particles
induced by the weld thermal cycle.

3.2. Preliminary Analysis of Mechanical Properties

For preliminary evaluation of mechanical properties of the welded joints, microhardness profiles
were measured and transverse tensile tests were conducted. The obtained results were summarized in
Figures 3 and 4 and Tables 3 and 4.
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Figure 3. Microhardness profiles measured along the dotted lines shown in Figure 1 in (a) Al-Mg-Sc
alloy and (b) 6061 alloy. For clarity, the probe- and shoulder diameters are indicated. AS and RS are
advancing side and retreating side, respectively.
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Figure 4. Deformation diagrams comparing tensile behavior of base material and friction-stir joints in
(a) Al-Mg-Sc alloy with the initial cast condition, (b) Al-Mg-Sc alloy with the initial hot-rolled condition,
and (c) 6061 alloy.

Table 3. Tensile properties of Al-Mg-Sc alloy.

Material Condition Yield Strength,
MPa

Ultimate Tensile
Strength, MPa

Elongation to
Failure, %

Fracture
Location

Cast
Base material 232 ± 12 348 ± 11 7 ± 1
Welded joint 233 ± 17 386 ± 20 19 ± 2 Base material

Hot-rolled
Base material 288 ± 8 451 ± 10 17 ± 1
Welded joint 285 ± 15 409 ± 12 18 ± 2 Stir zone

Table 4. Tensile properties of 6061 alloy.

Material
Condition Yield Strength, MPa Ultimate Tensile

Strength, MPa
Elongation to

Failure, % Fracture Location

Base material 316 ± 3 362 ± 1 9 ± 1
Welded joint 283 ± 7 311 ± 12 3 ± 1 Heat-affected zone

In Al-Mg-Sc alloy in the initial cast condition, FSW gave rise to a subtle material hardening
in the stir zone (Figure 3a). This was presumably due to the substantial grain refinement in this
microstructural region (Figure 2a). As a result, the welded joints exhibited a tensile behavior broadly
similar to the parent material with the failure occurring in the base material zone (Figure 4a and Table 3).

In contrast, FSW of Al-Mg-Sc alloy in initial hot-rolled condition resulted in essential material
softening (Figure 3b). As demonstrated by Malopheyev et al. [20], this effect was attributable to the
elimination of the original work-hardened substructure due to the recrystallization occurred in the
stir zone. Accordingly, the subsequent transverse tensile tests of the welded joints led to the strain
localization in the softened stir zone which degraded the global strength characteristics (Figure 4b
and Table 3).
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In the heat-treatable 6061 alloy, FSW also exerted a pronounced softening effect (Figure 3b).
As shown in the previous work [21], this was due to the coarsening of strengthening precipitates
induced by the weld thermal cycle. Hence, the subsequent transverse tensile tests also resulted in
the strain localization, and thus mechanical properties of the welded joints were comparatively low
(Figure 4c, Table 4).

3.3. Fatigue Diagrams

The effect of cyclic loading on fatigue life of the base materials and the welded joints are shown in
Figure 5 and Tables 5 and 6. To provide additional insight to the results, the data shown in Figure 5
were statistically analyzed. For this purpose, the run-out tests were excluded from consideration,
whereas the remaining results were linearly fitted.
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show 95% confidence bands. Arrows indicate run-out tests.

Table 5. Results of fatigue tests of Al-Mg-Sc alloy.

Base Metal Welded Metal

Max Cyclic Stress
Cycles to
Failure

Max Cyclic Stress
Cycles to
Failure

Failure
LocationMagnitude,

MPa
Fraction of
Yield Stress

Magnitude,
MPa

Fraction of
Yield Stress

Cast material condition

150 0.65
12,975,503

130 0.56
Run-out test

10,821,207 11,130,650

Base metal

155 0.67 Run-out test 140 0.60 5,061,109
157 0.68 3,950,713 150 0.64 493,988
160 0.69 8,616,097 170 0.73 147,339
165 0.71 507,973 210 0.90 76,486
170 0.73 119,353 230 0.99 36,727
180 0.78 89,452

Hot rolled material condition

160 0.56 Run-out test
170 0.60

Run-out test
165 0.57 9,112,783 11,660,890

Base metal
170 0.59 Run-out test 172.5 0.61 1,750,082
175 0.61 863,163 175 0.61 149,002
180 0.63 84,993 180 0.63 150,880
185 0.64 126,688 210 0.74 95,290
190 0.66 57,240 230 0.81 59,479 Stir zone
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Table 6. Results of fatigue tests of 6061 alloy.

Base Material Welded Metal

Max Cyclic Stress
Cycles to
Failure

Max Cyclic Stress
Cycles to
Failure

Failure
LocationMagnitude,

MPa
Fraction of
Yield Stress

Magnitude,
MPa

Fraction of
Yield Stress

150 0.47 2 Run-out
tests 150 0.53 5 Run-out

tests

160 0.51
2,538,856 160 0.57 3 Run-out

tests

6,764,240
170 0.60

2 Run-out
tests

1,704,748 6,717,387 Base metal

170 0.54
2,763,392

180 0.64
Run-out test

4,020,179 3,360,543

Base metal
180 0.57

1,006,680
190 0.67

292,961
1,417,184 5,183,806
861,513 1,829,003

190 0.60
620,615

200 0.71
619,010

364,845 6,029,954
452,393 248,991

220 0.70
90,369

210 0.74
771,268

HAZ115,993 1,145,951
46,472 112,994 Base metal

240 0.76
83,048

220 0.78
202,805

HAZ87,718 943,967
57,046 661,812

240 0.85
125,552

Base metal104,777
129,689 HAZ

Quite expectedly, a reduction in cycles stress extended the fatigue lifetime but no clear saturation or
a “fatigue limit” was revealed in the fatigue diagrams (Figure 5). This finding was in a close agreement
with a typical behavior of fatigued aluminum alloys. Of particular interest was the observation that
the welded joints exhibited the fatigue strength comparable with that of the base materials in all
investigated alloy grades and the initial temper conditions (Figure 5).

Remarkably, the fatigue behavior of the welded Al-Mg-Sc alloy was characterized by significant
experimental scattering. Though the origin of this effect is not completely clear, one of the possible
explanations may be due to the limited number of tested specimens (Table 2). To clarify this issue,
additional fatigue tests are needed.

Another remarkable issue was the failure location of the welded specimens. As follows from
Tables 5 and 6, at relatively low fatigue stresses (below ~0.75 fraction of the static yield strength),
all joints failed in the base material zone. At higher cyclic stresses, however, the fatigue fracture may
also occur in the weld zone.

3.4. Fatigue Fracture

In order to provide an additional insight into fatigue behavior of the welded joints, fracture surfaces
of the fatigued specimens was examined with typical results being shown in Figure 6. In all cases,
three characteristic fracture zones (representing three typical stages of the fatigue failure) could be
defined: (i) crack initiation, (ii) crack propagation, and (iii) catastrophic failure [22,23].
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Figure 6. SEM micrographs illustrating fracture surface of friction-stir welded Al-Mg-Sc alloy in the cast
initial condition fatigued at maximal cyclic stress of 140 MPa: (a) crack nucleation, (b) discontinuous
crack propagation, and (c) catastrophic failure.

In most cases, the fatigue crack initiated at the lateral surface of the fatigued specimens (Figure 6a).
This observation is thought to be associated with relatively low quality of such surfaces produced
by EDM, as mentioned in Section 2.4. In stage II, the fracture surface was dominated by the fatigue
striations (Figure 6b) which are usually attributed to a discontinuous character of the crack propagation
(from cycle to cycle). The stage III was characterized by dimpled appearance (Figure 6c) indicating the
ductile fracture mechanism associated with nucleation and coalescence of voids.

It is important to point out that the fracture surface in all cases was dominated by the stage III
(not shown). This perhaps implies a relatively low resistance to a propagation of the fatigue crack.
Striation patterns in Figure 6b support this conclusion. If so, the fatigue performance of the studied
welds was probably controlled by the crack nucleation event.

4. Discussion

4.1. Broad Aspects of Fatigue Performance

As mentioned above, the fatigue performance of friction-stir welded joints is believed to be
governed by four primary factors including (i) welding defects, (ii) surface quality, (iii) residual stress,
and (iv) microstructure [2]. Since the welds examined in the present study contained no internal flaws
and were mechanically polished to remove the tool marks, the fatigue cracking was perhaps dictated
by two latter factors.

The residual stresses generated in the weld zone are normally tensile in nature and thus they
should promote fatigue cracking. On the other hand, the considerable grain refinement in the stir zone,
induced during FSW (Figure 2), is beneficial for fatigue resistance. This effect is usually attributed
to the suppression of slip banding in the fine-grained materials which often serve as a precursor for
the fatigue crack initiation [24–26]. It seems, therefore, that the fatigue behavior of the studied welds
resulted from the competitive influence of two above inherent characteristics of the FSW process.

Given the revealed dependence of the failure location from the magnitude of cyclic stress (Tables 5 and 6),
a difference in the mechanism of the fatigue cracking was suggested. Accordingly, the fatigue behavior
at low-and high fatigues stresses was considered separately in the following two sections.

4.2. Fatigue Behavior at Low Cyclic Stress

As shown in Tables 5 and 6, the welds fatigued at relatively low cyclic stress (with the peak
magnitude below ~0.74 fraction of the static yield strength) typically failed in the base material zone.
It is worth noting that the base material region of the welded joints is normally characterized by
compressive residual stress [2] and was comprised by the relatively coarse-grained microstructure
(supplementary Figures S1–S3). It could be concluded therefore that the adverse influence of the
microstructural factor on the fatigue cracking in this case was stronger that the positive effect of the
compressive stress.

Hence, it seems that the nucleation of the fatigue crack at low cyclic stresses was governed by the
microstructure rather than the residual stresses. Attempting to comprehend this result, a magnitude
of the residual stresses was measured in the welded 6061 alloy by x-ray diffraction (XRD) technique



Materials 2020, 13, 4246 10 of 13

using a PROTO-LXRD diffractometer (Proto Manufacturing Ltd., Oldcastle, ON, Canada) and the
sin2ψ approach. A cobalt target and accelerated voltage of 25 kV were used. The stress were
calculated from the strains of the {311} Bragg reflection at 148.9. To examine a distribution of the
residual stress on the weld cross-section, the measurements were conducted on a rectangular grid
with a step size of 1 mm. For each point, 10 measurements with 1-s exposure time were performed.
Further experimental details are given in Ref. [19]. The obtained results were shown in Figure 7.
From this figure, it is seen that the peak residual stress did not exceed +60 MPa in the stir zone
and −80 MPa in the base material, thus constituting only ~25% of the static yield strength (Table 4).
The relatively low residual stresses revealed in the present study are in the line with literature data [2]
and are likely attributable to the solid-state nature of the FSW process, implying the comparatively
low heat input. Moreover, an additional factor promoting a formation of relatively low residual stress,
may be a double-sided FSW mode used in the present study, as mentioned in Section 2.2. In the case,
the heat-input generated during second FSW pass could partially relieve the residual stresses in the
weld zone.
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Thus, considering the relatively low residual stress but drastic grain refinement, both attributable
to FSW, it is expected that the fatigue crack at low cyclic stresses should typically nucleate in the
coarse-grained base material region. Accordingly, the welded joints should exhibit the fatigue strength
comparable to that of the parent material, as indeed observed in the present study (Figure 5).

4.3. Fatigue Behavior at High Cyclic Stress

The welds fatigued at relatively high cyclic stress (with the peak magnitude ≥0.74 fraction of
the static yield strength) often failed either in stir zone (Table 5) or the heat-affected zone (Table 6).
In this case, the summary stress (i.e., the cyclic stress plus the residual stress) could exceed the material
yield strength; thus, the fatigued specimen may experience a plastic strain before nucleation of a
fatigue crack.

To examine this suggestion, appropriate microhardness profiles were measured across the
welded specimen before- and after the fatigue tests, and the typical result is shown in Figure 8.
A measurable strain hardening seen in the weld zone appears to confirm the above suggestion. It may
be suggested, therefore, that the fatigue cracking at relatively high cyclic stresses should be induced by
the preceding plastic strain and thus should occur in the softest microstructural region of the welded
joint. This conclusion agrees well with the recent work by Ma et al. [27], in which a measurable strain
hardening effect has been found in low-cycle fatigued aluminum alloys.
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Figure 8. Effect of the fatigue tests at high cyclic stress on microhardness profile measured across the
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In the present work, the welding conditions were carefully tailored in order to minimize
the softening effect in the wrought Al-Mg-Sc alloy and the heat-treatable 6061 alloy (Figure 3).
Accordingly, the welded specimens demonstrated the fatigue strength comparable to that of the base
material (Figure 5). It is well known, however, that an improper combination of FSW variables may
essentially deteriorate the static weld strength [21]. In this case, a substantial reduction of the fatigue
endurance is expected.

5. Summary

Despite a vast volume of experimental data on fatigue behavior of FSWed aluminum alloys
existing in the scientific literature, the generic characteristics of this phenomenon are still unclear.
The present study was undertaken to shed some light on this issue. To this end, (i) defect-free welds
were obtained in various alloy grades and initial temper conditions, (ii) the fatigue specimens were
carefully machined to remove the characteristic tool marks and the “kissing bond” defects, and (iii) the
data analysis was based on the presumption of the dominant role of the FSW-induced residual stress
and microstructure in fatigue cracking.

Since FSW typically results in tensile residual stresses in the weld zone (which are harmful for
the fatigue life) and considerable grain refinement (which is beneficial for the fatigue strength), it was
suggested that the fatigue behavior of the FSW joints was governed by the competitive influence
of these two factors. It was shown that the residual stress constituted only ~25% of the static yield
strength, thus being relatively low. On the other hand, the mean grain size in the stir zone was found
to vary from 1 to 5 µm, thus indicating a pronounced character of the grain refinement effect.

In a view of the above circumstances, the fatigue performance at relatively low cyclic stress was
deduced to be dictated by the microstructural factor. Accordingly, the fatigue crack typically nucleated
in relatively coarse-grained base material zone; thus, the fatigue strength of the welded joints was
comparable to that of the parent metal.

At relatively high fatigue stress, however, the summary (i.e., the cyclic-plus residual-) stress
may exceed the material yield strength and thus the fatigue cracking should result from the
preceding macro-scale plastic deformation. Accordingly, the fatigue failure should occur in the
softest microstructural region; thus, the fatigue strength of the welded joint should be inferior to that
of the original material.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/19/4246/s1,
Figure S1: Initial microstructure of the cast Al-Mg-Sc alloy: optical micrograph (a), EBSD grain-boundary map (b)
and TEM images (c, d). In (b), low-and high-angle boundaries are depicted as red and black lines, respectively,
Figure S2, Initial microstructure of the hot-rolled Al-Mg-Sc alloy: optical micrograph (a), EBSD grain-boundary
map (b) and TEM images (c), (d). In (b), low- and high-angle boundaries are depicted as red and black lines,
respectively, Figure S3, Initial microstructure of 6061 alloy: (a) EBSD grain-boundary map and (b) TEM image.
ED is extrusion direction. In (a), low-and high-angle boundaries are depicted as red and black lines, respectively,
Figure S4, Design of the fatigue specimens machined from the welded sheets of Al-Mg-Sc alloy (a) and 6061 alloy
(b). In all cases, units are mm. Not in scale
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