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Abstract
Background. While there are innumerable machine learning (ML) research algorithms used for segmentation of 
gliomas, there is yet to be a US FDA cleared product. The aim of this study is to explore the systemic limitations of 
research algorithms that have prevented translation from concept to product by a review of the current research 
literature.
Methods. We performed a systematic literature review on 4 databases. Of 11 727 articles, 58 articles met the inclu-
sion criteria and were used for data extraction and screening using TRIPOD.
Results. We found that while many articles were published on ML-based glioma segmentation and report high ac-
curacy results, there were substantial limitations in the methods and results portions of the papers that result in 
difficulty reproducing the methods and translation into clinical practice.
Conclusions. In addition, we identified that more than a third of the articles used the same publicly available 
BRaTS and TCIA datasets and are responsible for the majority of patient data on which ML algorithms were trained, 
which leads to limited generalizability and potential for overfitting and bias.

Key Points

 • Most algorithms are trained on low patient number or highly curated datasets.

 • Most studies fail to describe their algorithm and underlying work properly.

Gliomas account for 31% of all brain and central nervous 
system tumors in the United States and occur with an age 
standardized incidence rate of 5.3 per 100  000 persons in 
North America.1 Gliomas are classified into different histolog-
ical subgroups according to the World Health Organization 
(WHO) classification of tumors of the central nervous 

system, with new guidelines reported in 2021. Glioma diag-
nosis on initial imaging is not always accurate and is de-
pendent on the level of expertise by neuroradiologist and 
neuro-oncologists in complex cases. In addition, the defini-
tion of glioma margins may be dependent on the expertise 
of the neuroradiologists evaluating the study and amino 

Identifying clinically applicable machine learning 
algorithms for glioma segmentation: recent advances 
and discoveries
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acid. Positron emission tomography (PET) has shown 
tremendous progress in delineating glioma margins as 
compared to MRI.2–5 Machine learning (ML) has demon-
strated tremendous progress in predicting glioma grade 
and molecular subtypes based on radiomic analysis of 
magnetic resonance (MR) images, but the rate-limiting 
step in the development of classification algorithms is 
the generation of ground base segmentations of the tu-
mors that provide volumetric information and radiomic 
features of tumors.6 MR imaging is the standard im-
aging method for brain tumors and for radiomic analysis 
it often includes T1  ± contrast, T2, and fluid attenuated 
inversion recovery (FLAIR). The length of time that it 
takes for manual contouring of gliomas and their dif-
ferent parts is significant and has historically led to 
the generation of limited datasets. Individual segmen-
tations of enhancing portions, necrotic portions, and 
nonenhancing portions of tumors and edema can take 
up to an hour if the segmentations are then transported 
to different sequences on the MRI. In addition, manual 
contouring is associated with a wide variability and low 
uniformity among different users, which we will call 
“raters” in the current review. According to Bondiau 
et  al,7 the mean time for the analysis and manual de-
lineation of brain structures on a typical MRI study is 
86 min.8 Therefore, there is a critical need to develop au-
tomatic segmentation algorithms that are accurate for 
implementation into research and clinical practice. The 
purpose of this study is to present a comprehensive sys-
tematic review of applications of AI in the segmentation 
of gliomas whereby several common limitations were 
identified that have impacted clinical translation of ML 
algorithms into routine clinical practice.

Methods

This is an IRB approved study. According to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis 
(PRISMA),9 a literature review was performed by university 
librarian and reviewed by second librarian on 4 databases, 
Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), 
and Web of science core-collection first in October 2020 
and for a second time in February 2021. The search strategy 
included both keywords and controlled vocabulary com-
bining the terms for: artificial intelligence, machine 
learning, deep learning, radiomics, magnetic resonance 
imaging, glioma, as well as related terms.

Systematic review was performed in Covidence 
(Melbourne, Australia) with 11 727 articles identified in 4 
databases with the search performed and verified by librar-
ians at Yale School of Medicine Library. Of our 1135 articles 
that qualified for full-text review, 695 articles were used 
for data extraction. Indication of studies was extracted 
for these articles and 58 articles were related to segmen-
tation methods applied to glioma datasets (Figure 1 and 
Supplementary Data 1).

The search strategy was independently reviewed by 
a second institutional librarian. All publications were 
screened in Covidence software by a neuroradiology as-
sistant professor, radiology resident and an artificial 

intelligence graduate student. Three reviewers consisting 
of an assistant professor of radiology, a medical student, 
and an undergraduate student evaluated eligible ML per-
formance studies. When questions regarding the inclusion 
of studies arose, they were resolved by radiology assistant 
professor. Studies using only logistic regression methods 
were excluded. All 3 reviewers extracted data using prede-
termined parameters such as title, author, year of publica-
tion, patient characteristics, datasets, modes of ML, gold 
standard for accuracy, imaging features, magnetic field 
strength (Tesla) of the MR scanners, sequences used and 
reported statistics.

To assess the quality of reporting in the underlying lit-
erature, we used the Transparent Reporting of studies on 
prediction models for Individual Prognosis Or Diagnosis 
(TRIPOD).10,11 Historically the quality of systematic re-
views of diagnostic test accuracy reports has been evalu-
ated using QUADAS-2.12 QUADAS-2 tool is specifically 
tailored to diagnostic test and procedures and does 
not address the questions specific to model develop-
ment studies reported in AI literature. Radiomics quality 
score is a 2017 established scoring system designed for 
publications that wish to extract radiomic features and 
for identifying bias in radiomic studies.13 The Checklist 
for Artificial Intelligence in Medical Imaging (CLAIM) is 
a new bias assessment that was published in 2020 and 
is targeted toward AI literature. CLAIM is in many ways 
similar to TRIPOD assessment, although TRIPOD is more 
comprehensive with up to 91 possible overall scoring 
items and providing a dedicated TRIPOD adherence 
form (Supplementary Data 2).11,14 TRIPOD is a relatively 
new (2015) quality assessment tool with 22 categories 
(Supplementary Data 2) applicable to different types of 
prediction model studies. TRIPOD is an approach, which 
can be used for developing, validating, or updating pre-
diction models and therefore was most suitable for our 
review. We used the TRIPOD assessment for the develop-
ment model, which had 37 scoring items and 65 items 
overall.10,11 TRIPOD analysis of our papers was performed 
by 3 individual reviewers (medical students and an un-
dergraduate student) and required approximately 30 min 
per paper. Because the overall quality of reporting was 
rather low, we were not able to perform a risk of bias 
assessment.15

This study was extracted as a diagnostic developmental 
model. Adherence of a report is calculated per TRIPOD 
component and its subitems. If the answer to all adher-
ence elements of a particular TRIPOD item is scored with 
“yes,” adherence to that TRIPOD item is scored as “1,” and 
nonadherence as “0.” During risk of bias assessment, no 
exclusion of papers was performed.

Accuracy Reporting

Accuracy analysis was extracted for each combination of 
imaging features and algorithms. Best accuracy is pre-
sented in the figures and our results. We report the Dice 
coefficient in our report as the accuracy measure, because 
it was the most consistently reported among all papers. 
All data extracted from the individual publications was ex-
ported into Excel (Microsoft, Redmond, WA), and only the 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac093#supplementary-data
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publications with reported Dice scores were further ana-
lyzed regarding their accuracy reporting (Figure 5), which 
consisted of only 50% of papers. From these publications 
we excluded 1 study, which reported a Dice for the seg-
mentation of 2 different experts and not for an algorithm. 
We preferably extracted the median Dice similarity coef-
ficient (DSC), but if multiple DSC were reported then the 
highest fitting value was chosen for extraction.

Results

Study Selection

The systematic review of articles used 4 different data-
bases and identified 11 727 candidate articles. Ninety du-
plicates were removed and screening of the remaining 
11 637 article abstracts was conducted. Abstract review fur-
ther excluded 10 502 articles that were not neuro-oncology 
studies. A total of 1135 articles were reviewed at the full-
text level. Four hundred and thirty-one articles were ex-
cluded for the following reasons: 169 conference abstracts, 
139 articles did not use ML, 61 of the articles were review 
of the literature, 22 of the articles were not in English lan-
guage, 15 articles did not include glioma or glioblastoma 
in their analysis, 11 articles did not include imaging either 
MRI, PET, or MRS, 9 articles involved nonhuman subjects, 
and 5 articles were found to be duplicates. Seven hundred 
and four full-text studies were further reviewed and 58 of 
them included studies that focused on algorithms ded-
icated to the segmentation of gliomas and their different 
regions. These 58 studies were analyzed for the systematic 
review (Figure 1a).

The distribution of publications on segmentation of 
gliomas over time show that initial research started in 
1993 with a relative gap in publications from 1993 to 2010 

(Figure 1b). Since 2010 we see a steady increase in publi-
cation rate per year in the field of AI in glioma segmenta-
tion. Beginning in 2017, the trend becomes obvious with a 
steady increase of publications per year, reaching a max-
imum of 13 publications per year in 2019.

Datasets

The most frequently used datasets were single center and 
multicenter (not BRaTS, or TCIA) which were employed 
in 53.4% of the studies; single-center data were used in 
22 (37.9%) and multicenter data were used in 9 (15.5%) of 
the studies (Figure 2a). Publicly available datasets such 
as The Cancer Imaging Archive (TCIA) and Brain Tumor 
Segmentation challenge (BRaTS) were used in 21 studies 
(36.2%). Studies with larger numbers of patients primarily 
relied on either TCIA or BRaTS datasets. There were ap-
proximately 8.6% of studies that did not fully describe their 
source of data. In all of the studies included in our system-
atic review just 2 studies used external and geographically 
distant datasets for validation.16,17 Just 1 study gave in-
sight into how accuracy has changed through validation. 
The accuracy decreased from 92.7% in the training cohort, 
to 92.4% in testing and validation cohort to 78.0% in the 
external validation set.16 Many other articles elaborated 
on external validation as an important issue to address in 
further studies to guarantee the strength of the reported 
model but most of them have not incorporated such a 
method in their actual manuscript.

Number of Patients

Figure 2b shows the patient cohort sizes that were used in 
the reviewed literature. The number of patients per study 
ranged from 1 to 622. The mean number of patients was 
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Figure 1. (a) Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flowchart of the search strategy for the systematic 
review (created with BioRender.com), verified by librarians at Yale School of Medicine Library. (b) Machine Learning Trends for Glioma Brain Tumor 
Segmentation, steady until 2018 when a significant rise in papers was observed.
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143, with SD being 155. The SD is high because several 
studies had very high numbers; as an example, 1 study 
used a combination of BRaTS dataset with 622 patients.18 
In contrast to this, the median number of patients was 
56, which better reflects the large number of studies that 
used ML-based segmentation on very small datasets. The 
majority of publications on segmentation of gliomas have 
a patient number below the mean. Among all studies in-
cluded in this review, 8305 patients were analyzed.

MRI Sequences

The most frequently used MRI sequence was T2 (81%) fol-
lowed by FLAIR (78%). More advanced imaging techniques 
such as functional MRI (fMRI) and position emission to-
mography (PET) were implemented in under 3% of the 
examined literature (Figure 3).

Algorithms.—Conventional ML was used in 44.83% of the 
studies (26) and included the following algorithms: sup-
port vector machines (SVM), decision tree methods in-
cluding decision forests (DF) and random forests (RF), 

fuzzy C-means (FCM), virtual rater, and k-mean clustering 
(Figure 4). The most frequently used algorithm in the cat-
egory of ML was SVM. Deep learning was used in 31 pa-
pers (53.45%) and included the following algorithms and 
models: convolutional neural networks (CNN), U-Net 
(subset of CNNs), and other deep neural networks. The 
most frequently used algorithm was CNN. Algorithms 
without detailed specification were found in 1 paper 
(1.72%), describing a nonmodel automatic segmentation 
method.19

Accuracy of Segmentations

Dice scores associated with reported algorithms used for 
segmentation of either whole tumor, enhancing tumor, ne-
crosis, or core segmentation are reported in Figure 5. The 
highest Dice scores were reported for segmentation of 
whole tumor, followed by the core portion of the tumor. The 
exception was the RF algorithm, which provided highest 
Dice scores for segmentation of enhancing portion of the 
tumor (mean  =  0.850) followed by whole tumor (0.824). 
Deep learning algorithms such as U-Net and CNN showed 
similar results to conventional ML. The whole tumor 
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segmentation by U-Net showed a slightly lower mean Dice 
with 0.865, compared to CNN with a mean Dice of 0.871. 
However, the SD for CNN is higher (SD ± 0.045) compared 
to U-Nets (SD ± 0.039), which is interesting regarding 13 
papers included with CNN and just 6 papers with U-Net 
segmentation for whole tumor included. When evaluating 
core segmentation, the observations are switched, with the 

mean Dice of U-Net = 0.823 (SD ± 0.118) and mean Dice of 
CNN = 0.781 (SD ± 0.077). The enhancing tumor segmenta-
tion performed equally well. U-Net achieves a Dice of 0.763 
(SD ± 0.171) 0.747 (SD ± 0.072) for CNN. Dice scores were 
reported for only 50% (29 of 58) of papers, with the rest of 
the papers not assessing accuracy of segmentations with 
Dice.

Reporting quality; TRIPOD

The mean TRIPOD score of all 58 publications is 12.5 
(43.10%, SD  =  2.1) with the highest achievable score 
being 29. There were 7 categories where none of the pa-
pers achieved the objective, including title, abstract, risk 
groups, participants, model specification, and model per-
formance. The highest scoring items, in which every paper 
scored a point were predictors model development and 
discussion and interpretation (Figure 6). The categories 
background and rationale had an overall adherence score 
of 95% and 84%, respectively. An average adherence 
score of 56% was achieved across studies for methods-
participants. While outcome definition (including time and 
method of assessment) was rarely presented (5%), actions 
to blind assessment of outcome to be predicted had a high 
score of 97%. Similarly, predictors definitions (including 
time and method of assessment) had a low score of 7%, 
with assessments of blinding predictor for outcome and 
for other predictors scoring 100%. Forty-three percent of 
all studies explained how sample size was derived. Only 
7% of all studies elaborated on missing data and methods 
for handling it. Statistical analysis methods showed an 
overall adherence score of 17%. Results and participants 
scored 41% for general participant information and 0% for 
reporting background and missing data. Model develop-
ment categories scored 97% and 100%, respectively.20 In 
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model specification, a regression coefficient was always 
missing (0%), but 50% of all studies explained ways to use 
their models for individual predictions. Fifty-nine percent 
of all studies discussed their limitations and all of them 
(100%) provided us with an overall interpretation of their 
results. Only a little more than half of all studies (53%) dis-
cussed potential for clinical use and implications for future 
research. Funding scored 10% across studies.

Discussion

ML approaches for the automatic segmentation of gliomas 
started appearing in the early 1990s and the field has since 
significantly expanded, making evaluation of literature 
complex and difficult to synthesize. We present a system-
atic review of applications of AI in segmentation of gliomas 
with focus on characterization of data used for the devel-
opment of algorithms and identification of the most ac-
curate algorithms that can potentially be used for clinical 
implementation.

There are different methods available to evaluate the 
segmentation results of a proposed algorithm.21 These 
include the Jaccard index,22 Sørensen–Dice coefficient, 
and Hausdorff distance.23 These indexes vary in the way 
they evaluate the result of a proposed segmentation. The 

Jaccard index is often used to assess the intersection over 
union. It is defined by the size of intersection divided by 
the size of the union of the sample sets. In contrast, the 
Dice coefficient, also called the Sørensen–Dice index or 
DSC, is a method to estimate the overlap of 2 samples. 
The Hausdorff distance measures the distance between 2 
subsets of a metric space and reports the largest distance 
between 2 subsets of points. In the reported papers, the 
comparison was made between the gold standard of seg-
mentation (often the neuroradiologist’s interpretation and 
manual delineation) and the proposed segmentation by 
the algorithm. The Dice numbers reported in Figure 5 are 
somewhat limited, because only 50% of papers reported 
a measurable accuracy score. Often, the publications only 
mention a single data point for Dice which limited evalu-
ation of the quality of segmentations. While DICE coeffi-
cient is the most commonly used metric for assessment of 
segmentation quality in the literature, we recommend to 
use additional metrics such as Hausdorff distance. Beyond 
the standardized methods, we recommend to include in-
formation such as motion artifact and heterogeneity of 
protocols. We recently presented this approach at ISMRM 
which includes assessment of segmentation in the set-
ting of motion artifact or nondegraded studies (K. B. Sara 
Merkaj, unpublished data, 2022). But there is a need for fur-
ther research on metrics that measure clinical applicability 
of algorithms in face of rare relevant false-positive and 
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Jaccard index is often used to assess the intersection over 
union. It is defined by the size of intersection divided by 
the size of the union of the sample sets. In contrast, the 
Dice coefficient, also called the Sørensen–Dice index or 
DSC, is a method to estimate the overlap of 2 samples. 
The Hausdorff distance measures the distance between 2 
subsets of a metric space and reports the largest distance 
between 2 subsets of points. In the reported papers, the 
comparison was made between the gold standard of seg-
mentation (often the neuroradiologist’s interpretation and 
manual delineation) and the proposed segmentation by 
the algorithm. The Dice numbers reported in Figure 5 are 
somewhat limited, because only 50% of papers reported 
a measurable accuracy score. Often, the publications only 
mention a single data point for Dice which limited evalu-
ation of the quality of segmentations. While DICE coeffi-
cient is the most commonly used metric for assessment of 
segmentation quality in the literature, we recommend to 
use additional metrics such as Hausdorff distance. Beyond 
the standardized methods, we recommend to include in-
formation such as motion artifact and heterogeneity of 
protocols. We recently presented this approach at ISMRM 
which includes assessment of segmentation in the set-
ting of motion artifact or nondegraded studies (K. B. Sara 
Merkaj, unpublished data, 2022). But there is a need for fur-
ther research on metrics that measure clinical applicability 
of algorithms in face of rare relevant false-positive and 

-negative cases that will appear in clinical practice. These 
problems are accompanied by the fact that most articles 
rely heavily on radiologists’ interpretations of the images 
as a gold standard for segmentation and multiple radiolo-
gists’ assessment of segmentation was rare. It is important 
to include the information between inter-rater variability 
in segmentations in future work that described novel seg-
mentation algorithms. Development of algorithms has the 
potential to eliminate the human error with respect of con-
sistency in segmentation of brain tumors in the future. We 
recommend the literature to pay close attention to this im-
portant evaluation metric that goes beyond simple meas-
ures as Dice.

Deep learning algorithms have become more common 
in the last 2 years and are the preferred method for auto-
matic segmentation in the most recent literature. Among 
the different algorithms, RF was the most common ML 
method used for segmentation with Dice coefficient scores 
extending beyond 0.8. Deep learning algorithms, such as 
CNN and U-Net, were similar in accuracy of segmentation 
and also demonstrated Dice coefficient scores beyond 0.8. 
The time for segmentation by these algorithms was not de-
tailed in the majority of papers, making it unclear which 
algorithm would be best for clinical implementation.

TRIPOD score for our studies was 43.10%. Major de-
ficiencies in title, abstract, statistical methods, risk 
groups, participants, model specification, and model 
performance sections of the papers may lead to am-
biguity and exclusion of potentially good studies in 

meta-analysis or future studies. Limitations in the 
methods (specifically description of predictors and sta-
tistical analysis) and results (specifically model devel-
opment and performance) portions of the paper will 
result in difficulty reproducing the results. While low 
reporting scores do not directly affect ability to trans-
late the ML algorithms into clinical practice, the lack of 
details on these critical aspects of training data, algo-
rithm design, and validation results makes it difficult to 
reproduce the findings from the literature and thereby 
move clinical implementation of suitable algorithms 
forward. To address the current gap between algorithm 
development and clinical implementation, further re-
search, which adheres to strict reporting guidelines in 
order to allow for reproducibility, is needed (M. Lin, un-
published data, 2021; S. Ebrahimian et al, unpublished 
data, 2021). A  common deficiency in all of the papers 
was not reporting the role of the funders in the funding 
portion, which is relevant for identification of poten-
tial biases and conflicts of interest, and for better inter-
pretation of findings. We recommend that all journals 
require this information to be disclosed in their manu-
scripts. In addition, researchers and reviewers should 
keep an eye on the upcoming TRIPOD-AI expansion, 
which will likely improve the state of the art in reporting 
ML studies in the medical field (Figure 6).24 TRIPOD has 
similar items than CLAIM but is structured in 65 clearly 
defined items. Nonetheless we highly encourage the 
use of the upcoming TRIPOD-AI guideline for further 
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Figure 6. The TRIPOD adherence index, a measure for degree of satisfaction for each main item regardless of the comprised number of 
subitems, indicating overall strengths and weaknesses in reporting in our study cohort. Notice that some items are not shown within the graph, 
since they were only pertinent to validation studies (12, 17, subitems 10c/e, 13c, 19a), but not model development studies.
  



 8 Tillmanns et al. ML in segmentation

study assessment. Future applicability to clinical neuro-
oncology may also benefit from study designs with 
Minimum Information for AI Reporting (MINIMAR) in 
mind to include under-represented patients. MINIMAR 
is a “proposal describing the minimum information nec-
essary to understand intended predictions, target popu-
lations, and hidden biases, and the ability to generalize 
these emerging technologies.” 25

The literature also shows a lack of implementation of 
algorithms into clinical practice. One of the major limi-
tations of the manuscripts published on development of 
segmentation algorithms was the limited number of pa-
tients used in studies reporting segmentation tools for 
intracranial malignancies (mean 148.6, median 60.5). The 
discrepancy between the mean and median is explained 
by 2 specific studies that were outliers with high patient 
numbers.18,26 These studies also were combinations of 
BRaTS and TCIA databases, which shows that the largest 
proportion of patients evaluated in our cohort of patients 
(6124 out of 8604 patients) were highly curated datasets. 
This makes up 76% of patients overall, even when BRaTS 
and TCIA combined are just implemented in 37.9% of the 
publications. BRaTS and TCIA are responsible for the ma-
jority of patient data on which algorithms get trained. On 
the one hand, this is a good publicly available dataset 
that was used by multiple groups to develop algorithms 
for tumor segmentations, but there is a substantial risk 
of overfitting which can explain high accuracy among dif-
ferent reported algorithms.

Most algorithms reported in the literature are trained 
on MRI sequences that are common in clinical practice, 
with very few of the papers focusing on specialized per-
fusion or fMRI sequences. This allows clinical translation 
of these algorithms into the majority of clinical practices 
because, due to overall good accuracy results by these 
algorithms, elaborate scanning techniques are not re-
quired for simple volumetric segmentation. On the other 
hand, 24% of papers used advanced imaging methods, 
such as fMRI, PET, and perfusion imaging. This suggests 
that application of AI tools to these modalities are still 
early in their development or performed at institutions 
with different equipment (such as intraoperative MRI or 
newer radiopharmaceuticals), and we are eager to watch 
for publications with novel ideas on how AI can be ap-
plied for these modalities. Notably, most algorithms in 
the current literature are based on preoperative tumor 
imaging, whereas most clinical imaging techniques 
for brain tumors are used after treatment to assess re-
sponse or to monitor progression. This is a topic beyond 
the scope of this review, but definitely one that needs 
to be addressed in further developmental studies. The 
results of our systematic review lead us to conclude 
that the implementation of algorithms into overall pa-
tient management is critical. This is underscored by our 
group’s current research, and we look forward to sharing 
this research with the audience in the near future.

Limitations of this systematic review include the ex-
clusion of abstracts and information from segmenta-
tion competitions and hackathons. Kaggle and BRaTS 
challenges played a significant role in identified best 
segmentation algorithms applied to different imaging 
challenges. Many of these competition results are 

published in the literature, but it is possible that not all 
of the significant advances were advanced into peer-
review published papers and are still available in ab-
stract format. These public AI challenges also mandate 
winning algorithms be made open source for public 
scrutiny, and therefore commercial entities are absent, 
making unclear if the best algorithms are open source or 
commercialized. As we continue to analyze the field of AI 
applications in segmentation of gliomas, we will start to 
capture those articles and the advances that are reported 
in them. Another limitation is the wide search strategy 
that we performed that resulted in a much larger number 
of articles in our search strategy than average previously 
published systematic reviews on AI in neuro-oncology. 
The time for evaluation of such a long list of articles 
delayed our data extraction process initially ending 
October 2020. We had to repeat the search in February 
2021 to make sure our results are relevant.

In conclusion, we present a comprehensive systematic 
review of applications of AI in segmentation of gliomas and 
have identified several limitations that have impacted clin-
ical translation of ML algorithm that can be avoided in fu-
ture publications. Since most of the algorithms in research 
report acceptable accuracy results, it should be possible to 
use most of the algorithms for clinical implementation as 
well. Concluding from our literature review deep learning 
based approaches like U-Net have the most potential for 
clinical implementation. Based on recent advances in the 
field, namely the RSNA MICCAI challenge, nn-U-NET archi-
tectures should yield the best segmentation performance 
in the moment.27–29 But there are a few points that need 
to be considered when moving forward clinical research 
on algorithms. At first large databases are needed in order 
to train the algorithm sufficiently and lower the risk of 
overfitting. This requirement can be addressed by using 
either the already existing and publicly available datasets, 
or by creating hospital datasets, which will be more suit-
able to the clinical imaging protocols of the hospital and 
the patient cohort on site. Additionally implementation of 
multiside validation will make algorithms more robust (M. 
Lin, unpublished data, 2021; S. Ebrahimian et al, unpub-
lished data, 2021).

Second we need reporting guidelines, in this growing 
research field, that are mandatory for publishing in 
peer-reviewed journals to guarantee the high standard 
of research. This can be achieved by requiring check-
lists like CLAIM14 or TRIPOD11 for publishing AI articles 
in journals.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.
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