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Abstract
Cryopreservation causes decreased sperm fertility potential due to reactive oxygen species (ROS) production and physical-
chemical damage, resulting in reduced sperm viability and motility. The addition of antioxidants to freezing media could protect
sperm from cryo-damage, counteracting the harmful effects of ROS. The aim of this study was to assess the effects of curcumin
supplementation in freezing medium on preventing cryo-damage in human semen. Semen samples collected from fertile men
were cryopreserved in freezing medium supplemented with different concentrations of curcumin (2.5, 5, 10, and 20 μM). After
freezing-thawing, sperm parameters, DNA fragmentation, intracellular ROS, and glutathione peroxidase 4 (GPX4) gene expres-
sion were evaluated. Supplementation with 20 μM curcumin in freezing medium caused increases in progressive and nonpro-
gressive motility and significant reductions in intracellular ROS and DNA fragmentation in frozen-thawed sperm cells.
Following cryopreservation, GPX4 mRNA expression was significantly upregulated in thawed semen supplemented with
20 μM curcumin compared to the control. The results showed that curcumin supplementation in freezing mediumwas protective
against human sperm parameters and sperm DNA, counteracting oxidative damage induced by the freeze-thaw process.
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Introduction

Human sperm cryopreservation is a widely used practice in
assisted reproductive technology (ART) centres for various
reasons, such as fertility preservation before cancer treatment
[1]; spermatozoa storage to overcome oligozoospermic and
azoospermic conditions, percutaneous epididymal sperm as-
piration (PESA) or testicular sperm extraction (TESE) due to
ejaculatory dysfunction or spinal cord injury; or sperm dona-
tion [2].

Freezing and thawing procedures have adverse effects on
sperm structure and function, reducing sperm viability, motil-
ity and longevity in the female genital tract and consequently

decreasing fertility potential [3]. Throughout the freezing and
warming processes, spermatozoa are exposed to physical and
chemical stresses that result in excessive dehydration, plasma
membrane disintegration, acrosome leakage, mitochondrial
injury, metabolic-functional changes, and DNA fragmentation
[4–8]. This sperm cryo-damage is mediated by reactive oxy-
gen species (ROS) production [9–11]. ROS can alter the
sperm antioxidant defence system, resulting in lipid peroxida-
tion, membrane fluidity reduction, membrane enzyme and ion
channel inactivity, decreased sperm motility, increased apo-
ptosis, sperm-oocyte fusion defects, early miscarriage and em-
bryonic genetic mutations [12, 13].

Antioxidants are molecules that are able to inhibit or reduce
oxidative processes by scavenging released free radicals [14].
Several antioxidants have been suggested to be helpful inmale
infertility treatment to counteract ROS and preserve sperm
motility, viability and functionality, such as vitamins E and
C, as well as selenium (Se), zinc (Zn) [15, 16] and ellagic acid
[17]. Moreover, antioxidants have shown positive effects on
sperm cryopreservation; the addition of vitamin E in freezing
medium significantly reduces sperm ROS levels following the
thawing process [18].
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For this reason, enriching culture freezing systems with
antioxidants could be an effective approach to counteract
sperm damage induced by cryopreservation [19–27].

Curcumin, a type of antioxidant, is a yellow phenolic pig-
ment that is a component of the rhizome of Curcuma longa
with a broad range of biological and pharmacological func-
tions, such as anti-inflammatory, antineoplastic, antioxidant
and anti-mutagenic activities [28–30]. The safety of curcumin
was reported by the United States Food and Drug
Administration [31]. Curcumin presents a dual mechanism
of action as an antioxidant; one mechanism is due to its chem-
ical structure, and the other is linked to its ability to stimulate
the production of antioxidant enzymes. Curcumin contains
different functional antioxidant groups, such as β-diketo
groups, carbon-carbon double bonds and phenyl rings [32].
The antioxidant activity of curcumin was also associated with
its phenolic and/or central methylenic groups [33, 34], while
its chelating activity and ability to capture ferrous ions are due
to functional carbonyl groups [32]. Moreover, curcumin ex-
hibits antioxidant activity by regulating transcription factors
and antioxidant enzymes, such as haem oxygenase-1 (HO-1)
and nuclear factor erythroid 2-related factor 2 (Nrf2), upregu-
lating common antioxidative activities (superoxide dismutase
(SOD) and glutathione (GSH)) and inhibiting cytokine pro-
duction (e.g. interleukin-1β (IL-1β), tumour necrosis factor-α
(TNF-α) and interleukin 12 (IL-12)) [35–37].

In sperm cells, curcumin improved capacitation, acrosome
reaction and fertilization in vitro and in vivo [38–40]. This
antioxidant could increase sperm motility in patients with
leucocytospermia and improve semen parameters in
asthenoteratospermia by regulating the levels of the transcrip-
tion nuclear factor Nrf2 [41].

Curcumin has a protective effect against spermatogenesis
defects induced by titanium dioxide nanoparticles (n-TiO2)
[42] and restores testicular damage induced by alcohol, cis-
platin, aflatoxin, metronidazole, ischaemia reperfusion and
cadmium exposure in mice [43–48]. It also improves the his-
topathological alterations induced by monosodium glutamate
in the testis and epididymis, increasing sperm count in rats
[49].

The positive effects of curcumin supplementation on sperm
freezing media have been reported in various animal models,
such as Angora goats, bulls, Wistar mice and buffalos [21,
50–52]. It has been reported that curcumin could improve bull
spermatozoa and rat testes subjected to induced oxidative
stress and could improve cryopreserved boar spermatozoa,
increasing progressive motility and acrosome integrity
[53–55].

In rams, curcumin had protective effects on frozen-thawed
sperm parameters at different doses; antioxidant supplemen-
tation resulted in a higher percentage of sperm acrosome in-
tegrity and provided strong protection in terms of sperm mi-
tochondrial activity in comparison to the control [56].

These data have led to the hypothesis that curcumin may
have an effect on preventing human sperm damage induced
by cryopreservation, so the aim of this study was to test the
effects of curcumin in preventing cryo-damage during the
freeze/thaw process of sperm from fertile men. To date, no
studies concerning this property have been carried out on hu-
man spermatozoa. We evaluated the effects of different con-
centrations (2.5, 5, 10 and 20 μM) of curcumin supplementa-
tion in freezing medium on human sperm parameters, intra-
cellular ROS, DNA fragmentation and glutathione peroxidase
4 (GPX4) antioxidant gene expression after freeze-thaw cy-
cling. Glutathione peroxidase (GPX4), which encodes the glu-
tathione peroxidase 4 (Gpx4) protein, protects cells from ox-
idative stress caused by cell membrane peroxidation. Gpx4 is
important for normal spermatozoa development, as it protects
sperm cells from oxidative stress and is a necessary structural
protein in mature spermatozoa, and Gpx4 expression alter-
ations are associated with male infertility [57, 58].

Materials and Methods

Chemicals

Curcumin powder was supplied by Sigma-Aldrich (CAS
number 458-37-7). Curcumin stock solution (0.1 M) was pre-
pared using 96% ethanol as a solvent.

Sample Collection and Analysis

The subjects were recruited from our Reproduction Biology
Laboratory (University of Campania “Luigi Vanvitelli”). We
did not require approval from the Ethics Committee because
the study involved neither therapeutic interventions nor any
change to our routine sperm analysis; moreover, written in-
formed consent was obtained from each subject before their
inclusion in the study. Subjects with any history of drug ad-
diction, smoking or alcohol consumption, prolonged diseases
such as varicocele or drug consumption, including antioxidant
consumption, were not included. The ejaculates were collect-
ed from men between 30 and 42 years old (36.5 ± 6.2 years
old mean age) by masturbation after 3–5 days of recommend-
ed abstinence. After liquefaction at room temperature for 30
minutes (min), the semen volume, sperm concentration, via-
bility, motility and morphology were determined according to
the 2010WHO guidelines [59]. Spermmotility was evaluated
by optical microscopy at 400× magnification and was classi-
fied according to WHO guidelines 2010 as progressive, non-
progressive or immotile. Sperm viability was examined using
eosin–nigrosin staining, while sperm morphology was evalu-
ated on Testsimplets® (ORIGIO, Italia) prestained slides. For
the study, we selected 60 ejaculates with good semen param-
eters according to the 2010 WHO guidelines (Table 1).
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Exposure Procedure

The pooled samples (n = 60) were divided into five aliquots
(10 × 106 sperm/mL) (n = 12 for each group) and frozen in the
presence of freezing medium plus different concentrations of
curcumin: 0 (vehicle control group), 2.5 μM, 5 μM, 10 μM
and 20 μM. In the vehicle control group, ethanol was added at
the same concentration used to dissolve curcumin in each
group. We added 3.4 μL of curcumin stock solution to 1.7
mL of sample/freezing medium mixture in the 20 μM
curcumin group; 1.7 μL of curcumin stock solution to the
sample/freezing medium mixture in the 10 μM curcumin
group; and 0.85 μL and 0.425 of curcumin stock solution to
the sample/freezing medium mixture in the 5 μM and 2.5 μM
curcumin groups, respectively. The sperm freezing procedures
are described below. After 7 days of freezing, followed by
thawing, as described below, the samples were analysed for
sperm motility, viability, DNA fragmentation, intracellular
ROS levels and GPX4 gene expression. All experiments were
performed in triplicate.

Sperm Freezing and Thawing

The sperm freezing and thawing procedure was conducted
according to the manufacturer’s instructions (SpermFreeze,
FertiPro N.V., Beernem, Belgium). Briefly, 1 mL of sample
was diluted dropwise with 0.7 mL of freezing medium
(SpermFreeze, FertiproN.V., Beernem, Belgium). The medi-
um is a commercial cryoprotectant consisting of 15% glycerol
in 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid
(HEPES) buffer supplemented with human serum albumin
(HSA). After 30 min for the equilibration of the sample/
medium mixture at room temperature, the mixture was trans-
ferred into cryovials (Thermo Scientific Nunc, Denmark). The
cryovials were set into a metal surface under liquid nitrogen
vapour for 15min (slowly frozen) and then immersed in liquid
nitrogen (− 196 °C liquid nitrogen) for storage.

After cryostorage for 7 days, the samples were thawed in a
tap water container at 37 °C for 4–5 min. Then, the sperm
samples were resuspended in sperm washing medium
(FertiPro N.V., Beernem, Belgium) and centrifuged at 1500
revolutions per minute (rpm) for 5 min. The sperm pellet was
resuspended in sperm washing medium (FertiPro N.V.,
Beernem, Belgium) and analysed for spermmotility, viability,
DNA fragmentation, intracellular ROS levels and GPX4 gene
expression.

Intracellular ROS Measurement

Intracellular sperm ROS levels were quantified by a
DCF assay with a 2,7-dichlorodihydrofluorescein
diacetate (DCFH2-DA) probe according to Santonastaso
et al. [60]. DCFH2-DA (13 μM, Sigma-Aldrich) was
added to a 150-μL semen sample and incubated at 37
°C for 30 min in the dark. After washing in 1×
phosphate-buffered saline (PBS, Sigma-Aldrich), the
sperm cells were counterstained with 4′,6-diamidino-2′-
phenylindole dihydrochloride (DAPI, Sigma-Aldrich) so-
lution and analysed under a fluorescence microscope
(Nikon Eclipse E-600) equipped with BP 330-380 nm
and LP 420 nm filters. Intracellular ROS was visually
scored and measured as the percentage of sperm cells
exhibiting a response (green cells) to total sperm cells.
DCF assay was performed in triplicate.

Sperm DNA Fragmentation Assessment

DNA fragmentation was determined using an In Situ
Cell Death Detection Kit (Roche Diagnostics) according
to Santonastaso et al. [61]. Fifteen microlitres of sample
was placed on glass slides, fixed in 4% paraformalde-
hyde for 1 h at room temperature and air dried. After
2 min of incubation in permeabilizing solution (sodium
citrate, distilled H2O and Triton X-100), the glass slides
were washed in 1× PBS and air dried, and then, the
TUNEL reaction mixture (5 μL of enzyme terminal
deoxynucleotidyl transferase solution and 45 μL of label
solution) was placed on the slides. Each slide was in-
cubated for 1 h at 37 °C in a humid chamber, stained
with DAPI solution for 5 min and analysed under a
fluorescence microscope (Nikon Eclipse E-600)
equipped with 330–380 nm BP and 420 nm LP filters.
Cells with fragmented DNA emitted green fluorescence,
while those with intact DNA emitted blue fluorescence
due to DAPI. We counted 300–500 cells per slide,
distinguishing those with fragmented DNA (green fluo-
rescence) from those with intact DNA (blue fluores-
cence). The TUNEL assay was performed in triplicate.

Table 1 Parameters of semen selected for the study (n = 60). Sperm
parameters were expressed as mean ± SD

Sperm parameters Mean ± SD

Semen volume (mL) 3.16 ± 1.43

Sperm concentration (× 106 sperm/mL) 65.36 ± 23.94

Motility (%)

Progressive 49.67 ± 4.66

Non-progressive 27.0 ± 8.51

Immotile 23.33 ± 11.44

Normal morphology (%) 24.42 ± 8.62

Viability (%) 78.75 ± 10.18
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Total RNA Isolation, cDNA Synthesis and Quantitative
Real-Time Polymerase Chain Reaction

An SVTotal RNA Isolation System (Promega) kit was used to
extract total RNA from sperm cells (2 × 106 spermatozoa), and
through the use of the GoScript Reverse Transcription System
(Promega), 500 ng of total RNAwas reverse transcribed into a
25 μL of first-strand cDNA pool following the instructions
provided by the manufacturer.

Quantitative real-time polymerase chain reaction (qPCR-
RT) was performed in a total volume of 10 μL using the
iTaqTM Universal SYBR® Green One-Step Kit (Bio-Rad)
comprising the dsDNA binding fluorophore (SYBR Green),
the rmos tab le po lymerase , magnes ium ions and
deoxynucleotide triphosphates (dNTPs). The reaction mixture
contained 5 μL of 1×Master Mix, 1 μL of forward primer (50
μM), 1 μL of reverse primer (50 μM) (Table 2) and 80 ng of
complementary DNA (cDNA). HumanGPX4 sequences were
obtained from GenBank and designed with Primer3 software.
The reactions were carried out in triplicate and run on an
iCycler Thermal Cycler w/iQ5 Multicolour Real-Time PCR
Detection (Bio-Rad) under the following conditions: 95 °C for
10 min for enzyme activation and DNA denaturation; 40 cy-
cles of 95 °C for 15 s and 55 °C for 1 min; and finally, 60 °C +
0.5 °C for 10 min. Fluorescence intensities were analysed
using the manufacturer’s CFX Manager (Bio-Rad) software.
The relative quantification ofGPX4mRNA expression detect-
able in human sperm cells [62, 63] was calculated using the
2−ΔΔCt method and normalized according to the expression of
β-actin as a housekeeping gene. The specificity of the prod-
ucts was evaluated by melting curve analysis [64].

Statistical Analysis

All sperm parameters are expressed as the mean ± standard
deviation (SD). Differences in the DNA fragmentation index
(DFI) and intracellular ROS among the experimental groups
were analysed using unpaired Student’s t test with the soft-
ware package GraphPad Prism 6 [65]. The effect was consid-
ered significant if the p value was ≤ 0.05 with respect to the
vehicle control.

Results

Sperm Viability and Motility

No significant difference was observed in the percentage of
viable sperm after thawing when each curcumin group (2.5
μM, 5 μM, 10 μM and 20 μM) was compared with the vehi-
cle control group. Our results showed that total motility (pro-
gressive and nonprogressive) was significantly higher in the
20 μM curcumin-treated group than in the vehicle control
group (p value ≤ 0.05) after thawing. In particular, a signifi-
cant increase in spermatozoa with progressive motility was
observed in the 20 μM curcumin sperm group. No significant
difference in sperm motility was observed between the 2.5
μM, 5 μM and 10 μM curcumin-treated sperm groups and
the control group (Table 3).

Intracellular ROS Assessment

The results obtained by DCF assay showed that the sperm
intracellular ROS percentage was significantly lower in the
groups treated with 20 μM curcumin than in the vehicle con-
trol group (p value ≤ 0.05). No significant difference was seen
in the percentage of ROS production when the 2.5 μM, 5 μM
and 10 μM curcumin-treated groups were compared with the
vehicle control group (Figs. 1 and 2).

Sperm DNA Fragmentation Evaluation

The TUNEL assay results revealed a decrease in sperm DNA
fragmentation when curcumin was added to freezing medium.
After thawing, the DFI was significantly lower (p value ≤
0.05) in the group treated with 20 μM curcumin than in the
vehicle control group. No significant difference in DFI was
observed in the 2.5 μM, 5 μM and 10 μM curcumin-treated
groups compared with the vehicle control groups (Figs. 3 and
4).

Sperm GPX4 mRNA Expression

Sperm cells frozen with freezing medium plus 20 μM
curcumin had significantly higher GPX4 mRNA levels than
sperm cells frozen without curcumin (p value ≤ 0.05), whereas
the GPX4 mRNA levels after thawing in the 2.5 μM, 5 μM
and 10 μM curcumin-treated groups were not significantly
different from those in the vehicle control group (Fig. 5).

Discussion and Conclusions

Sperm cryopreservation guarantees male gamete self-
conservation to preserve fertility. It is well known that these
procedures impair sperm quality, reducing sperm fertilizing

Table 2 Real-time q-PCR primers. F: forward primer; R: reverse prim-
er; GPX4: glutathione peroxidase 4; ß-ACT: ß-actin

Gene Primer sequence (5′ to 3′)

GPX4 F: TCA GCA AGA TCT GCG TGA AC
R: CCG GAT GCC ATA GTC AGG AT

ß-ACT F: GGA CTT CGA GCA AGA GAT GG
R: AGC ACT GTG TTG GCG TAC AG
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ability [26, 66, 67]. The major biological problem of sperm
cryopreservation is due to the alteration of normal cellular
mechanisms: sperm cells exposed to low temperatures under-
go irreversible damage that causes decreases in motility and
fertility potential [68].

The success of sperm freezing depends on internal sperm
parameters and external factors such as the composition of the

diluent, type and concentration of cryoprotectants, dilution
rates and cooling, equilibration, freezing and thawing proce-
dures [69]. Cryoprotectants and suitable freezing and thawing
procedures protect sperm from dehydration, increased salt
concentrations and thermal shock to safeguard cell membrane
integrity and to optimize the osmolarity of extracellular fluids
[70]. However, the presence of cryoprotectants is not enough

Table 3 Effect of curcumin concentrations (2.5, 5, 10 and 20 μM)
added to freezing medium on progressive motility (PR) and total motility

(progressive + nonprogressive (NP)) and viability. The values were
expressed as mean ± SD. *p ≤ 0.05

Treatments Progressive motility (PR) (%) Total motility (PR+ NP) (%) Viability (%)

Control (freezing medium) 28.15 ± 3.50 42.59 ± 4.45 50.57± 10.28

2.5 μM Curcumin (freezing medium + curcumin 2.5 μM) 27.78 ± 5.00 40.35 ± 2.57 51.23± 8.56

5 μM Curcumin (freezing medium + curcumin 5 μM) 26.50 ± 4.05 39.75± 5.65 49.76± 9.87

10 μM Curcumin (freezing medium + curcumin 10 μM) 35.65 ± 3.12 51.71 ± 5.36 54.78 ± 11.23

20 μM Curcumin (freezing medium + curcumin 20 μM) 47.20 ± 5.80* 65.00 ± 3.73* 56. 35 ± 12.03

Fig. 1 Intracellular ROS (green
cell) in human sperm cells
analysed by fluorescence
microscopy using the DCFH2-
DA probe in different treatment
groups: a vehicle control; b
2.5 μM curcumin-treated group; c
5 μM curcumin-treated group; d
10 μM curcumin-treated group;
20 μM curcumin-treated group
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to protect cells from the stress induced by the freezing process,
which in most cases involves membrane integrity loss, mito-
chondrial damage, metabolic and functional status alterations
[8, 71], lipid peroxidation and increased cytoplasmic ROS and
DNA damage [72]. However, small amounts of ROS are im-
portant for sperm maturation; in fact, sperm ROS play an
important role in capacitation, the acrosomal reaction, mito-
chondrial stabilization and motility [73].

The disruption of the balance between ROS and antioxi-
dant scavenging could provoke oxidative stress. Human
sperm are very sensitive to free oxygen radical toxicity, and
the main consequence is lipid peroxidation [74]. The most
dangerous products of lipid peroxidation are malondialdehyde
(MDA) and 4-hydroxynonenal (4-HNE), which can cause se-
vere protein dysfunction and DNA damage, recruiting leuko-
cytes by chemotactic activity and inhibiting cell proliferation.
Given the low efficiency of the intracellular systems of sperm
gene repair, the only protectivemechanism is the tight packing
of the genome and the antioxidants present in the male genital
tract and in the seminal plasma [75]. Nfr2 plays a critical role
in the defence against oxidative stress by inducing the expres-
sion of antioxidant proteins and phase II detoxification en-
zymes as well as of genes encoding catalase (Cat), superoxide
dismutase, glutathione S-transferase (GST) and haem
oxygenase-1 [76]. Nonenzymatic and natural antioxidants al-
so play an important role in the protection of male gametes

and are able to counteract DNA damage both in vivo and
in vitro [77].

Antioxidants seem to be of great clinical importance, as
they reduce ROS and oxidative stress and, as a result, improve
fertility potential both in natural pregnancy and in ART; they
can also play a protective role during embryonic development
[78].

Antioxidant supplementation can potentially improve
sperm cryopreservation outcomes. The addition of 5% sericin
to freezing and thawing media increased total motility and
viability and decreased DNA fragmentation relative to media
without sericin [79]. Melatonin may exert its cryoprotective
effects on spermatozoa by counteracting intracellular ROS
and thereby reducing MDA generation, leading to an increase
in the post-thaw viability andmotility of cryopreserved human
spermatozoa [68] and reducing oxidative damage by upregu-
lating heat shock protein 90 (HSP-90) expression [80].
Supplementation of the cryopreservation medium with quer-
cetin induced a significant improvement in post-thaw sperm
motility, viability and DNA integrity; however, it had no ef-
fect on caspase 3 activation [81].

Considering the antioxidant properties of curcumin and its
capacity to improve semen quality parameters in
asthenoteratospermic men by reducing oxidative stress [38,
82, 83], we evaluated the effects of curcumin (2.5 μM, 5

Fig. 2 Percentage of intracellular ROS (ordinate) in human sperm cells in
the different treatment groups (n = 12) (abscissa) after the thawing pro-
cedure. The black bars are vehicle controls (VC); the dark grey bars are
the 2.5 μMcurcumin-treated group (curcumin 2.5); the light grey bars are

the 5 μM curcumin-treated group (Curcumin 5); the striped bars are the
10μMcurcumin-treated group (Curcumin 10); and the dotted bars are the
20 μM curcumin-treated group (Curcumin 20). The error bars represent ±
standard deviation (SD). *p ≤ 0.05

Fig. 3 Human spermDNA fragmentation as analysed by a TUNEL assay
in the different treatment groups: a vehicle control; b 2.5 μM curcumin-

treated group; c 5μMcurcumin-treated group; d 10μMcurcumin-treated
group; 20 μM curcumin-treated group
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μM, 10 μM and 20 μM) supplementation in freezing medium
on frozen-thawed human sperm cells.

Our data showed that, among the concentrations tested,
20 μM curcumin had positive effects on sperm quality after
the freezing-thawing procedure compared to the controls. In
particular, the protective effects of 20μMcurcumin have been
highlighted as increasing sperm total motility, with the im-
provement of the progressive motility, and reducing intracel-
lular ROS production, proving that this antioxidant is able to
protect sperm cells from oxidative damage induced by cryo-
preservation and improve semen quality after thawing.

The results obtained by the TUNEL assay showed that the
sperm DFI was decreased in the curcumin-treated group com-
pared to the frozen sperm group without curcumin added to
the cryopreservation medium, and 20 μM curcumin even re-
duced the DFI below the 26% threshold, the value above
which the fertilizing capacity of fresh spermatozoa is drasti-
cally reduced [84]. Moreover, the maximum concentration of
curcumin tested was able to induce increased GPX4 gene ex-
pression and consequently enhance the cellular physiological

enzyme antioxidant system and decrease sperm DNA frag-
mentation, thereby reducing sperm apoptotic processes. This
result indicates that curcumin not only is able to directly de-
fend sperm from ROS attack but also acts at the molecular
level, enhancing the intrinsic defences of the cells.

Modulating GPX4 gene expression in sperm cells is a key
factor in preserving male fertility [62, 63]. Gpx4 can be found
in the cytosol and bound to sperm membranes or in other cells
of the male genital tract [85, 86]. It is the only isoform capable
of inactivating phospholipid hydroperoxides regardless of the
release of fatty acids by phospholipase A2 and is therefore the
only antioxidant enzyme capable of repairing some of the
damage caused by radicals to macromolecules such as pro-
teins or membrane lipids [87]. Another important function of
Gpx4 is oxidation of protamine thiol groups with the forma-
tion of disulfide bridges essential for nuclear chromatin con-
densation and with a structural role creating a network of
protein bonds typical of the capsular structure [88–90].
Therefore, in addition to its antioxidant action, Gpx4 has a
key role in sperm maturation through the metabolism of

Fig. 4 DNA fragmentation index (ordinate) in human sperm cells in
different treatment groups (n = 12) (abscissa) after the thawing procedure.
The black bars are vehicle controls (VC); the dark grey bars are the
2.5 μM curcumin-treated group (Curcumin 2.5); the light grey bars are

the 5 μM curcumin-treated group (Curcumin 5); the striped bars are the
10μMcurcumin-treated group (Curcumin 10); and the dotted bars are the
20 μM curcumin-treated group (Curcumin 20). The error bars represent ±
standard deviation (SD). *p ≤ 0.05

Fig. 5 RT-qPCR analysis of GPX4 (ordinate) in human spermatozoa in
different treatment groups (n = 12) (abscissa) after the thawing procedure.
The black bars are vehicle controls (VC); the dark grey bars are the
2.5 μM curcumin-treated group (Curcumin 2.5); the light grey bars are

the 5 μM curcumin-treated group (Curcumin 5); the striped bars are the
10μMcurcumin-treated group (Curcumin 10); and the dotted bars are the
20 μM curcumin-treated group (Curcumin 20). The error bars represent ±
standard deviation (SD). *p ≤ 0.05
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hydroperoxides and oxidation of nuclear protamine [91, 92].
Moreover, the expression of Gpx4 has been correlated with
the stability of sperm chromatin and with impaired spermato-
genesis because it is associated with apoptotic mitochondrial
pathways [93, 94].

Our results were in agreement with the findings of studies
on the ameliorative effect of curcumin on the motility, viabil-
ity, total antioxidant capacity (TAC) and DNA integrity of
frozen-thawed rat sperm and the protective effect of curcumin
on dog sperm from damage caused by cryopreservation pro-
cedures, improving sperm parameters and protecting sperm
against ROS and increasing NADPH oxidase 5 (NOX5) gene
expression [51, 95]. Similarly, in vitro supplementation of bull
semen extender with curcumin was able to improve sperm
motility (in particular, progressive motility) and protected
the sperm from damage induced by oxidative stress [96].
We suggest that the radical scavenging activity of curcumin
dose-dependently increased with increasing curcumin concen-
tration, whereas sperm motility, ROS production, DFI and
GPX4 gene expression were not significantly different be-
tween the control group and the groups treated with low con-
centrations (2.5 μM, 5 μM and 10 μM) of curcumin. On the
other hand, Zhou et al. showed that curcumin might improve
asthenozoospermia by reducing ROS reproduction and regu-
lating Nrf2 levels. They also indicated that curcumin can ame-
liorate sperm motility in a dose-independent manner and
could induce toxicity to sperm motility when applied beyond
a certain concentration; 100 nM curcumin significantly in-
creased sperm motility by reducing ROS and apoptosis, while
treatment with curcumin at concentrations of 1 mM and 1 M
decreased sperm total and progressive motility compared to
those of the control group [41].

In any case, at certain concentrations, curcumin can im-
prove sperm parameters due to its ability to scavenge free
radicals as an antioxidant through its phenolic, β-diketone
and methoxy functional groups. Curcumin can also uncouple
the keap1-Nrf2 complex, which leads to Nrf2 stabilization and
subsequent transport into cell nuclei, leading to the transcrip-
tion of several antioxidant genes involved in antioxidant re-
sponses [97–100]. Curcumin may also influence sperm motil-
ity, capacitation and function by inhibiting tyrosine phosphor-
ylation of sperm surface proteins and Ca2+ channels, acidify-
ing the intracellular pH of sperm and hyperpolarizing the
sperm cell membrane [101].

In this study, we chose to evaluate the antioxidant ability of
freezing medium supplemented with low concentrations of
curcumin to counteract the oxidative damage to sperm in-
duced by cryopreservation; our results showed that the only
concentration tested that was sufficient to produce a positive
effect on human sperm cells after thawing was 20 μM. In fact,
supplementation of 20 μM curcumin to sperm freezing medi-
um could improve sperm parameters and decrease oxidative
damage, preserving sperm DNA fragmentation by

suppressing ROS production and GPX4 gene overexpression.
Further studies should clarify the pathways influenced by
curcumin supplementation during sperm cryopreservation
through the modulation of the expression of other genes in-
volved in oxidative stress, such as SOD and CAT, and by
evaluating the expression of apoptotic markers such as Fas
and p53. Although other groups have demonstrated the harm-
ful effect of curcumin at higher concentrations (1 mM) [41],
future prospects will be aimed at evaluating the effects of
curcumin concentrations between 20 μM and 1 mM in sperm
freezing medium.

Preserving sperm DNA integrity in the presence of the
oxidative stress produced by cryopreservation procedures is
important for fertilization outcomes, such as normal develop-
ment of the embryo, foetus and infant [102–104].

Our findings are of great importance for improving the
efficiency of sperm cryopreservation to help infertile/
subfertile men and suggest that antioxidants, in particular
curcumin, acting at different levels can restore reproductive
capacities in individuals with from oxidative stress-associated
dysfunction.
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