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Abstract 
B-Raf is a protein kinase participating to the regulation of many 
biological processes in cells. Several studies have demonstrated that 
this protein is frequently upregulated in human cancers, especially 
when it bears activating mutations. In the last years, few ATP-
competitive inhibitors of B-Raf have been marketed for the treatment 
of melanoma and are currently under clinical evaluation on a variety 
of other types of cancer. Although the introduction of drugs targeting 
B-Raf has provided significant advances in cancer treatment, 
responses to ATP-competitive inhibitors remain limited, mainly due to 
selectivity issues, side effects, narrow therapeutic windows, and the 
insurgence of drug resistance. 
Impressive research efforts have been made so far towards the 
identification of novel ATP-competitive modulators with improved 
efficacy against cancers driven by mutant Raf monomers and dimers, 
some of them showing good promises. However, several limitations 
could still be envisioned for these compounds, according to literature 
data. Besides, increased attentions have arisen around approaches 
based on the design of allosteric modulators, polypharmacology, 
proteolysis targeting chimeras (PROTACs) and drug repurposing for 
the targeting of B-Raf proteins. The design of compounds acting 
through such innovative mechanisms is rather challenging. However, 
valuable therapeutic opportunities can be envisioned on these drugs, 
as they act through innovative mechanisms in which limitations 
typically observed for approved ATP-competitive B-Raf inhibitors are 
less prone to emerge. In this article, current approaches adopted for 
the design of non-ATP competitive inhibitors targeting B-Raf are 
described, discussing also on the possibilities, ligands acting through 
such innovative mechanisms could provide for the obtainment of 
more effective therapies.
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The Serine/Threonine protein kinase B-Raf is one among the most widely studied targets for cancer treatment.1,2 Under
physiological conditions, this protein participates as key player in the Ras-Raf-MEK-ERK signaling pathway to the
regulation of a number of cellular processes.3,4 In cancer cells, B-Raf is often upregulated, especially when it bears
activating mutations, thus promoting oncogenic cellular processes as uncontrolled proliferation, tumor growth and
metastasis.5–9 Of note, several studies have reported that B-Raf is frequently mutated in human cancers,6,10,11 with more
than forty oncogenic mutations currently being described for this kinase.12 For these reasons,wild type (WT) and mutant
B-Raf proteins have gained remarkable relevance for the development of anticancer drugs over the last decades. Several
drugs selectively targeting B-Raf proteins have also been approved for the treatment of metastatic melanoma,13,14

providing remarkable advantages in therapeutic regimens, and are currently under evaluation against colorectal cancer.15

However, the therapeutic use of the majority of these drugs is still hampered by drug resistance and side effects issues,
resulting in responses that often remain temporary and rarely complete, the median time progression, e.g., for
Vemurafenib against melanoma being six to seven months.16 In particular, several findings have demonstrated that
drug resistance often characterizing approved B-Raf inhibitors is mainly driven by feedback deregulation and over-
expression of several other kinases.17–20 Nevertheless, clinical evidences have demonstrated that the use of selected
B-Raf inhibitors in therapeutic regiments can also result in Raf paradoxical activation, which promotes cellular
hyperproliferation of certain secondary skin lesions.21–26 In particular, it has been reported that when a B-Raf monomer
is bound to specific inhibitors (e.g., Dabrafenib and Vemurafenib), it can dimerize promoting the aberrant activity of a
second drug-free protomer, which cannot be targeted due to protein conformational rearrangements.21 This event in turn
promotes abnormal proliferation in cells harboring other oncogenic mutations, through the activation of the MEK–ERK
pathway.27 In this context, major research efforts have been devoted so far on the development of novel ATP-competitive
kinase inhibitors binding to different αC-helix conformations of B-Raf (i.e., αC-OUT and αC-IN) (Figure 1).13,21,22,28,29

Indeed, the vast majority of the reported B-Raf inhibitors reported so far act through the competitive binding to the ATP
binding site of this protein, as for other kinases.30,31 Four different regions can be identified within the ATP binding
cleft, which is highly conserved among kinases, i.e.: (i) a short hinge area containing a hot-spot residue (a cysteine in
B-Raf) to which the adenine portion of the substrate bind to; (ii) a hydrophobic pocket adjacent to the hinge region;
(iii) a further hydrophobic type-II pocket, located between the and the Asp-Phe-Gly (DFG) motif and the regulatory
αC-helix, and; (iv) an allosteric site placed in correspondence to the αC-helix. To date, some privileged chemical
scaffolds, and structural details in correspondence to the type-II pocket of the kinases potentially conferring kinase
selectivity to ligands have been discovered.32 However, the obtainment of clinically safe ATP-competitive inhibitors
showing high selectivity towards selected kinases often remains elusive. With regards to B-Raf, low efficacy deriving by
non-optimal therapeutic windows and the establishment of allosteric priming could be observed, for example, for αC-IN
binders, albeit they can abrogate aberrant Raf dimerization-derived activities, through the inhibition of both themonomer
and dimer of the kinase.13,33,34 Examples of reported compounds binding to this type of conformation of B-Raf are the
pan-Raf inhibitors RAF-265, MLN-2480, TAK-632, LY3009120, CCT196969 and CCT241161,35–37 some of them
having been evaluated in clinical trials (e.g., ClinicalTrials.gov identifiers: NCT02014116, NCT01425008 and
NCT00304525), also in combination with MEK blockers (e.g., ClinicalTrials.gov identifier: NCT01352273). On the
contrary, αC-OUT B-Raf inhibitors demonstrated to provide good selectivity profiles and wider therapeutic windows
compared to αC-IN binders.13,28 Examples of such compounds are, among the others, Vemurafenib, Dabrafenib and
Encorafenib, which potently inhibit mutant B-RafV600E monomers, but resulted to be ineffective on tumor cellular
contexts driven by aberrant Raf dimerization.13,28 Moreover, compounds binding to the αC-OUT conformation of B-Raf
have also been reported to promote paradoxical activation.13,38 Besides, other studies have been focused on the
development of compounds as PLX7904 and PLX8394, able to escape paradoxical activation of B-Raf (i.e., the
so-called “paradox breakers”) and to overcome some of known resistance mechanisms associated to previously reported

REVISED Amendments from Version 1

In response to the Reviewers’ very helpful suggestions, I made the following amendments to the manuscript. The
manuscript was revised to better contextualize the development of innovative B-Raf targeting approaches, with respect
to ATP-competitive inhibitors. Moreover, a description on the main elements characterizing the ATP-binding site of the
kinases was also reported. This allowed also to better: (i) highlight how Ponatinib and PHI1 can be classified according to
their experimentally derived binding mode, and; (ii) contextualize their example with respect to the type III B-Raf allosteric
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experimental and in silico approaches that are expected to be of help for kinase allosteric drug design. A discussion on the
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Raf inhibitors.39,40 For example, PLX8394 is currently being evaluated in Phase I/IIa clinical trials (ClinicalTrials.gov
identifier: NCT02428712). The development of paradox breaker compounds is expected to provide significant impact
to anticancer therapy, as they allow to efficiently modulate the activity of mutant B-RafV600E, while circumventing
protein dimerization.41 However, such compounds might also result in limited efficacy towards cancers with mutated
Ras, according to literature data.41 Despite the advantages that can be observed in latest-generation ATP-competitive
inhibitors of this kinase, several evidences encouraged a number of research groups to develop B-Raf modulators acting
through innovative mechanisms. These include, for example, the modulation of the kinase activity of B-Raf with type III
and IV highly selective allosteric binders, as well as throughmulti-target approaches (i.e., polypharmacology) (Figure 1).
The design of allosteric kinase inhibitors of B-Raf is particularly challenging, for example, due to missing activity data
or the lack of crystallographic structures suitable for the investigations, whose activation loop, activation segment
and αC-helix are often not clearly solved. However, recent advancements in crystallographic and in silico techniques
will certainly help to overcome several of the issues currently encountered in kinase allosteric ligand design.31,42

Among them, for example, cryo-electron microscopy alone or in combination with X-Ray crystallography is expected to
provide novel fruitful insights on the conformational flexibility of the proteins, which might be of help to, e.g.: (i) better
understand the events occurring during the kinase activation and the ligand binding, and; (ii) circumvent some of the
experimental limitations that could emerge during the crystal formation.43,44 Besides, in silico techniques based on
machine and deep learning algorithms as AlphaFold have been recently developed to assist the prediction and refinement
of reliable three-dimensional models of the proteins.45 Moreover, other in silico methods based on molecular dynamics
and hot spot analysis are also available to help investigating themechanism of activation of the kinases and to facilitate the
identification of novel druggable binding sites, respectively.46,47 The possibilities offered by such techniques are
expected not only to help elucidating novel structures, and to identify additional potentially druggable kinase binding
pockets, but also better assisting, for example, the design of allosteric ligands. The identification of allosteric inhibitors of
B-Raf holds great promises in cancer therapy. Indeed, such targeting approaches are expected to help identifying ligands
with higher selectivity towards B-Raf with respect to classic ATP-competitive binders, and to help to overcome drug
resistance, similarly to as postulated for other kinases.48–52 Unfortunately, neither type III, nor type IV small molecule,
allosteric modulators of B-Raf have been reported so far. However, potent type III inhibitors binding to an allosteric
pocket in proximity to the regulatory αC-helix have been reported for several other kinases, such as BCR-ABL, MEK,
EGFR and CDK2,53–59 providing valuable structural clues for the design of innovative B-Raf modulators. These results
have also been fueled by the recent crystallographic resolution of type III allosteric inhibitors of mutant EGFR and
MEK (e.g., see references 52,56,60). In this regard, our research group has reported the design of previously unseen

Figure 1. Schematic representation of the approaches currently pursued for the design of B-Raf ligands,
discussed in the article.
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type III allosteric inhibitors of the CDK2 kinase showing anticancer activity.53,61 Moreover, we have also reported the
identification of structurally novel allosteric modulators of WT and double mutant EGFR, exhibiting inhibitory activity
towards non-small cell lung cancer (NSCLC).54 More recently, our research group has also demonstrated that B-Raf
possesses an allosteric pocket similar to that of EGFRT790M, adopting a DFG-IN/αC-OUT conformation potentially
druggable by type III modulators.62 Remarkably, the presence of such allosteric pocket in B-Raf has also been indirectly
confirmed in a recent study by Cotto-Rios et al.63 In particular, in their study the authors firstly identified Ponatinib as an
inhibitor of B-Raf within a drug repositioning campaign. According to the experimentally derived binding mode,
Ponatinib cannot be considered as an allosteric inhibitor of B-Raf. Indeed, it establishes interactions with the residues
in the hinge region and the hydrophobic pocket outwards the DFG motif of the kinase. However, this compound
presents a methyl-piperazine moiety that allocated into the allosteric site in proximity to the kinase regulatory αC-helix,
thus indirectly confirming the presence of this region in B-Raf.62,63 The authors performed also medicinal chemistry
optimizations on Ponatinib, identifying a compound (i.e., PHI1) that showed similar binding mode, and selectivity
towards B-Raf dimers in cancer cells.63 Together with previous considerations and established literature data, the results
of this study, to some extent, suggest that the design of allosteric inhibitors of B-Raf is feasible. Moreover, these results
also suggest that the design of such allosteric ligands would also open to novel strategies enabling the full arrest of the
B-Raf kinase activity, potentially either via single agents or combination therapies. Nevertheless, the results prospected in
this study paved the way towards the identification of innovative B-Raf inhibitors among approved drugs (i.e., drug
repurposing) (Figure 1).63,64 Indeed, this approach has already been navigated also with natural products and clinically
safe candidates, on different medicinal chemistry research areas.65–71 Similar considerations can also be argued for the
design of allosteric ligands binding to the B-Raf dimer interface (i.e., type IV). The interest on such type IV allosteric
ligands for the targeting of bothwild type andmutant B-Raf has steadily increased over the past few years, with a number
of small polypeptides able to disrupt protein dimerization and transactivation being reported.50,51,72,73 In particular,
Beneker et al.50 were among the first to report the identification of a small set of polypeptides binding to the Raf
dimerization interface. The results achieved in their study not only demonstrated that such a type of targeting is a feasible
endeavor on B-Raf, but also that type IV allosteric ligands could provide remarkable results when used in combination
with known mutant-selective ATP-competitive inhibitors promoting paradoxical activation of the ERK signaling.50 On
the same line, Gunderwala et al.51 more recently reported the identification of Braftide, a small polypeptide designed
through a computational strategy blocking Raf dimerization. Notably, Braftide demonstrated to efficiently inhibit Raf
dimerization and to provide degradation of the MAPK complex. Moreover, Braftide has also proved to synergize with
Vemurafenib and Dabrafenib,51 further supporting the potential application of type IV allosteric B-Raf inhibitors on
therapeutic regiments with approved ATP-competitive drugs. The possibility to identify allosteric ligands of this kinase
could also open to novel therapeutic approaches promoting simultaneous blockade of B-Raf at different sites, for
example, if used in combination with approved ATP-competitive drugs. Indeed, such a complementary therapeutic
approach is being under study against EGFR-mutant lung cancer,59 and it is expected to provide also valuable
opportunities for B-Raf targeting. Allosteric inhibitors acting at a site different to those of the type III and type IV
ligands described above have already been investigated for other kinases, in some cases with promising results.74 In the
specific case of B-Raf, the identification of these types of inhibitors is still at a preliminary stage, albeit remarkable
therapeutic opportunities arising on these grounds could be envisioned for the near future.

Novel valuable opportunities could also arise from the identification of compounds exhibiting activity on B-Raf, in
selected combinations of targets. The therapeutic advantages deriving by the simultaneous modulation of multiple targets
involved in the physiopathology of a disease, either by using a combination of drugs, or with ligands endowed with
tailored polypharmacology properties, have already extensively discussed in literature.75–78 Indeed, the use of approved
B-Raf inhibitors is nowmainly framed in combined regiments including modulators of other therapeutic relevant targets.
For example, the B-RafV600E inhibitor Dabrafenib in now mainly used for the treatment of patients with unresectable or
metastatic melanoma in combination with Trametinib (a MEK ATP-noncompetitive modulator).79,80 Similarly, Encor-
afenib (a B-RafV600E inhibitor) is used in combination with Binimetinib for the treatment of the same diseases, since their
approval in 2018.79 The importance of B-Raf as a therapeutic relevant target in polytherapies is also testified by the
number of combinations including Vemurafenib, Dabrafenib and Encorafenib, with the MEK inhibitors Trametenib and
Binimetinib, and Cetuximab that are currently under clinical evaluation, for example, against colorectal cancer (e.g.,
ClinicalTrials.gov identifiers: NCT03727763, NCT03693170 andNCT04673955). Besides, several clinical studies have
also been reported on the investigation of mutant selective B-Raf inhibitors, with modulators of non-kinase proteins, one
among the most studied being Hsp90 (e.g., ClinicalTrials.gov identifiers: NCT01657591 and NCT02721459).75–77 The
selection of the most suitable targets for combination therapy approaches is generally driven by their involvement in
relevant oncogenic processes. For example, several mechanisms by which tumor cells can exert drug resistance to B-Raf
inhibitors derive by deregulation or overexpression of other oncoproteins,18–20,81,82 many of them being “clients” of
Hsp90.83,84 Consequently, the simultaneous targeting of Hsp90 and B-Raf have represented an attractive strategy to
overcome drug resistance to B-Raf inhibitors so far. Indeed, several biological studies and clinical evidence demonstrated
that the inhibition of Hsp90 helps to overcome resistance to known blockers of B-Raf, and that their combined inhibition
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provides synergistic effects in different cancer-related contexts.85–88 In line with the polypharmacology concept, further
advantages can also be envisioned for cancer treatment on the design of ligands endowed with multi-target activity
(Figure 1).

In the case of B-Raf, several studies describing the design of multi-target ligands have been reported so far.88–93 In
particular, Anighoro et al.88 reported in 2017 the identification of the first two compounds endowedwith activity towards
B-Raf and Hsp90, demonstrating that these targets share overlapping chemical spaces. The compounds reported in this
study were identified by means of an integrated in silico strategy and represent valuable starting points for the
development of innovative B-Raf/Hsp90 dual inhibitors, especially considering that they showed balanced multi-
target activity and low molecular weight. Of note, Hsp90 and B-Raf belong to different protein families and present
distinct binding site architectures, which makes the design of dual ligands of these proteins a difficult task. The interest
around Hsp90 and B-Raf as partners in polypharmacology strategies has also been further explored more recently within
an effort to identify ligands endowedwith Hsp90/PDHK1/B-Raf multi-target activity.89 The identification of compounds
with such a tailored polypharmacology profile would enable the modulation of multiple pathways important to survival
and proliferation of tumor cells, thus resulting in more effective anticancer therapies. However, the obtainment of Hsp90/
PDHK1/B-Raf multi-target inhibitors is very challenging, as several, often conflicting, structural requirements should be
taken into account in the ligand design process.

Besides, B-Raf has also been framed into multi-target ligand design projects including other kinases, such as VEGFR-2,
p38α and EGFR.90–93 The design of ligands modulating the activity of selected combination of kinases is particularly
challenging. Thismainly derives by the fact that the ATP-binding site of kinases is highly conserved in terms of shape and
amino acids composition.31 However, structural peculiarities, and common anchoring points might also be identified and
exploited for multi-kinase inhibitor design. In these cases, the design of ligands with a balanced multi-kinase activity
profile is of primary importance to achieve good efficacy against, e.g., complex diseases, while retaining satisfactory
safety profiles.94 Moreover, the selection of the kinases to be considered for the multi-target ligand design should be
guided by their therapeutic relevance and mutual involvement in the disease of interest.75 In this regard, several studies
have reported the identification of dual inhibitors of the B-Raf and VEGFR-2 kinases.92,95,96 The rationale behind the
selection of B-Raf andVEGFR-2 for the development ofmulti-target inhibitors stands on the fact that these proteins fulfill
complementary leading roles on processes related to cancer development and progression.97,98 For similar reasons,
research efforts have also been performed for the design of B-Raf/p38α dual inhibitors.93,99 Of note, continuous research
has also been done for the targeting B-Raf and EGFR, either via combination of selective kinase inhibitors, or with
polypharmacology ligands. For example, the inhibition of these targets has already been explored on colorectal cancer by
means of combination of drugs, as drug resistance that derives by overexpression and activation of EGFR could be
overcome through the blockage of B-Raf.20,100 The design of B-Raf/EGFR dual inhibitors has also been probed as a
strategy to overcome drug resistance observed on melanoma and colorectal cancers to approved B-RafV600E drugs,
providing promising results.Whereas reservations have been very recently raised on the dual inhibition of these targets as
a therapeutic opportunity for patients affected by non-small cell lung cancer (NSCLC).101 Although particularly
challenging, some possibilities on the identification of innovative B-Raf/EGFR dual inhibitors could also be envisioned
on type III allosteric contexts. Indeed, B-Raf and EGFR present structurally similar type III allosteric pockets,62 which
make them ideal candidates for the design of multi-target ligands, for example, by means of computational structure-
based approaches as docking.102,103

In recent years, increased research interests have also arisen around proteolysis targeting chimeras (i.e., PROTACs) for
targeting several therapeutic targets (Figure 1).14,104,105 Such an approach generally employs bidentatemolecules bearing
to two covalently bounded chemical moieties, one with high affinity towards the target of interest and the other recruiting
specific components of the proteasomal degradation system ( e.g., the E3 ligases Von Hippel-Lindau (VHL), cereblon
(CRBN), murine double minute 2 (MDM2) and cellular inhibitor of apoptosis protein 1 (cIAP1)), to promote selective
intracellular proteolysis.106,107 At present, PROTACs with high substrate specificity have been reported for targeting
different protein kinases,14 including also mutant B-Raf.14,108,109 One example of such B-Raf mutant-selective PRO-
TACs comes from a recent study by Alabi et al.,110 in which the authors designed a compound (e.g., SJF-0628)
showing high selectivity towards degradation of B-RafV600E. Although being still at their infancy, approaches based on
the targeting of B-Raf with PROTACs technology are expected to provided novel valuable opportunities for cancer
treatment and to help overcome drug resistances very often observed in marketed drugs, as recently discussed, for
example, by He et al.111 Indeed, such approaches allow to also promote complete removal of the protein scaffold other
than blocking its catalytic functions, which might represent a valuable advantage over already reported ATP-competitive
inhibitors.

Targeting protein kinases, such as B-Raf, has provided several therapeutic advantages in cancer treatment so far, as also
testified by the number of approved drugs and clinical candidates modulating the activity of these proteins that are
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currently under investigation.14 B-Raf has acted as a major player in this context, with some of its ATP-competitive 
inhibitors (e.g., Sorafenib, Vemurafenib, Dabrafenib and Encorafenib) being approved for the treatment of patients with
unresectable or metastatic melanoma in the last two decades.14 Although B-RafV600E inhibitors provided remarkable 
advantages in anticancer therapeutic regimens, several limitations could still be envisioned for these compounds, the most 
relevant being the establishment of drug resistance, paradoxical activation mediated by Raf dimerization and transactiva-
tion, and low efficacy towards Ras mutated cancers.41 Different strategies based on classic ATP-competitive single-
target approaches are still being under study to overcome such limitations, some of them showing good promises.13 

However, novel, and perhaps more valuable, opportunities can be envisioned on approaches targeting the allosteric sites
of B-Raf proteins. Indeed, such approaches have already demonstrated to provide remarkable opportunities on other 
therapeutic-relevant kinases exhibiting high structural similarity with B-Raf.59 Moreover, the activity of allosteric kinase 
inhibitors is less prone to be affected by insurgence of drug resistance deriving by site point mutations with respect 
to ATP-competitive binders,48 this being a significant advantage in anticancer therapy. Importantly, the modulation
of B-Raf by means of allosteric ligands would open to complementary approaches including also already reported 
ATP-competitive inhibitors to promote more efficient arrest the kinase activity, which is expected to result in improved 
therapeutic outcomes.50,51 In the near future, increasing research efforts will also be addressed towards the identification 
of multi-target inhibitors modulating B-Raf activity. Indeed, the importance of polypharmacology approaches for kinase
targeting is well established,112 as also testified by the increasing number of dual inhibitors targeting B-Raf reported in the 
literature over the last years.88–93 The selection of suitable combinations of targets for the rational design of B-Raf 
polypharmacology ligands is of primary importance in this context, the identification of those providing the highest
therapeutic effectiveness being very often difficult. However, innovations on computational approaches are expected to 
aid on their identification.113 Similar considerations can also be drawn for the identification of inhibitors targeting B-Raf 
through innovative mechanisms among already approved drugs, as recently observed for Ponatinib.63 Moreover,
approaches based on PROTACs technology are also expected to bring significant chemical novelty on future B-Raf 
inhibitors design, as such compounds exert their activity through molecular mechanisms that are completely different 
with respect to those of approved drugs and compounds under investigation. The design of either allosteric, poly-
pharmacology or PROTAC ligands targeting B-Raf proteins is challenging, especially with respect of classic kinase 
APT-competitive binders. However, the recent advancements on understanding cancer cells biology and the improve-
ments on experimental techniques and in silico approaches available for the analysis of information reported in 
public databases, will certainly facilitate the identification of novel B-Raf inhibitors acting through such innovative 
mechanisms.
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The author mostly refers to B-Raf as a target validated by "recent" evidence/studies, while it 
has been described in the literature as an oncogene at least from the 90s and Vemurafenib 
began clinical testing in 2008 to be approved in 2011 by FDA followed shortly by other 
drugs. I don't think this makes the article less interesting, but I feel that B-Raf should be 
referred sometimes in the text with adjectives such as "well established" rather than 
"recent". 
 

○

Would it be possible to give the reader an idea of how the αC-helix is structurally related to 
the ATP binding site? Maybe through a sentence in the text and/or marking it in Figure 1? 
 

○

When writing “activation loop”, “activation segment” and “αC-helix” are italics and quotes 
necessary? αC-helix has already been used several times in the text up until then without 
quotes or italics. 
 

○

I think that the sentence "recent advancements in crystallographic and in silico techniques will 
certainly help to overcome several of the issues currently encountered in kinase allosteric ligand 
design" should be followed by at least mentioning some examples of techniques that the 
author is certain are going to help. 
 

○

Can it be explained more explicitly why Ponatinib/PHI1 do not qualify as allosteric 
inhibitors? 
 

○

Would it be possible to include a comment on the challenge of rationally designing kinase 
multitarget inhibitors given the selectivity issues mentioned by the author?  
 

○

The first time that the term PROTAC is mentioned, it should be by the full name followed by 
the abbreviation, proteolysis targeting chimera (PROTAC). 
 

○

"(e.g., an E3 ligase as VHL)" Probably, CRBN should be mentioned as well. Both should be 
mentioned by their full name first. 
 

○

Probably, "e.g." in Figure 1 when addressing E3 ligases can be removed as it makes it look 
like E3 ligases can be replaced by something else in the context of PROTACs. I am not aware 
if that's actually possible, but if that's the case, it should be mentioned in the text.   
 

○

In the abstract and in the main text the word premises is used a few times instead of 
promise, I believe.

○

 
Is the topic of the opinion article discussed accurately in the context of the current 
literature?
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Are all factual statements correct and adequately supported by citations?
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Are arguments sufficiently supported by evidence from the published literature?
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Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Partly
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expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 16 Apr 2022
Luca Pinzi, University of Modena and Reggio Emilia, Modena, Italy 

I would like to thank the Reviewer for the comments and the precious suggestions. The 
manuscript was revised to better contextualize the development of innovative B-Raf 
targeting approaches, with respect to established efforts (e.g., ATP-competitive inhibitors 
development). Accordingly, the descriptions referring to literature data were also revised 
under a more contemporary perspective. 
 
A brief description of the main elements characterizing the ATP-binding site of the kinases 
was reported in the revised version of the manuscript. This helped to delineate how the 
regulatory αC-helix is related to the other structural regions in the kinases ATP binding site. 
Besides, Figure 1 was also revised to better highlight the position of the αC-helix, with 
respect to the hinge region in the B-Raf active site to which ATP-competitive inhibitors bind 
to, and to improve the image contents.    
 
The text was also revised to provide further insights on some of the experimental 
techniques and in silico approaches that are (and are also expected to be even more in the 
future) of help for kinase allosteric drug design efforts. Moreover, additional references to 
relevant literature data were included in the revised version of the manuscript to better 
contextualize the application of some of these techniques, on both B-Raf related research 
and a more general perspective. 
 
An explanation of how Ponatinib and PHI1 can be classified according to their 
experimentally derived binding mode is now provided in the text, as suggested by the 
Reviewer. As revised, the text is expected to help better contextualize the example reported 
on Ponatinib/PHI1, with respect to the type III B-Raf allosteric pocket mentioned within this 
article. 
 
The main challenges that might be faced when rationally designing multi-kinase inhibitors 
are now discussed in the text. Moreover, the main E3 ligases that have been exploited so far 
for the design of PROTACs are now reported within the text. 
 
The manuscript was carefully revised, to remove typos and to make it clearer to readers. 
Moreover, the full names of the reported abbreviations were added within the text where 
needed.  
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In this nice perspective, Pinzi summarizes the current state-of-the-art in the development of B-Raf 
inhibitors acting through innovative mechanisms. After a brief introduction about the traditional 
inhibitors (Atp-competitive) with their big limitations, Pinzi describes the most challenging 
approaches such as the design of allosteric modulators, the polypharmacology, and the PROTACs 
design with an eye to the computational strategies. 
 
The manuscript is well understandable, offering both a biological and medicinal chemistry point of 
view. The references are adequate. 
I do believe that work can be accepted certainly for indexing. 
 
I have only a very few minor remarks:

The sentence below is too long: 
 
Besides, other studies have been focused on the development of compounds as PLX7904 
and PLX8394, able to escape paradoxical activation of B-Raf (i.e., the so-called “paradox 
breakers”) and to overcome some of known resistance mechanisms associated to previously 
reported Raf inhibitors,36,37 the latter ligand currently being evaluated in Phase I/IIa 
clinical trials (ClinicalTrials.gov identifier: NCT02428712). 
 
Please change for example as: 
 
Besides, other studies have been focused on the development of compounds such as 
PLX7904 and PLX8394, able to escape paradoxical activation of B-Raf (i.e., the so-called 
“paradox breakers”) and to overcome some of the known resistance mechanisms associated 
with previously reported Raf inhibitors. 
 
PLX8394 is currently being evaluated in Phase I/IIa clinical trials (ClinicalTrials.gov identifier: 
NCT02428712). 
 

1. 

The sentence below is too long: 2. 
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Nevertheless, the results prospected in this study paved the way towards the identification 
of innovative B-Raf inhibitors among approved drugs (i.e., drug repurposing) (Figure 1), this 
approach being already navigated also with natural products and clinically safe candidates, 
on different medicinal chemistry research areas 
 
Please change for example as: 
 
Nevertheless, the results prospected in this study paved the way towards the identification 
of innovative B-Raf inhibitors among approved drugs (i.e., drug repurposing) (Figure 1). This 
approach is already been conducted also with natural products and clinically safe 
candidates in different medicinal chemistry research areas. 
 
The abbreviation NSCLC is not straightforward, the first time an abbreviation is used it 
should be explained. 
 

3. 

In the image: 
- a B in B-RAF is missing  
- the bullets points are not all the same 
- sometimes a period is used at the end of the sentence, other times not 

4. 

 
Is the topic of the opinion article discussed accurately in the context of the current 
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