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The Conserved Structures of Microbial Aspartyl Proteinases

Aspartyl (or aspartic) proteinases (APs) are a class of proteinases (or proteases) highly con-

served from retroviruses, including the HIV-1 protease, to mammals, including pepsins,

cathepsins, and renins [1]. APs of eukaryotic pathogens usually have two-domain structures,

each of which provides a catalytic Asp residue to the active enzymatic site. The N-terminal

domain contains a “flap” β-hairpin that overhangs the active site. By virtue of its high flexibil-

ity, the flap controls access to the active site [2,3]. AP evolution from a common ancestor is

exemplified by similar structures and sequence similarities, with predominantly conserved

regions containing the catalytic aspartic residues. Consequently, catalytic mechanisms are sim-

ilar, indicated by a largely preserved sensitivity to pepstatin A, a prototypal AP inhibitor. Some

APs of eukaryotic pathogens are also sensitive to a number of HIV-AP inhibitors effectively

used for AIDS therapy [4–6] (Fig 1).

The relevance of APs for the success of eukaryotic pathogens as infectious agents is reflected

in the APs’ redundancy and organization in protein families with distinctive but genetically

related members [7,8], an evolutionary expansion that appears to have reached a particularly

high level of diversification in some fungal organisms [1]. Functionally, this organization

enables the pathogen to select the right AP at the right time and in the right place to exploit

synergistic effects or to use alternative APs when one is lost or inactive, thereby compensating

for the biological cost of having many copies of the same gene [1,7–9].

While the structure of APs is well conserved, their biological functions are extremely broad.

Here we highlight two aspects of APs of eukaryotic pathogens: (1) their enzymatic activity

(“eating”), which spans from protein degradation as nitrogen source to structural functions or

roles in cellular transport, collectively required for growth, cellular functions, fitness and path-

ogenicity, and (2) their ability to trigger inflammation (“heating”) within the complex of host

immune responses and independently on AP enzymatic activity. This last aspect has so far

been underappreciated despite the fact that it can also play an important role in pathogenesis

and disease control, including vaccination.

Exemplary of such a multifaceted scenario are the APs of Plasmodium falciparum (plasmep-

sins) and Candida albicans (secretory aspartyl proteinases), two evolutionarily distant patho-

gens that, despite their differences, are both characterized by high genetic plasticity and a

complex relationship with the human host.
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Plasmepsins

The AP “eating” functions and their consequences for the pathogen–host relationship are well

represented by plasmepsins of P. falciparum. This is a major agent of malaria, a disease with an

estimated more than 200 million cases and 438,000 deaths in 2015 [10]. Of the ten P. falcipa-
rum plasmepsins, I–IV are involved in hydrolyzing host hemoglobin and removal of its toxic

products, acting together with other non-aspartyl proteinases such as the falcipains and falcily-

sins within the Haem Degradation Protein (HDP) complex at the intra-erythrocytic stage

[8,9]. This process enables the parasite to utilize hemoglobin as an amino acid source and

avoid potential damage by iron and haem molecules through the formation of hemozoin crys-

tals. On the other hand, plasmepsin V is involved in the export of malarial effector proteins

through the endoplasmic reticulum to the erythrocyte, a crucial activity for protozoan survival

[11–12]. In fact, plasmepsin V cleaves a factor named Plasmodial Export Element (PEXEL)

that allows for the export of malarial proteins into the host cell. Some of the exported proteins

play an important role in virulence and antigen presentation [11–18]. A similar role appears to

be played by ASP5, a phylogenetically related AP of Toxoplasma gondii, the deletion of which

makes T. gondii unable to cleave the PEXEL-like motif, thereby negatively impacting parasite

fitness and virulence in vivo [19–21]. The other five plasmepsins in P. falciparum are not com-

ponents of the food vacuole HDP, and their functions are poorly understood. However, plas-

mepsins VII and X have recently been detected in ookinetes and zygotes of P. falciparum, and

Fig 1. Left. The molecular ribbon-like structure of Sap2, a major AP of Candida albicans. Note the flexible flaps that

control the access to the central region faced and delimited by the two active sites DTGS and DSGT and

accommodating an enzyme inhibitor. N-ter is the N-terminus and C-ter the C-terminus of the amino-acid sequence.

Right. Sequences of Sap2 and plasmepsin II of Plasmodium falciparum, which is most similar to Sap2 among the APs

of eukaryotic microbial pathogens, showing two regions of high similarity (highlighted in red). The identity of the two

whole sequences is 28.2% and their similarity 57.4% (FASTA; MBL Swiss-Prot).

doi:10.1371/journal.ppat.1005992.g001
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antibodies against these plasmepsins have been shown to reduce the infectivity of P. falciparum
for mosquitoes [22]. For all the above reasons, plasmepsins have become attractive targets for

possible chemo- and immuno-therapeutic interventions. In particular, the virulence-attenu-

ated, plasmepsin IV-deleted strain of P. berghei, an agent of murine malaria, has been sug-

gested as a blood-stage, whole-cell vaccine [23–24]. The plasmepsins’ redundancy and

consequent stringent requirements for their use of molecular targets of new plasmodial inhibi-

tors has been critically discussed [9].

Secretory Aspartyl Proteinases

Several APs are produced, often in a secretory form, by many fungal organisms, including

both primary and opportunistic pathogens. For example, a glycosylated AP from Paracocci-
dioides brasiliensis, the agent of a deep-seated mycosis in Latin America, and a non-glycosy-

lated AP from Coccidioides posadasai, an agent of coccidioidomycosis in America, have been

isolated and characterized [25,26]. For this latter, highly pathogenic fungus, a recombinant AP

was generated and shown to induce a protective immune response against a pulmonary infec-

tion in mice [26]. However, the role of APs in pathogenesis and immune responses has been

most extensively investigated in the opportunistic fungus C. albicans, providing evidence for

previously unsuspected AP “heating” functions. These functions should be considered an

important, in some pathologies a likely dominant, addition to the AP broad spectrum of host-

impacting, protein degradation activities.

C. albicans is a eukaryotic pathogen able to thrive equally well as commensal or as pathogen

in humans [27]. The fungus can cause lethal systemic infections in immunocompromised or

severely debilitated subjects but more frequently cause superficial infections, some of which

(for instance, the recurrent vulvovaginal infection [RVVC]) are regularly observed in women

without any apparent immune deficit [28]. As detailed below, there is good evidence that the

expansion of C. albicans SAP genes contribute significantly to the virulence program of this

fungus in the vaginal disease.

Of the ten C. albicans Saps, eight are secreted into the extracellular space (Sap1-8), and two

are cell membrane- or cell wall-associated (Sap9-10). They have been reported to play differ-

ent, although redundant, pathogenic roles, in part associated with the characteristic yeast-to-

hypha transition, which is central in the biology and pathogenicity of this fungus [7,29,30]

(Fig 2).

A Blend of Immunoevasion and Immunoactivation

Candidal vaginitis is a disease in which Sap activities seem to have a major impact on host

immunity. In fact, in vitro, ex vivo, and animal investigations in distant and immunologically

different rodent models (rat and mouse) matched some old clinical data in support of a role

for Saps in determining or co-determining the disease [31,32]. However, the mechanisms by

which Saps contribute to disease have long remained uncertain, sometimes blurred by the

simultaneous expression or activity of other numerous putative virulence traits expressed by

this organism [29]. Hypothetical mechanisms mostly focused on Sap capacity to hydrolyze

structural proteins of epithelial cells (e.g., E-cadherin) or factors of both innate and adaptive

immunity, particularly complement, that allow C. albicans to prevent or escape from local host

immunity and damaging epithelial cells [33–36].

More recent data suggest a perhaps more relevant role of Saps in RVVC, i.e., inducing

pathogenic inflammation at an inflammation-non-permitted, tolerant body site. It has been

demonstrated that some Saps are pro-inflammatory proteins capable of inducing a potent

damage response through endocellular inflammasome receptors, particularly the NLRP3
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inflammasome, in both hemopoietic and epithelial tissues [37–39]. While adding to the list of

other identified or supposed fungal inflammasome activators [40], Saps are the first identified

fungal inducers of inflammasome activation of a pure protein nature. Importantly, Sap-

induced pro-inflammatory activity, unlike all other Sap functions, does not rely on enzymatic

activity [37]. In mouse models of vaginal infection, some Saps (mostly Sap2 and Sap6, or Sap5,

depending on the model [33,39]), appear to be responsible for the expression of key immuno-

pathogenic markers of landmark inflammatory events. This includes polymorphonuclear

(PMN) cell infiltration and production of pro-inflammatory cytokines, such as IL-1β and IL-

18, via the activation of inflammasome-mediated caspase-1 and possibly other caspases [41].

The use of individual or collective subfamily SAP knockout strains, human anti-Sap Fragment

antigen binding (Fab), and whole transcriptome analyses has shown that inflammation in vagi-

nal disease can be dampened either downstream, by pharmacological inhibition of NLRP3

inflammasome and blockade of IL-1β receptor, or upstream, by specifically affecting Sap pro-

duction or activity by anti-Sap antibodies or pepstatin A, without affecting the infectious fun-

gus burden [38,39] (Fig 3).

This latter observation suggests that the protective capacity of a recombinant Sap2 vaccine

[42] could be mediated by anti-inflammatory antibodies. Interestingly, both NLRP3 and

NLRC4 inflammasomes were activated during C. albicans infection, and NLRC4 and IL-22

were shown to counteract the pathogenic inflammation sustained by NLRP3 [43]. These

Fig 2. The SAP family of C. albicans contains at least ten proteins with a signal peptide and are secreted,

except Sap9 and Sap10, which remain bound to the cell wall. They are characterized by broad spectrum

proteolytic ability and virulence properties that are reported to be differentially expressed at different stages and

forms of fungus growth and disease. Sap2 (alike Sap1 and Sap3) is active at acidic pH and is dominantly

associated with yeast form of growth while Sap6 (alike Sap4 and Sap5) is more active at neutral to slightly alkaline

pH Together with the dominant Sap5, Sap6 has been associated with hyphal growth. For details, see [7] and [28].

doi:10.1371/journal.ppat.1005992.g002
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findings contrast the protective role of NLRP3 inflammasome reported for oral infections [44],

further supporting the view that pathogenic and immune mechanisms vary significantly

between vaginal and oral candidiasis [45].

Is C. albicans SAP-Induced Inflammation Shared by Other

AP-Possessing Eukaryotic Pathogens?

Inflammasome activation and inflammatory cytokine cascades are associated with the patho-

genesis of a number of diseases caused by other AP-possessing eukaryotic pathogens. Do these

APs directly or indirectly participate in inflammation? As an example, do some plasmepsins

participate in the inflammation typical of cerebral malaria (CM)? This disease is the worst out-

come of infection with P. falciparum, being lethal or causing severe cognitive deficits in cured

patients. Plasmepsin II is actively produced at the disease-critical blood stage of infection. As

recently highlighted [46], upon infection with P. falciparum, the host immune system produces

pro-inflammatory cytokines, including IL-1β, which activates endothelial cells that in turn

produce CXCL10, a chemo-attractant for mononuclear leukocytes. Very little is known about

the specific components of P. falciparum and other eukaryotic pathogens capable of

Fig 3. The proposed view of Sap-induced inflammasome activation and inflammasome-dependent cytokine

production. Sap2 and Sap6 activate the NLRP3 inflammasome pathway through an early cascade of events, causing

upstream NLRP3 inflammasome activation and downstream caspase-1-mediated cytokine production. Late events depend on

Sap endocytosis inducing the translocation of NF-κB (p50/p65) into the nucleus, pro-IL-1β and pro-IL-18 synthesis, then

(through type I IFN production) caspase-11 activation that cooperates with the NLRP3 inflammasome in triggering downstream

caspase-1-mediated cytokine production. For details about this proposed scheme of Sap/inflammasome/caspases activation,

see [38], [39], and [42].

doi:10.1371/journal.ppat.1005992.g003
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stimulating the inflammatory cascade. However, plasmepsin 4-deficient P. berghei do not

cause CM in a model of murine malaria [47]. In light of what has been found in C. albicans,
studies on the possible role of other eukaryotic APs in inflammasome activation are worthy of

being considered.
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