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Abstract
Viruses exist wherever there is life. They can cause allergy, immune response, inflammation, and even fatal diseases directly or indirectly.
Accumulating evidence shows that host RNA undergoes rapid degradation during virus infection. Herein, we focus on several possible
mechanisms of infection-induced host RNA turnover, which seems to be a common strategy for both prokaryotic and eukaryotic viruses during
the very early stage of infection and a potential application of live cell imaging on its visualization.
© 2018 Beijing You’an Hospital affiliated to Capital Medical University. Production and hosting by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Virion; Bacteriophage; Host infection; Messenger RNA decay; Live cell imaging
1. Introduction

When a virus/bacteriophage infects a host cell, it utilizes its
host's molecular machinery to replicate, efficiently generating
more than hundredfold of its progeny. In particular, the virus
relies on the ribosomes in the host cell to translate viral
messenger RNA (mRNA) into polypeptides. Many viruses
also impair the translation of cellular mRNA [1e3], one of the
mechanisms during the shift of gene expression from host to
virus, a process termed “host shutoff”, in order to prevent the
production of anti-viral, host protecting proteins [4].

Both eukaryotic and prokaryotic viruses are reported to have
numerous mechanisms during ‘host shutoff’ that are either
essential or can facilitate their propagation under changing
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environment, such as host interferon antagonist, host DNA
damage, host transcriptional and translational apparatuses
modification [5e7]. Among them, virus infection-induced host
RNA degradation has not been paid enough attention to, which
might be the very early step after viral infection in most cases.
Strict control of their gene expression regulates the timing of
host factor suppression to maximize their replication.

2. Dominant host mRNA decay pathways

mRNA decay occurs in various pathways and is highly
regulated in both eukaryotes and prokaryotes. Here we will
mainly summarize the common pathways.

In mammalian cells, a majority of mRNAs are capped by a
50 7-methyl-guanosine (m7G) and tailed by poly adenine (A) at
30 end. These features physically protect the mRNA ends from
exonucleolytic decay that remove nucleotides from 50-end
(Xrn1 mainly in the cytoplasm and Xrn2 in the nucleus) or 30-
end (the exosome complex) [8]. These structures of mRNA
also serve to recruit translation initiation machinery [9].
. Production and hosting by Elsevier B.V. This is an open access article under
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Cellular deadenylase enzyme complexes, CCR4-NOT, PAN2-
PAN3, and PARN are in charge of the deadenylation, which is
the first and often the rate-limiting step of mRNA decay,
resulting in the shortening of the poly (A) tail. Decapping
enzymes are required in some cases for their mRNA turnover
such as Dcp1, Dcp2, etc. [10].

In bacterial cells, the 30-end and 50-end of mRNA are
likewise protected from exonucleolytic decay. mRNAs are 50-
end triphosphated instead of a 50 cap and transcriptionally
terminated at 30-end with stem-loop [11], which is sometimes
followed by a poly (U) or poly (A) cluster. Endonucleolytic
cleavage via endoribonuclease is one of the basal pathways for
bacterial mRNAs such as that in Escherichia coli (E. coli)
endoribonuclease E plays an essential role in its mRNA
turnover process [12]. Another common route for bacteria
mRNA decay is that a removal of two of the triphosphates via
RNA 50 Pyrophosphohydrolase (RppH) [13] leaving a 50

monophosphate, causes the message to be destroyed by the
exonuclease RNase J, which degrades 50 to 30, such as the
mRNA turnover in Bacillus subtilis [11].

3. Virus/bacteriophage induces host RNA degradation

Promoting global mRNA degradation is reported to be one
of the host shutoff mechanisms to block host gene expression
among at least three different viral subfamilies, alpha-
herpesviruses, gammaherpesviruses and betacoronaviruses
[4,5]. Moreover, Gaglia et al.’s work showed that viral enco-
ded proteins trigger host mRNA degradation by a primary
endonucleolytic cleavage causing shutoff of host gene
expression and a host exonuclease such as Xrn1, an important
50 to 30 exonuclease in human cells, were required in subse-
quent completion of host mRNA turnover [5]. As shown in
Fig. 1A and B, nearly all viruses known drive widespread
mRNA degradation triggered by either internal endonucleo-
lytic cleavage or removal of 50 cap structure of the mRNA.

One typical example of alphaherpesviruses is herpes simplex
virus 1 (HSV-1). Virion host shutoff protein (Vhs, previously
UL41) having an RNase activity [14,15], is packaged in virions
and released after infection [16,17]. Vhs is directed to mRNAs
through interactions with the translation initiation factors eIF4H
and eIF4AI/II [18] and thus induces host mRNA decline.

Several examples of gammaherpesviruses were also char-
acterized: SOX in Kaposi's sarcoma-associated herpesvirus
(KSHV) [19] is the homolog of the alkaline exonuclease of
other herpesviruses, which has been shown to function as a
DNase involved in processing and packaging the viral genome
[20] as an endonuclease. During KSHV infection, SOX initi-
ates host mRNA degradation by its endonucleolytic cleavage
followed by rapid exonucleolytic degradation of host Xrn1
[21]. Recently, Mendez et al. demonstrated that SOX cleaves
its target mRNA without other factors by in vitro cleavage
assay [22]. Moreover, Muller et al. revealed that some mRNAs
that ‘overrided’ SOX were also degraded, suggesting multiple
viral endonucleases' existence [23].

BGLF5 in EpsteineBarr virus (EBV) plays a role in pro-
cessing non-linear or branched viral DNA intermediates in
order to promote the production of mature packaged unit-
length linear progeny viral DNA molecules [24], serves as
an endoribonuclease of host mRNA after infection [25].
Similar to BGLF5, muSOX in murine herpesvirus 68
(MHV68), which is also alkaline exonuclease homolog, a
member of the PD(D/E)XK restriction endonuclease super-
family have been demonstrated to induce host mRNA decay
after infection via endonucleolytic attack [26].

Nsp1, a protein with no known similarity to cellular or viral
nucleases from severe acute respiratory syndrome (SARS)
coronavirus (SCoV) belonging to betacoronavirus family, is
reported to induce host mRNA degradation by binding to 40S
ribosome [27,28]. Nsp1 also prevents Sendai virus-induced
endogenous IFN-b mRNA accumulation. Later Kamitani
et al. found that Nsp1 bound to host 40S ribosomal subunit and
inactivated the translational activity of the 40S subunits.
Meanwhile, Nsp1-40S ribosome complex induces the modi-
fication of the 50 region of capped mRNA template and renders
the template RNA translationally incompetent [1].

RNA endoribonuclease designated as PA-X, which is
encoded in the genome of Influenza A virus (IAV), stimulates
the decay of cellular mRNA [29]. Host RNA degradation was
also reported in IAV-infected cells, though the sensitivity of
host mRNAs to IAV-induced host shutoff varies. For example,
host proteins that facilitate viral propagation (such as the
proteins that maintain oxidative phosphorylation) are less
attacked [4,30]. This suggests that like IAV, virus infection in
fact effectively and strictly control the total pool of mRNAs in
virus-infected cells, allowing selection of host mRNAs that are
important for virus replication to persist and be translated
[4,31].

As illustrated in Fig. 1B, poxviruses use virally encoded
decapping proteins to remove the 50-cap of the mRNA
resulting in destabilization of the mRNA. A typical poxvirus,
vaccinia virus (VACV) encodes two decapping proteins, D9
and D10, and these proteins likely maintain viral stage-specific
protein synthesis as well as host cellular mRNA turnover
[32,33]. Other viruses including bunyaviruses and orthomyx-
oviruses use cap-snatching mechanisms to remove the 50-cap
and use the removed cap to protect viral RNAs [8].

Intriguingly, prokaryotic viruses such as bacteriophages
also trigger rapid host mRNA degradation. As shown in
Fig. 1C, bacteriophage T4 Srd is demonstrated to stimulate the
activity of E. coli essential endoribonuclease E via binding to
its N-terminal in order to induce host mRNA degradation
immediately after infection [34]. Though there is no homolog
of Srd found yet in bacteriophage T2 and T7, host bulk mRNA
degradation was also observed in T2- and T7- infected cells
[7]. Little is known in the case of other bacteria such as B.
subtilis yet, but host shutoff was observed in AR9 phage
infected B. subtilis cells [35]. Further research is expected on
their mRNA elimination after phage infection.

4. Conclusion and discussion

Influence of functional deficiency of viral factors that raises
host mRNA turnover on viral replication has been studied for



Fig. 1. Possible host mRNA degradation mechanisms induced by virus/bacteriophage infection [5,10,34].
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years. Functional loss of viral factors mentioned above usually
is not fatal for viral growth, but several pieces of evidence
have been also obtained that global host mRNA turnover
should be required for rapid transition of gene expression from
host to viruses and efficient viral replication [16,34,36,37]. For
instance, vhs-deficient mutant of HSV-1 results in low viru-
lence and Vhs plays a role in evasion from non-specific host
defense mechanisms during primary infection [16,36]. In
addition, Matsuura's group showed that RNA replication of
ScoV was low when nsp1 was mutated in an in vitro RNA
replica system [37]. Furthermore, from our own previous
work, bacteriophage T4 Srd could stimulate the activity of
host E. coli essential endonuclease E inducing bulk mRNA
degradation and a deletion of srd causes inefficient propaga-
tion [34]. Therefore, it is likely to be a common mechanism in
both prokaryote and eukaryote that infection with viral or-
ganisms activates the host mRNA degradation machinery for
the shift of gene expression from host to virus and thus fa-
cilitates efficient viral propagation. How this contributes to
offense immune response in mammalian cells is also an
unanswered question so far.

5. Perspective

In this concise review, we mainly focus on virus-induced
degradation of host RNAs during host shutoff, which helps
to maximize viral gene expression and thus their replication.

Mammalian viruses as well as bacteriophages evolved
unique mechanisms to propagate efficiently during infection.
Host cells respond in order to create a hostile environment for
viral replication, leading to the shutoff of mRNA translation
(protein synthesis) and the assembly of RNA granules [38].

Recently, the HIV-1 unspliced mRNA has been shown to
contain N6-methyladenosine (m6A), allowing the recruitment
of YTH N6 methyladenosine RNA binding protein 2
(YTHDF2), which is involved in mRNA decay. This indicates
that HIV-1 interacts with host mRNA decay components to
accomplish viral replication successfully [39]. This finding
implicates a novel mechanism involved in infection-induced
host RNA degradation. In addition, viruses also employ
numerous strategies to regulate the gene expression of both
host and themselves despite of host shutoff. Hepatitis B Virus
(HBV) mRNA interacting with host microRNA-122 (miR122)
was reported to have an indispensable role for viral replication
[40,41]. The interaction between viral mRNA and host
microRNA is also known to be able to facilitate Hepatitis C
Virus (HCV) replication [42].

Under development of imaging technologies, converting
virus-host interaction signals to imaging visualization will
help decipher the underlying cellular mechanisms. Single-
molecule fluorescence imaging has been reported to monitor
the entry, transport and virus-host cell interaction for some
viruses like polio virus (PV) and Adeno-associated virus
(AAV) [43]. Moreover, live cell imaging technology has also
been reported for mRNA-protein interaction, which makes it
possible to study cellular and viral gene expression directly.
Yin et al. has constructed red color mCherry-based
trimolecular fluorescence complementation (TriFC) systems,
visualized influenza A viral mRNA-protein interaction in
living cells and helped understand more about IAV mRNA
nuclear export mechanism [44]. They show that adapter pro-
teins Aly and UAP56 are able to interact with three kinds of
viral mRNAs while splicing factor 9G8 only interacts with one
mRNA [44]. Therefore, it is expectable that application of
advanced live cell imaging technology will facilitate in-depth
research on virus-induced host mRNA degradation.

In summary, comprehensive understanding of virus-
induced host shutoff and its connection in the whole process
of viral replication as well as its interaction with host response
through multiple technologies (e.g. molecular cell biological
techniques and advanced imaging methods) is crucial to
struggle with viruses. This could facilitate decoding virus-
raised diseases and may provide new insights for both novel
research tool and therapeutic strategy design for disease.
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