Carcinogenesis vol.32 no.7 pp.973-977, 2011
doi:10.1093/carcin/bgr041
Advance Access publication March 8, 2011

Targeted deletion of GSNOR in hepatocytes of mice causes nitrosative inactivation of
Os¢-alkylguanine-DNA alkyltransferase and increased sensitivity to genotoxic

diethylnitrosamine

Wei Weif, Zhiyong Yang', Chi-Hui Tang and Limin Liu*

Department of Microbiology and Immunology, University of California,
San Francisco, CA 94143, USA

*To whom correspondence should be addressed. Department of Microbiology
and Immunology, University of California, 513 Parnassus Avenue, HSE-201J,
San Francisco, CA 94143, USA. Tel: +1 415 476 1466; Fax: +1 415 502 4995;
Email: limin.lliu@ucsf.edu

S-nitrosoglutathione reductase (GSNOR), a ubiquitously ex-
pressed protein central to the control of protein S-nitrosylation,
plays critical roles in many biological systems. We showed re-
cently that GSNOR is often deficient in human hepatocellular
carcinoma and that germ line deletion of the GSNOR gene in mice
causes hepatocellular carcinoma through S-nitrosylation and pro-
teasomal degradation of the key DNA repair protein O%-alkylgua-
nine-DNA alkyltransferase (AGT). We report here the generation
of mice with targeted deletion of GSNOR in hepatocytes or in cells
of the hematopoietic lineage. We found that during inflammatory
responses induced by intraperitoneal injection of diethylnitros-
amine (DEN) or lipopolysaccharide, the amount of liver AGT
was not changed in mice with GSNOR deletion in hematopoietic
cells but was almost completely depleted in mice with GSNOR
deletion in hepatocytes. In livers of DEN-challenged mice,
GSNOR deletion in hepatocytes but not hematopoietic cells
resulted in an increase in phosphorylated histone H2AX, a well-
established marker of DNA double-strand breaks. Hepatocyte
deletion of GSNOR increased DEN-induced mortality, which
was abolished in mice deficient in both GSNOR and inducible
nitric oxide synthase. Thus, protection of AGT and resistance to
nitrosamine-induced genotoxicity critically depends on GSNOR
in hepatocytes. In addition, our findings suggest that nitrosative
inactivation of AGT from GSNOR deficiency might sensitize
cancerous cells to alkylating drugs in cancer treatment.

Introduction

Protein S-nitrosylation, the covalent modification of cysteine residues
by nitric oxide, may affect functions of a wide range of proteins and is
important to the ubiquitous influence of nitric oxide in biological
systems (1). Protein S-nitrosylation is not only influenced by nitric
oxide synthases but also prominently regulated by S-nitrosoglutathione
reductase (GSNOR), a major denitrosylase in cells (2-4). GSNOR is
expressed ubiquitously in all the cells (2,5) and serves many important
functions (2-4,6-8). Studies using GSNOR-null (GSNOR~/~) mice
showed that GSNOR is critical for protecting mice from endotoxic
and septic shock by preventing hazardous increase of protein
S-nitrosylation and extensive cell death in liver and lymphoid tissues

Abbreviations: AGT, O°-alkylguanine-DNA alkyltransferase; DEN,
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oxide synthase.LPS, lipopolysaccharide; NADH, reduced form of nicotinamide
adenine dinucleotide; PCR, polymerase chain reaction.
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(3). GSNOR deficiency impairs DNA repair and promotes hepatocar-
cinogenesis (8). GSNOR also regulates protein S-nitrosylation and
cell apoptosis in the thymus and is important for normal development
of the immune system (4). In addition, GSNOR deficiency protects
mice from experimental myocardial infarction (7) and prevents airway
hyperresponsiveness in experimental asthma (6). The diverse roles of
GSNOR in various systems, as revealed by the studies of GSNOR~/~
mice, suggest that the ubiquitously expressed GSNOR may affect func-
tions of a wide range of cells. Cell type-specific functions of GSNOR
in vivo, however, remain to be firmly established.

The key DNA repair protein O%-alkylguanine-DNA alkyltransfer-
ase (AGT) repairs highly mutagenic and cytotoxic O%-alkylguanines
by transferring the alkyl group from DNA to the enzyme active site
cysteine, resulting in irreversible inactivation of AGT and the resto-
ration of guanine (9). O%-alkylguanines are produced by alkylating
N-nitroso compounds, including dialkylnitrosamines, which are
present widely in the environment and can be formed endogenously
(10-12). O%-alkylguanines are mispaired by DNA polymerases to
thymine during DNA replication and the O%-alkylguanine:T mispairs,
through a further round of DNA replication, can result in G:C to
A:T mutations and DNA double-strand breaks, a potent trigger of
cell death (13). DNA double-strand breaks and cell death may result
from futile repair of O®-alkylguanine:T by the mismatch repair
system and require at least two rounds of DNA replication (14).
0%-alkylguanine:T mispairs also activate DNA damage responses,
which might contribute to cell death (15). Mice deficient in AGT
are more susceptible not only to tumorigenesis but also to acute mor-
tality from alkylating N-nitroso compounds (16—19).

Nitric oxide is involved in carcinogenesis, in part through its in-
fluence on DNA repair proteins (20). AGT can be inactivated by nitric
oxide and S-nitrosoglutathione (GSNO) through S-nitrosylation of the
cysteine in the enzyme active site in vitro (21,22). The studies of
GSNOR '~ mice showed that during inflammatory responses after
intraperitoneal injection of diethylnitrosamine (DEN) and lipopoly-
saccharide (LPS), lack of GSNOR in entire animals causes S-nitro-
sylation, proteasomal degradation and depletion of AGT in the liver
(8). Consequently, repair of O°-alkylguanines in the liver was im-
paired and hepatocarcinogenesis was increased. S-nitrosylation and
depletion of AGT, accumulation of O%-alkylguanines and increased
hepatocarcinogenesis were all abolished by further deletion in
GSNOR '~ mice of the inducible nitric oxide synthase (iNOS) gene,
providing additional support that AGT inactivation in GSNOR~/~
mice results from iNOS-derived S-nitrosylation of AGT. Expression
of iNOS, a major inflammatory mediator, can be induced in both
hepatocytes and inflammatory cells including Kupffer cells (23). Both
hepatocytes and non-parenchymal cells in liver express AGT (24).
Because the ubiquitously expressed GSNOR regulates protein S-nitro-
sylation, the modification affecting functions of a wide range of cells,
it is unknown whether protection of liver AGT by GSNOR in vivo
critically depends on its expression in hepatocytes, non-parenchymal
liver cells or both.

To study cell type-specific functions of GSNOR, we have generated
mice with floxed GSNOR alleles (the alleles flanked by loxP sites) and
then mice with targeted deletions of GSNOR in hepatocytes or in cells
of the hematopoietic lineage. We found that protection of liver AGT
from nitrosative inactivation in inflammatory responses critically
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depends on expression of GSNOR in hepatocytes. In addition, we
found that GSNOR-deficient mice are highly susceptible to cytotoxic
DNA damage and acute mortality from DEN treatment.

Materials and methods

Generation of GSNOR” mice

The DNA fragment from nucleotide 1801 to 10809 of the mouse GSNOR
gene (Accession number, NC_000069; region 138106128-138118463) was
subcloned from bacterial artificial chromosome clone 91m09 (Invitrogen,
Carlsbad, CA) into plasmid pL253 through recombineering (25). A LoxP
sequence with addition of an Sspl restriction site was inserted into intron 4
(after nt 7369), and an FRT-Neo-FRT-1oxP cassette (25) was introduced into
intron 6 (before nt 8824). The resulting GSNOR-targeting vector was linear-
ized by Notl and introduced into embryonic stem (ES) cells from 129sv mice
for homologous recombination (UCSF transgenic mouse facility). Neomy-
cin-resistant ES clones were screened for homologous recombination first by
polymerase chain reaction (PCR) using a neo-derived primer (Neo3'se, 5'-
GCTTCTGAGGCGGAAAGAACC-3") and a GSNOR primer (GSNOR3"as,
5"-AATGGCTCCCCAGTTCCAGCA-3") external to the homologous region
in the targeting vector. This PCR reaction detects a 2.2 kb DNA fragment
only in the cells with the targeted disruption. Further screens to identify ES
clones with correctly disrupted allele was conducted by Southern analyses of
Sspl-digested genomic DNA, using the DIG Easy Hyb system (Roche, Basel,
Switzerland) with digoxigenin-labeled 5’ (nt 848-1027) and 3’ (10863-
11293) probes that are external to the homologous region in the targeting
vector.

Correctly targeted ES clones with normal karyotype were used to generate
chimeric mice, which were subsequently bred with C57BL/6 mice to produce
F1 heterozygotes with germ line transmission of the disrupted GSNOR allele.
These F1 mice were mated with FLPeR mice (Jackson Laboratory, Bar Harbor,
Maine) to remove the FR7-flanked neo marker, and the resulting heterozygous
line with floxed GSNOR allele was referred to as GSNOR"*. The wild-type
and floxed GSNOR alleles were detected by the absence and presence of the
LoxP1 site, respectively through PCR using 5'-GATAGGTCCTTCTCTCA-
GAGA-3" and 5'-CTGGACGTTGTGTCTTCTCTT-3" primers.

Generation of mice with targeted deletion of GSNOR in hepatocytes and
hematopoietic cells

Following consecutive backcrossing to C57BL/6 mice a total of 10 times,
GSNOR"* mice, congenic to C57BL/6, were crossed with Alb-cre mice
(Jackson Laboratory). The F1 progeny, Alb-creGSNOR”+ mice, were back-
crossed to GSNOR™ mice to produce Alb-creGSNOR' mice, which were
crossed to GSNORY mice to produce Alb-creGSNOR?' and GSNOR"*
littermates for the present study. The Alb-Cre transgene was detected by
PCR genotyping with the primers 5'-ACCTGAAGATGTTCGCGATTATCT-3'
and 5'-ACCGTCAGTACGTGAGATATCTT-3’, which amplify a 370 bp
fragment (26). Similarly, GSNOR"* mice were crossed with Vav-cre mice
(Jackson Laboratory) to produce Vav-creGSNOR" and GSNOR"" mice. The
Vav-cre transgene was detected in genotyping by PCR with the primers
5'-AGATGCCAGGACATCAGGAACCTG-3' and 5'-ATCAGCCACACCA-
GACACAGAGATC-3".

DEN acute toxicity

DEN (Sigma, St. Louis, MO) was prepared in phosphate-buffered saline with-
out calcium or magnesium. Male pups were given at postnatal day 15 a single
intraperitoneal injection of DEN (37.5 or 50 pg/g body wt when indicated) to
study acute toxicity. Mice were monitored for defined periods after DEN
injection and survivors were scored. Kaplan—Meier survival analysis was done
using the GraphPad Prism software.

LPS treatment

LPS (Escherichia coli, serotype 026:B6; Sigma) at dosages of 7.5 and 10 pg/g
was injected intraperitoneally into adult female GSNOR"!, Alb-creGSNOR*
and Vav-creGSNOR”" mice. The LPS used (lot number 119K4044) contains
3 million endotoxin U/mg.

Mice thymocyte lysates

Thymocytes were obtained by grinding mice thymus through a 70 pm filter
insert in six-well plates (BD Biosciences, Franklin Lakes, NJ). Thymocytes
were collected by centrifugation and lysed in ice-cold lysis buffer [SO mM
Tris—HCI (pH = 8.0), 1 mM ethylenediaminetetraacetic acid, 150 mM NaCl,
0.1% NP-40 and 1 mM phenylmethylsulfonyl fluoride, supplemented with 1x
Complete protease inhibitor cocktail (Roche)] by sonication on a Virtis 600
Ultrasonic Disruptor (SP Industries, Warminster, PA). Protein lysates were
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transferred to a clean microfuge tube and cleared at 14 000 r.p.m. in
a bench-top Eppendorf centrifuge.

Mice liver lysates

Protein lysates from mice liver samples were prepared in ice-cold lysis buffer
[50 mM Tris—HCI (pH = 8.0), 1.0 mM ethylenediaminetetraacetic acid, 150
mM NaCl, 0.1% NP-40 and 1 mM phenylmethylsulfonyl fluoride, supple-
mented with 1 x Complete protease inhibitor cocktail (Roche)]. Liver samples
were ground on ice for 2 min, using a ceramic pestle on a Glas—Col Homog-
enizer, with speed setting at 200 r.p.m. Protein lysates were transferred to
a clean microfuge and cleared at 14 000 r.p.m. in a bench-top Eppendorf
centrifuge.

GSNOR enzymatic activity

The GSNOR activity was measured by GSNO-dependent consumption of re-
duced form of nicotinamide adenine dinucleotide (NADH) (8). Briefly, 50 pg/
ml liver lysate or 250 pg/ml thymocyte lysate was incubated with 75 uM
NADH in reaction buffer [20 mM Tris—HCI (pH 8.0) and 0.5 mM ethylene-
diaminetetraacetic acid] containing 100 pM GSNO at room temperature, and
NADH fluorescence (absorption at 340 nm and emission at 455 nm) was
measured over time to determine the initial rate of GSNO-dependent NADH
consumption.

Immunoblot

Proteins in liver homogenates were separated by sodium dodecyl sulfate—
polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes,
and probed with rabbit antiserum to GSNOR, B-actin mouse monoclonal
antibody (Sigma A-5441), goat antiserum to AGT (R&D Systems, Minneap-
olis, MN) or phosphorylated histone H2AX (y-H2AX) mouse monoclonal
antibody (JBW301; Millipore, Billerica, MA). GSNOR, B-actin and AGT were
detected and quantified with infrared fluorescent secondary antibodies—a goat
antibody to rabbit coupled to Alexa Fluor 680 (Invitrogen), a goat antibody to
mouse coupled to IRDye 800 (Rockland Immunochemicals, Gilbertsville, PA)
and a donkey antibody to goat coupled to Alexa Fluor 680 (Invitrogen)—with
an infrared fluorescence imaging system (Odyssey; LI-COR Biosciences,
Lincoln, NE). AGT was also detected with a donkey secondary antibody to
goat coupled to horseradish peroxidase and SuperSignal West Femto Chemi-
luminescent Substrate (Thermo Fisher Scientific, Rockford, IL). y-H2AX was
detected with a goat secondary antibody to mouse coupled to horseradish
peroxidase and SuperSignal West Pico Chemiluminescent Substrate (Thermo
Fisher Scientific).

Statistical analysis

Kaplan—Meier survival curves were analyzed by the log-rank test. Survival
rates were analyzed by the Fisher’s exact test of contingency tables. All the
other data were analyzed with the Student’s #-test.

Results

Increased sensitivity of GSNOR™~ mice to acute DEN toxicity

During the study of DEN-induced hepatocarcinogenesis in GSNOR~/
~ mice, we noticed that when challenged with a relatively high dose of
DEN (25 pg/g), many GSNOR~/~ mice died unexpectedly in a few
days following the DEN challenge (supplementary Figure S1 is avail-
able at Carcinogenesis Online). To confirm and further investigate the
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Fig. 1. Increased sensitivity of GSNOR~/~ mice to acute DEN toxicity.
Kaplan—-Meier survival curves of wild-type (WT, n = 23), GSNOR "~ (KO,
n = 22), and iNOS™~GSNOR~~ (DKO, n = 20) mice following
intraperitoneal injection of DEN (37.5 ug/g). Survival of GSNOR '~ mice
was significantly lower than that of wild-type (P < 0.002, log-rank test) or
iNOS™~GSNOR '~ (P < 0.006) mice.
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Fig. 2. Generation of GSNOR"" mice. (A) Strategy for conditional targeting of the GSNOR gene. The structures of the targeting vector, wild-type and targeted
GSNOR alleles are shown. The restriction sites used for construction of the targeting vector and Southern analysis are: S, SspI and N, Notl. Cassettes PGK-Neo and
MCI-TK are the selectable genes neo and tk under the control of PGK and MCI promoters, respectively. Double-headed arrows represent expected fragments of the
wild-type (wt) and disrupted (mutant) GSNOR alleles in Southern analyses with Sspl restriction and the indicated 5’ or 3" probe. Neo3’se and GSNOR3" as are the
PCR primers used to detect the targeted allele. Filled triangles represent loxP sites and empty triangles represent FRT sites. (B) Southern blot of Ssp I-digested
genomic DNA with the 5’ (left) and 3" (right) probes identified and confirmed five ES cell clones that carry the correctly targeted GSNOR allele (mutant). (C)
Genotyping by PCR to detect floxed (Gf) and wild-type GSNOR alleles in transgenic mice. (D) GSNOR activity in livers of wild-type (G™'*) and homozygous
GSNOR (G"f) mice. Data (mean =+ standard deviation) are from three wild-type and three GSNOR"f mice.

hypersensitivity to acute DEN toxicity from GSNOR deficiency, we
studied the survival patterns following DEN challenge in wild-type,
GSNOR~~ and iNOS~/~GSNOR~/~ mice (Figure 1). We found that
most wild-type mice survived well but ~60% of GSNOR~/~ mice
died within 2 weeks following DEN challenge. Most death of the mice
in this experiment occurred between 7 and 9 days after DEN injection,
indicating delayed death that probably resulted from a secondary
response to DEN toxicity. The increased mortality of GSNOR~/~
mice after DEN injection was abolished in iNOS~~GSNOR~/~ mice
(Figure 1). Thus, GSNOR~/~ mice are highly susceptible to acute
DEN toxicity and the increased sensitivity of GSNOR~~ mice to
DEN is due to iNOS activity. Our data therefore suggest that GSNOR,
through metabolizing iNOS-derived GSNO, protects mice against
acute DEN toxicity.

Generation of mice with targeted deletion of GSNOR in hepatocytes
and hematopoietic cells

To generate mice with a floxed GSNOR allele, a GSNOR-targeting
construct (Figure 2A), in which exons 5 and 6 of the GSNOR gene
were flanked by a loxP sequence and an FRT-Neo-FRT-loxP cas-
sette, was introduced into ES cells for homologous recombination.
ES cells with correctly targeted GSNOR allele, as indicated by
Southern analyses using both 5’ and 3’ probes external to the
homologous region in the vector (Figure 2B), were used to generate
chimeric mice. By breeding the chimeras with C57BL/6 mice, we
obtained F1 heterozygotes with germ line transmission of the dis-
rupted GSNOR allele. These F1 mice were bred with FLPeR mice
to remove the FRT-flanked neo marker, and the resulting heterozy-
gous line with floxed GSNOR allele was referred to as GSNOR+
(Figure 2C). The GSNOR* mice were backcrossed consecutively
to C57BL/6 mice a total of 10 times to make the transgenic mice
congenic to C57BL/6. Analysis of GSNOR activity in tail, liver and
thymocytes indicates that insertion of the loxP sequences in the
GSNOR allele has little effect on the expression and activity of
GSNOR (Figure 2D and data not shown).
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Fig. 3. Targeted deletion of GSNOR in hepatocytes and hematopoeitic cells
in mice. (A) Genotyping GSNORf (G7) and Alb-creGSNOR littermates
by PCR using primers specific to the floxed allele of GSNOR (even lanes) and
the Alb-cre transgene (odd lanes). (B) Genotyping GSNOR"f and Vav-
creGSNORf littermates by PCR using primers specific to the floxed allele of
GSNOR (even lanes) and the Vav-cre transgene (odd lanes). (C) GSNOR
activity in liver and isolated thymocytes from Alb-creGSNOR"! and
GSNOR mice. Data (means + standard errors) are from 3 to 5 mice. (D)
GSNOR activity in liver and isolated thymocytes from Vav-creGSNOR" and
GSNOR mice. Data (means + standard errors) are from 3 to 5 mice.

To delete GSNOR selectively in hepatocytes in mice, we generated
Alb-creGSNORYf mice by crossing GSNORY+ mice with Alb-cre
transgenic mice (26) (Figure 3A). Alb-cre transgene expresses the
Cre recombinase from a rat albumin promoter and drives deletion
of floxed DNA fragments in hepatocytes (26). Whereas GSNOR
activity in thymocytes of Alb-creGSNORYf mice was not changed
compared with GSNOR™' control, GSNOR activity and protein level
were greatly reduced in livers of Alb-creGSNORYf mice, indicating
efficient and selective deletion of GSNOR in hepatocytes in the mice
(Figure 3C and Figure 4).
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Fig. 4. AGT protein is depleted in livers of Alb-CreGSNORY mice after
DEN or LPS challenge. (A and B) Immunoblot of AGT, B-actin and GSNOR
in livers of Alb-creGSNOR" (A), Vav-creGSNOR"" (B) and GSNOR"*
littermates 6 days after DEN (50 pg/g) injection. (C) Immunoblot of AGT,
fB-actin and GSNOR in livers of the mice before or 24 h after a single
intraperitoneal injection of LPS (10 pg/g).

To generate mice deficient of GSNOR only in cells of the hemato-
poietic lineage, we crossed GSNOR”" mice with Vav-cre transgenic
mice (Figure 3B), which expresses the Cre recombinase mostly in the
hematopoietic cells including inflammatory cells (27). We found that
GSNOR activity was absent in thymocytes of Vav-creGSNORf mice,
indicating efficient deletion of GSNOR in the hematopoietic cells in
the mice (Figure 3D). GSNOR activity was slightly reduced in liver of
Vav-creGSNOR " mice, probably from deletion of GSNOR in Kupffer
cells, the resident macrophages in liver (Figure 3D).

Depletion of AGT in livers of DEN- and LPS-challenged
Alb-creGSNOR mice

GSNOR deficiency, inthe model of DEN challenge, results in nitrosative
inactivation of liver AGT in GSNOR /'~ mice (8). We found
by immunoblot analysis that after DEN challenge, the abundance of
AGT protein in the liver of Alb-creGSNORY mice was much lower
than that in GSNORY littermates (Figure 4A). In contrast, the
amount of liver AGT was comparable between DEN-challenged
Vav-creGSNORYf and GSNOR™! mice (Figure 4B). Thus, protection
of liver AGT largely depends on expression of GSNOR in hepato-
cytes. GSNOR deficiency in GSNOR~/~ mice also results in nitro-
sative inactivation of liver AGT following LPS challenge, another
model of nitrosative stress from inflammatory response (8). We found
that mouse survival was reduced from hepatocyte deletion of GSNOR
two days after an intraperitoneal injection of LPS (supplementary
Figure S2 is available at Carcinogenesis Online). Importantly, in the
LPS model, AGT abundance was greatly reduced in the liver of Alb-
creGSNORf mice compared with GSNOR? and Vav-creGSNOR
mice (Figure 4C). Our data thus suggest that hepatocyte GSNOR
critically protects liver AGT from nitrosative inactivation in
inflammatory responses induced in various biological processes.

Increase of y-H2AX in livers of DEN-challenged Alb-creGSNOR"
mice

AGT deficiency is expected to impair repair of O%-alkylguanines and
persistent O%-alkylguanine lesions can result in stalled DNA replica-
tion and DNA double-strand breaks (13). We therefore probed the
induction of y-H2AX, a well-established marker of DNA double-
strand breaks. We found that 6 days after DEN injection, y-H2AX
was absent in the livers of GSNOR"f and Vav-creGSNORY mice
but substantially induced in the livers of Alb-creGSNORYf mice
(Figure 5). Thus, the data suggest that GSNOR deficiency in hepato-
cytes, but not in inflammatory cells, may increase DEN-induced DNA
double-strand breaks in the liver.

Increased mortality in DEN-challenged Alb-creGSNOR mice
Although DEN is predominantly a hepatotoxin, it also targets other
organs (28). We found that following DEN challenge, GSNORf and
Alb-cre mice survived well but ~60% of Alb-creGSNOR! mice died
(Figure 6A). In contrast, Vav-creGSNORY! mice survived as well
as GSNOR littermates after DEN treatment (Figure 6B). Thus,
protection against acute mortality from DEN depends on GSNOR
in hepatocytes.
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Fig. 5. Increase in y-H2AX in livers of Alb-CreGSNOR"f mice after DEN
challenge. Immunoblot of y-H2AX and B-actin in livers of GSNOR, Alb-
creGSNOR"f and Vav-creGSNOR mice before or 6 days after DEN
injection.
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Fig. 6. Targeted deletion of GSNOR in hepatocytes increases mice
sensitivity to acute DEN toxicity. (A) Survival of Alb-creGSNOR" mice
(n = 17) in 6 days after DEN injection was significantly lower than that of
GSNOR"f mice (n = 10; P < 0.004) and Alb-cre mice (n = 10; P < 0.004).
**P < 0.004, Fisher’s exact test. (B) Survival of Vav-creGSNOR"f mice

(n = 12) in 6 days after DEN injection was comparable with that of
GSNOR" mice (n = 11).

Discussion

Our results suggest that protection of AGT from nitrosative inactiva-
tion critically depends on GSNOR, likely through its cell-autonomous
function in hepatocytes. We showed previously that during inflamma-
tory and immune responses, liver AGT is highly susceptible to
nitrosative inactivation in mice completely lacking GSNOR (8).
The ubiquitously expressed GSNOR affects multiple cellular pro-
cesses in hepatocytes, immune cells and other cells (2—4,6-8), raising
the question as to whether the protection of liver AGT in vivo critically
depends on GSNOR in hepatocytes. AGT activity in the liver, which is
much higher in hepatocytes than in non-parenchymal cells, is mostly
in hepatocytes (24). Because most AGT in livers of DEN- or LPS-
treated Alb-creGSNORf mice was depleted, AGT activity in hepato-
cytes is most likely depleted in the mice. This notion is supported by
the fact that DEN treatment of GSNOR~/~ mice resulted in a signif-
icant increase in O%-alkylguanines in the liver (8). Thus, hepatocyte
GSNOR appears to be critical for protection of AGT in hepatocytes. In
contrast, liver AGT was not depleted in DEN-challenged Vav-creGS-
NOR mice, indicating that protection of hepatocyte AGT does not
critically depend on the function of GSNOR in Kupffer or other
immune cells. Increased DNA double-strand breaks in the livers of
DEN-treated Alb-creGSNOR' mice further support the important
role on DNA repair by GSNOR in hepatocytes. GSNOR is often de-
ficient in cells of hepatocellular carcinomas through somatic muta-
tions in human (8,29,30). Our current findings thus provide further
support for the hypothesis that GSNOR deficiency may result in nitro-
sative inactivation of AGT and contribute significantly to hepatocar-
cinogenesis in human.

Our findings of increased mortality from DEN challenge by
GSNOR deficiency are consistent with its prominent effect on nitro-
sative inactivation of AGT. Alkylating N-nitroso compounds,
including dialkylnitrosamines, cause cytotoxic O°-alkylguanines
and increase mortality when repair of O%alkylguanines is impaired
from AGT deficiency (16,18,19). The temporal pattern of death in
DEN-treated GSNOR /'~ mice is comparable with that in methylni-
trosourea-treated AGT-null mice and is indicative of a secondary
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response to persistent O%-alkylguanines (18). Whereas methylnitro-
sourea is a direct alkylating agent that does not require metabolic
activation, DEN requires activation by P450 enzymes (28). Whereas
methylnitrosourea-induced death results largely from the cytotoxicity
on cells of hematopoeitic lineage (17), the mechanism of DEN-in-
duced mortality is less clear. DEN targets mainly hepatocytes but also
other cells including Kupffer cells (31,32). Our findings of increased
mortality from DEN challenge in Alb-creGSNORYf but not Vav-
creGSNOR' mice suggest that death induced by DEN may well
result from its effect on hepatocytes. Our results thus show that
GSNOR deficiency in hepatocytes increases sensitivity of the cells
to the genotoxic and cytotoxic effects of DEN, a representative of
alkylating carcinogens.

The findings of the cell-autonomous effects of GSNOR deficiency
on AGT and cell sensitivity to an alkylating agent might have impli-
cations in cancer treatment using chemotherapeutic alkylating agents.
Sensitivity of cancer cells to alkylating drugs is affected by AGT
activity of cancerous cells in glioma and other cancers (11). AGT
activity can be reduced at the level of transcription of AGT through
the methylation of its promoter (11) and as shown by our results, also
at the level of protein stability through nitrosative inactivation. The
human GSNOR gene is in chromosome 4q, which is frequently lost in
glioma and lung and other cancers (33). Thus, nitrosative inactivation
of AGT from GSNOR deficiency might play a role in cellular
responses to alkylating drugs in cancer treatment.

In summary, we found that protection of AGT and resistance to
genotoxicity from an alkylating agent critically depends on GSNOR
expressed in hepatocytes. Our findings further define the role of
GSNOR in a mechanism potentially important to carcinogenesis
and in addition, might have implications in chemotherapeutic treat-
ment of cancer. GSNOR"" mice and related conditional knockout
mice would provide a valuable means to study cell type-specific
functions of GSNOR, a ubiquitous denitrosylase playing important
roles in many biological systems.

Supplementary material

Supplementary Figures S1 and S2 can be found at http://carcin.
oxfordjournals.org/
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