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Abstract: The reductions of industrial pollution and greenhouse gas emissions are important actions
to create an ecologically stable civilization. However, there are few reports on the interaction and
variation between them. In this study, the vertical and horizontal scatter degree method is used to
calculate a comprehensive index of industrial pollution emissions. Then based on carbon density,
a geographically and temporally weighted regression (GTWR) model is developed to examine the
interaction between industrial pollution emissions and carbon emissions. The results specify that
there exists spatial autocorrelation for carbon density in China. Overall, the average effect of industrial
pollution emissions on carbon density is positive. This indicates that industrial pollution emissions
play a driving role in carbon density on the whole, while there are temporal and spatial differences in
the interactions at the provincial level. According to the Herfindahl index, neither time nor space can
be neglected. Moreover, according to the traditional division of eastern, central and western regions
in China, the situation in 30 provinces is examined. Results show that there is little difference in the
parameter-estimated results between neighboring provinces. In many provinces, the pull effect of
industrial pollution emissions on carbon density is widespread. Thus, carbon emissions could be
reduced by controlling industrial pollution emissions in more than 60% of regions. In a few other
regions, such as Shanghai and Heilongjiang, the industrial pollution emissions do not have a pull
effect on carbon density. But due to spatial and temporal heterogeneity, the effects are different in
different regions at different times. It is necessary to consider the reasons for the changes combined
with other factors. Finally, the empirical results support pertinent suggestions for controlling future
emissions, such as optimizing energy mix and reinforcing government regulation.

Keywords: industrial pollution emissions; vertical and horizontal scatter degree method; carbon
density; GTWR

1. Introduction

Carbon emissions have been a topical issue within the international community [1]. China is
the world’s largest energy consumer and it has been the world’s largest carbon emitter [2]. In 2007,
China’s carbon emissions exceeded those of the United States of America [3]. In the 21st century, the
growth of global carbon emission intensity has been mainly driven by China [4]. Under the pressure
of international emission reduction targets and the need to improve domestic environmental quality,
a series of emission reduction commitments have been put forward by China’s national government.
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For example, compared with that in 2005, the carbon emission intensity in 2020 and 2030 will be
lowered by 40–45% and 60–65% [5], respectively. Furthermore, the peak of carbon emissions will
occur around 2030 [6]. In order to achieve carbon reduction targets, the Chinese government has
made efforts, such as making strategy changes to the control methods, launching the national carbon
emissions trading market, and proposing plans to impose carbon tax [7–9]. China is now in a critical
period of economic transition and cannot eliminate the country’s dependence on fossil energy in the
short-term. How to realize the committed carbon emission reduction targets has been a key question
in China for several years.

Carbon emissions refer to carbon dioxide emissions. Besides its natural formation, CO2 is mainly
created by fossil energy combustion [10], especially combustion arising from industrial activities. Thus,
in industrial production processes, an important question is whether the wastewater, exhaust gas and
waste residue that are generated have effects on carbon emissions. To date, few studies have been
reported which incorporate industrial pollution emissions into the carbon emission system [11,12].
If these two facets are related, there must be a logical connection. For one thing, industrial pollution
emissions and carbon emissions have the same root: combustion of fossil fuel. In the combustion
process, fossil energy can emit air pollutants such as sulfur dioxide, smoke and dust, as well as
climate-harming pollutants such as CO2. Additionally, industrial pollution emissions are mainly
manifested in wastewater, exhaust gas and solid waste residue. Accompanying the treatment
of these waste streams is the release of a massive amount of CO2. For example, during aerobic
treatment of wastewater to remove carbonaceous organic matter (OM), degradation of 1 kg of OM by
microorganisms generates 2.02 kg of CO2 [13]. In 2004, an equivalent of 0.137 billion metric tons of CO2

in global greenhouse gas emissions were derived from the treatment of wastewater and solid waste
residues [13]. The discharge of industrial wastewater is large, and the constitution of the wastewater is
complex. Carbon dioxide emissions are also produced in the combustion process of industrial waste
gas and industrial solid waste. It can be seen that the treatment of industrial pollution emissions
will produce carbon dioxide emissions, which is inevitable. The close relationship between industrial
pollution emissions and carbon emissions makes it necessary to incorporate industrial pollution
emissions into the carbon emission system.

The interaction between industrial pollution emissions and carbon emissions can be considered
from two aspects. One is the influence of industrial pollution emissions on carbon emissions, and the
other is the influence of carbon emissions on industrial pollution emissions [14]. To provide a reference
for carbon reduction targets, the study addressed the following problems: (1) whether industrial
pollution emissions have pull effect on carbon emissions; (2) whether emission reduction can be
promoted by the pull effect and, if so, in which regions; (3) over time whether the relationship between
industrial pollution emission and carbon emission changes. The answers to these questions will provide
reference for the identification of a time-space relationship between industrial pollution emissions and
carbon emissions, as well as useful information for the realization of carbon reduction targets.

At present, only a few reports link industrial pollution emissions and carbon emissions, and
few reports investigate the relationship between the two emissions. Against the background of
emission reduction, most scholars have focused on identifying and analyzing driving factors and
mechanisms influencing carbon emissions. In these studies, carbon emissions are mostly characterized
by the total carbon emissions, per capita carbon emissions and carbon emissions per unit of gross
domestic production (GDP) [15–17]. In China, the economic scale [18,19], energy mix [20], energy
intensity [21], technical level [22,23], industrial structure [24,25] and opening of Chinese society to
the outside world [26] serve as significant explanatory variables to investigate carbon emissions.
Carbon emissions are mainly derived from the utilization of fossil energy. Due to the advantage of
natural resources endowment, growth of the Chinese economy relies on the excessive consumption of
fossil energy. The extensive production mode is limited by the technical level and economic condition
of China’s industrial base, in which the energy use efficiency is low. The industrial structure is partial
to heavy industrialization. All these characteristics of industry in China increase the complexity of
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the carbon emission issue. In theory, the application of technology can improve energy efficiency.
However, the positive effect of technological factors on carbon emission reduction has not been verified
comprehensively. If the technical level in an energy-consuming industry is low, capital investment,
experimentally research and personnel management will increase the cost of technology and reduce
the efficiency of energy utilization. Furthermore, there may be an energy rebound effect. A relatively
high technical level that favors greater production causes higher energy consumption and generates
more waste, both of which reduce the positive impact of improved energy use efficiency. For China,
the opening of society to the outside world involves opening the local environment, demonstration
and positive externality of foreign-funded enterprise, and the effects of these changes on carbon
emissions have not been confirmed completely. In addition, the rate of renewable energy usage [27],
urbanization [28], population size [29] and policy and regulation [30] have been shown to be common
explanatory variables of carbon emissions.

In 2015, Chinese government proposed the “13th Five-Year Plan” [31], which represents the
Chinese government’s plan for economic and social development in 2016–2020 [32], clarifying the
focus of work, setting goals and indicating directions. In the “13th Five-Year Plan”, energy-saving
and emission-reduction targets in China change from the simple target of total emission reduction
to the dual targets of environmental quality improvement and controlling the total amount of
pollutants. At present, the research on industrial pollution emissions is concentrated mainly on
two aspects of this problem [33]. The first is the measurement of industrial pollution emission
levels by weighted summation of various emissions [34]. The common methods for performing this
calculation are the vertical and horizontal scatter degree method and the entropy weight method.
The emphasis in both methods is to calculate the weights (i.e., proportional importance) of emissions
from different sources. Alternatively, one or several typical pollutants (e.g., sulfur dioxide emissions,
smoke and dust emissions, nitrogen oxide emissions, etc.) can be selected to represent the industrial
pollution emission level [35]. Additionally, when measuring and monitoring industrial emissions,
environmental performance index is employed by some institutions and scholars [36,37]. The second
aspect of industrial emission research is the exploration of factors influencing industrial pollution
emissions, including economic scale [38], technological factors [39], environmental regulation [40],
energy intensity [41], ownership structure [42]. A review of existing literature indicates that the factors
affecting industrial pollution emissions and carbon emissions have similar characteristics. To some
extent, this similarity indicates that there exists a possible synergistic emission reduction strategy for
both types of emissions.

China has a vast territory. Because the variables affecting carbon emissions exhibit the spatial
heterogeneity characteristics, there exists great uncertainty in the research about carbon emission
reduction [43]. To accurately reflect the degree to which each factor influences carbon emission,
pertinent investigations at the regional level are more scientific and rational than those at a smaller
or larger scale. The commonly used spatial econometric methods include spatial autocorrelation
analysis (see Appendix A) [44,45], spatial lag models [46], spatial error models [47], geographically
weighted regression models [48,49]. However, some spatial analysis methods are limited to the use
of cross-section data or pay too much attention to spatially heterogeneous effects, while ignoring
temporal fluctuations and spatial correlation. Furthermore, the effects of surrounding areas on a
specific locality due to adjacent spatial locations are also neglected. Thus, the parameter regressions
developed for a region can be biased to some extent.

A review of existing research shows that although the factors influencing the characterization
of carbon emissions have been widely studied, the carbon emission system factors are complex.
Furthermore, some variables that are not easy to observe have been omitted, and the effects of
other variables on carbon emissions have been ignored, leading to the development of incomplete
regression relationships. The economic developmental levels are imbalanced throughout China.
Although different results can be obtained from the spatial econometric analysis method according
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to the differences in the actual situation among provinces, the time effect is not included, and the
accuracy in the parameter estimation is reduced.

To address the inadequacies in existing research, this study extends it in the following ways:
(1) in contrast to previous carbon emission indicators, calculations are made according to the carbon
emissions per region. Since carbon emissions are characterized by carbon density, the effects of social
factors are minimized as much as possible. In addition, using the vertical and horizontal scatter
degree method, the weights of several typical pollutants are determined, making estimates of the
industrial pollution emission level more comprehensive and accurate. The indicator system includes
industrial sulfur dioxide emissions, industrial smoke (powder) dust emissions, industrial waste water
emissions, production of industrial solid waste. (2) Industrial pollution emissions are incorporated
into the carbon emission system. The relationship between the industrial pollution emissions and
carbon density is also investigated. Moreover, it is examined whether there exists the possibility of
synergistic emission reduction. In some literature, a synergistic emission reduction is assumed as the
given condition, and on this basis the emission reduction is explored. But the possible influence on
carbon emissions due to industrial pollution emission reduction activities is neglected. This study will
address this gap. (3) The relationship between industrial pollution emissions and carbon emissions
not only depends on current activities, but also may be affected by conditions in previous periods.
When time is considered nonstationary and embedded into the econometric model, the accuracy of
estimated results is improved, and the reliability is also reinforced. Moreover, as time passes, the
spatial and temporal change characteristics of parameter estimation in different geographical units
can be investigated. This provides more detailed information for policy makers. The remainder of
this paper is divided as follows: Section 2 describes the methodology and data. Section 3 presents the
results and analysis. Finally, we present the conclusions of this study.

2. Methodology and Data

2.1. Methodology

2.1.1. Vertical and Horizontal Scatter Degree Method

The vertical and horizontal scatter degree method is mainly used to highlight the difference of the
most distant research object. By establishing a time sequence three-dimensional data table, the weights
are calculated, and the comprehensive index is obtained. The calculation process is as follows:

1. Data standardization:
x∗m,n,t = (xm,n,t − xn,t)/δn,t (1)

where m represents the province, and m = 1, 2, ..., 30. n is the index, and n = 1, 2, 3, and 4. t is the
year, and t = 1997, 1998, ..., 2015. X*m,n,t represents the value of a parameter after standardization.
xm,n,t is a “raw” datum before standardization. xn,t is the mean value of n indexes in 30 provinces
in year t. δn,t is the standard deviation of n indexes in 30 provinces in year t.

2. Calculation of the real symmetric matrix:

Xt =

 x∗1,1,t · · · x∗1,4,t
...

. . .
...

x∗30,1,t · · · x∗30,4,t

 (2)

Ht = XT
tXt (3)

H =
2015

∑
t=1997

Ht (4)

where Ht and H are the real symmetric matrices, and XT
t is the transpose matrix of Xt.
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3. Calculation of the comprehensive index:

Xm,t = 2 +
4

∑
n=1

wn · x∗m,n,t (5)

where Xm,t is the comprehensive index in province m in the year t. wn is the weight, which is
the normalization of the eigenvector corresponding to the maximum eigenvalue of H. x*m,n,t is
the value after the standardization. To facilitate the logarithmic processing of variable data, the
calculation is magnified [50].

2.1.2. Geographically and Temporally Weighted Regression Model

According to Appendix B, the ordinary least square (OLS) is a global regression model. It is
assumed that the data acquired at many different geographical positions are equivalent to different
data acquired at the same geographical position [51]. The geographical weighted regression (GWR) is
the local regression model, which introduces the spatial attribute of a sample, but is only applicable to
the cross-section data [52]. Based on GWR, the time effect is embedded in GTWR, which can reflect
spatial and temporal change characteristics [53]. Thus, the reliability of a regression determined using
GTWR is relatively high.

The core of GTWR is the space-time weight matrix. Based on the spatial weight of GWR, the time
factor is added into the weight of GTWR. The spatial weight of GWR is calculated using the spatial
weight function, most commonly the Gaussian kernel function. According to the setting of weight
function method, the weight is relatively sensitive to the selection of band width. In this study, the
optimal band width is determined using the cross-validation method. The fundamental process is
described as follows:

The GTWR model is:

yi = β0(ui, vi, ti) +
n

∑
j=1
βj(ui, vi, ti)xij + εi (6)

where i is the province, and i = 1, 2, ..., 30. j is the index, and j = 1, 2, ..., n. yi and xi are the
explained variable and explanatory variable, respectively. β0 and βj are the regression constant and
regression parameter, respectively. (ui, vi) is the geographic coordinates, and (ui, vi, ti) is the space-time
coordinates in ith province. εi is the residual term.

The space-time distance between the i-th and j-th province is:

dij =

√
α
[
(ui − uj)

2 + (vi − vj)
2
]
+ β(ti − tj)

2 (7)

According to the Gaussian kernel function, the weight of the sample point j relative to i is:

wij = exp(−dij
2/h2) (8)

where, h is the band width, which is calculated using the cross-validation method, that is, the minimum
sum-squared error rule:

minCV = ∑
[
yi − ŷ 6=i(h)

]2
(9)

The space-time weight matrix is:

W(ui, vi, ti) = diag(wi1, wi2, . . . , win) (10)
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The parameter estimation using the GTWR model is:

β̂(ui, vi, ti) =
[
XTW(ui, vi, ti)

2X
]−1

XTW(ui, vi, ti)
2Y (11)

2.2. Data Specification

In the study, carbon density is selected as the explained variable, and the comprehensive index
of industrial pollution emissions is designated the core explanatory variable. After eliminating
collinearity among data, the control variables are economic growth, opening to the outside world,
industrial structure, technological advances and population density. Carbon dioxide emissions are
calculated for three fossil energy sources (coal, petroleum and natural gas), and the calculation process
is as follows:

C =
3

∑
i=1
αi · Ei (12)

where i = 1, 2, 3. C represents CO2 emissions. αi is the carbon emission coefficient of the ith energy
source. Ei is the consumption of the i-th energy source. The carbon emission coefficients for the three
energy sources refer to the research of Hu and Huang [54] and Dong et al. [55], as well as reports from
the Intergovernmental Panel on Climate Change [56].

To eliminate the effect of heteroscedasticity, a logarithmic transform is carried out for each variable,
and the resulting model expression for CD is as follows:

ln CDit = αit + β1it ln IPD + β2it ln GDPP + β3it ln OP + β4it ln IS + β5it ln TA + β6it ln PD + εit (13)

where i is the province, and i = 1, 2, ..., 30. t is the year, and t = 1997, 1998, ..., 2015. αit represents
the intercept term, and βit is the regression parameter of corresponding variable in the ith province.
εit is the residual term. CD is carbon density. IPD is the comprehensive index of industrial pollution
emissions. GDPP is economic growth. OP represents the opening to the outside world. IS represents
the industrial structure. TA is technological advances, and PD is population density (see Table 1).
Data (see Table 2) is from the China Statistical Yearbook and China Land Resources Yearbook.

Table 1. Definition of all variables.

Variable Definition Variable Definition

Carbon density (CD) Carbon dioxide emissions/administrative
land area (10 K·t/Km2)

Industrial structure
(IS)

Second industry added
value/GDP (%)

Industrial pollution
emissions (IPD) Comprehensive index Technological

advances (TA)
Energy consumption/GDP
(t/10 K·yuan)

Economic growth
(GDPP) GDP/total population (yuan) Population density

(PD)
Total population/administrative
land area (ren/Km2)

Opening to the outside
world (OP) Total imports and exports/GDP (%)

Table 2. Statistical description of all variables.

Variable Mean Median Max Min Std. Dev.

Carbon density 0.261 0.113 3.544 0.002 0.514
Industrial pollution emissions 2.000 1.986 3.175 0.570 0.405

Economic growth 17,169.490 13,393.418 69,336.200 2195.508 12,857.210
Opening to the outside world 0.330 0.126 12.806 0.032 0.653

Industrial structure 46.470 47.700 61.500 19.700 7.599
Technological advances 1.755 1.519 5.088 0.510 0.900

Population density 0.041 0.027 0.383 0.001 0.057
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2.3. Framework of the Research

An overview of the research framework used in this study is shown in Figure 1. Against the
background of carbon emission reduction, the role of industrial pollution emissions in carbon emissions
is studied. Observing the spatial distribution characteristics of carbon density, it is found that with
the advancing of time, obvious changes take place in different regions. Moran’s I indicates obvious
spatial correlation of carbon density. The spatial correlation of industrial pollution emissions became
increasingly obvious, justifying its inclusion as a variable in the GTWR model. Using the Herfindahl
index, the heterogeneity of space and time is decomposed. The variations in the space-time effects of
industrial pollution emissions on carbon density are observed. Finally, some pertinent suggestions
based on the research results are developed.Int. J. Environ. Res. Public Health 2018, 15, x  7 of 22 
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3. Results and Analysis

3.1. Spatial Distribution Characteristics

There exist obvious spatial difference between CD and industrial pollution emission levels.
As time progresses, variations in both indicators appear in some provinces. Figures 2 and 3 specify the
regional differences in CD (the unit is 10 K·t/Km2). In East China and North China, CD is was always
higher than elsewhere. In 2015, CD was the highest in Shanghai (3.299) and Tianjin (1.272), but in all
other provinces it was less than 1. However, the average annual growth rate in CD was the largest in
the northwest region. In Ningxia, Xinjiang and Qinghai, the growth rate was consistently relatively
high. During 1997–2015, the growth rate of CD was 12.9% in Ningxia (the highest nationwide), and
was 9.9% and 7.7% in Xinjiang and Qinghai, respectively. In Shanghai and Beijing, the average annual
growth rate of CD was 3.6% and 1.9%, respectively, which was the smallest in China.Int. J. Environ. Res. Public Health 2018, 15, x  9 of 26 
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Figures 4 and 5 show the regional differences in the industrial pollution emission levels. In most
years, the industrial pollution emissions were the highest in Shandong. During 1997–2002, industrial
pollution emissions declined in the most regions of Circum-Bohai-Sea Region and its radiation circle.
However, there appeared to be a higher level of industrial pollution emissions in a portion of the
western region from 2006.
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Figure 5. Industrial pollution emissions in 2015.

In Sichuan, Xinjiang and Gansu, industrial pollution emissions were greater than 2, and were
higher than the national average. The average growth rate in industrial pollution emissions was higher
in the central and western regions than elsewhere. Henan exhibited the highest growth rate (5.4%),
followed by that in Sichuan (4.7%) and Hunan (3.8%). The average growth rate in industrial pollution
emissions in the eastern region was lower than in the central and western regions, and was negative in
Shandong, Jiangsu and Shanghai.
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3.2. Spatial Correlation Characteristics

Spatial correlation analysis is carried out for the CD and industrial pollution emissions during
1997–2015, and the Moran’s I of CD is positive. The z-values always exceed the critical value (1.96),
indicating that at the 0.05 level of significance, there exists significant spatial autocorrelation for CD.
Figure 6 shows that the values of Moran’s I for CD appear to be increasing, which suggests that the
positive spatial autocorrelation is gradually reinforced over time. The changes in Moran’s I values
for industrial pollution emissions present differences from those for CD, but all pass the z-test for
significance at the 0.01 and 0.1 of levels in 2014 and 2015. Thus, industrial pollution emissions gradually
exhibit positive spatial autocorrelation over time.
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3.3. Analysis of Parameter Estimates

Based on the provincial panel data during 1997–2015, the goodness of fit of the model GTWR is
99.66%. The test of spatial autocorrelation on the residual of the regression shows that the residuals in
all years are distributed randomly (see Table 3), indicating a strong regression and high reliability of
the model.

Table 3. Spatial autocorrelation test of the residual.

Year Z-Test Year Z-Test Year Z-Test Year Z-Test

1997 0.629 * 2002 0.542 * 2007 0.252 * 2012 −0.600 *
1998 −0.463 * 2003 −0.665 * 2008 −0.707 * 2013 −0.164 *
1999 −0.663 * 2004 −0.042 * 2009 −0.397 * 2014 0.118 *
2000 0.061 * 2005 1.651 ** 2010 2.385 *** 2015 1.930 **
2001 0.821 * 2006 0.494 * 2011 −0.310 *

Note: *, **, *** denote 10%, 5%, 1% levels of significance, respectively.

Descriptive statistics of parameter estimates through GTWR model are presented in Table 4.

Table 4. The statistical description of all parameter estimates (Band width = 0.115).

Index Min 1/4 Quantile Median 3/4 Quantile Max Mean

LnIPD −0.811 −0.049 0.062 0.134 0.483 0.035
LnGDPP 0.637 0.892 0.946 1.031 1.398 0.960

LnOP −0.316 −0.070 −0.030 −0.003 0.208 −0.036
LnIS −0.955 −0.120 0.298 0.479 1.388 0.193
LnTA 0.639 0.975 1.098 1.236 1.740 1.102
LnPD 0.657 0.931 1.063 1.125 2.329 1.062
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3.3.1. Effect of Industrial Pollution Emissions on Carbon Intensity

The parameter estimates of LnIPD reflect the effect degree of industrial pollution emissions on
CD. The positive values for the parameter estimates show that industrial pollution emissions exert
pull effect on CD. In addition, CO2 can be generated in the governance process of industrial pollution
emissions, and it deserves attention. Due to the existence of spatial-temporal heterogeneity, the
estimated coefficients of the IPD variable specify different positive to negative characteristics.

3.3.2. Effect of Economic Growth on Carbon Intensity

The parameter estimates of LnGDPP indicate the influence of economic growth on CD. The values
of the parameter estimates for economic growth in each province are all positive, showing that
economic growth increases CD. This is mainly because during the study period, China was (and still is)
in a period of industrial development. Economic growth has not decoupled from energy consumption,
and massive amounts of CO2 are released due to fossil energy combustion. Clean energy has not yet
been widely used.

3.3.3. Effect of Opening to the Outside World on Carbon Intensity

The parameter estimates of LnOP specify the effect of opening to the outside world on CD. In most
provinces, the values are negative, showing that the opening to the outside world inhibits CD. In China,
the introduction of advanced technology and new equipment improves China’s overall energy use
efficiency. The technological advantages possessed by the foreign-funded enterprise play a role in
positive externality. However, the “pollution heaven” phenomenon also exists in some regions where
inefficient industry is concentrated. Thus, to some extent China’s opening of society to the outside
world has a positive effect on CD in a few regions.

3.3.4. Effect of Industrial Structure on Carbon Intensity

The parameter estimates of LnIS reflect the impact of industrial structure on CD. In most provinces,
the values are positive. The secondary industry accounts for a comparatively larger proportion of
the overall industrial structure. In China, the secondary industry includes four classes: mining;
manufacturing; production and supply of electric power, fuel gas and water; and construction. Due to
China’s endowment of natural resources, the secondary industry is dominated by extensive production
techniques, and exacerbates the greenhouse gas emissions.

3.3.5. Effect of Technological Advances on Carbon Intensity

The parameter estimates for LnTA show the effect of technological advances on CD. The values of
the parameter estimates in each province are all positive. Although technological advances are
beneficial to improving energy utilization efficiency, they can also give rise to a rebound effect.
When technological advances develop to a certain extent, energy efficiency improvements can be
overwhelmed by increases in energy consumption due to increased production capacity. Thus,
the reduced energy consumption due to increased energy efficiency is offset, and technological
advances promote (i.e., increase) carbon emissions.

3.3.6. Effect of Population Density on Carbon Intensity

The parameter estimates for LnPD represent the influence of population density on CD. The values
in each province are all positive. The population density is a common index to measure the degree of
population agglomeration. Due to concentrated production activity, residential life and infrastructure
development (e.g., construction of public utilities), the spatial form of a compact population can
consume excessive amounts of energy. Additionally, an increase in the amount of residential and
urban land in a given area compresses the planning space for land greening, which greatly reduces the
opportunities to create carbon sinks.
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3.4. Decomposition of Spatial-Temporal Heterogeneity for Parameter Estimates

Table 4 illustrates that the average effect of each variable on CD cannot show the space-time
variation characteristics of parameter estimates. To more intuitively observe the spatial-temporal
heterogeneity of parameter estimates, the heterogeneity in the time and space dimensions is
decomposed using the Herfindahl index, so as to determine the dimension for selective analysis.

In the Herfindahl index, H = 1 − (p2 + q2). p and q are the proportion of a parameter that is larger
and smaller than zero, respectively. The larger H is, the greater is the imbalance [57]. Overall, spatial
heterogeneity is more unstable than temporal heterogeneity (see Figures 7 and 8), but each variable
has different performance in different regions. Taking industrial pollution emissions as an example,
the spatial heterogeneity in 2006, 2007 and 2009 is more obvious, and the temporal heterogeneity of
Anhui, Hebei, Inner Mongolia and other places is more obvious. Therefore, it is necessary to add time
factors from the local level for detailed analysis.
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3.5. Spatial-Temporal Heterogeneity Analysis of Parameter Estimates

For convenience, taking the parameter estimates of industrial pollution emissions as an example,
results are discussed according to the traditional division of eastern, central and western regions.

3.5.1. Industrial Pollution Emissions and Carbon Density in Eastern China

In Beijing, Tianjin, Hebei and Shandong, there is a U-shaped curvilinear relationship between
industrial pollution emissions and CD (see Figure 9). Especially during 2000–2008, the industrial
pollution emissions did not stimulate an increase of CD. The main reason for this pattern is the
undertaking and holding of the Beijing Olympic Games. Most of the industries with high pollution
and high emission levels were transferred to Central and Western China. In addition, to promote
environmental quality improvement, the technology for energy-saving and pollution treatment was
widely applied, resulting in improved control of industrial pollution emissions. However, after
2008, industrial pollution emissions stimulated an increase of CD. This suggests that the controls on
industrial pollution emissions and CO2 emissions were relaxed after the Olympic Games. A “backflow”
of industry transfer also may have occurred.

In Shanghai, Jiangsu, Zhejiang and Fujian, the parameter estimates of industrial pollution
emissions exhibit a continuous downtrend trend. This indicates that the pull effect of industrial
pollution emissions on CD gradually weakens over time. Moreover, the pulling effect disappears
around 2006. In recent years, in Shanghai, Jiangsu and Zhejiang, industrial structure has been
constantly adjusted and upgraded, and gradually tended toward rationalization and high gradation.
With the industry transfer, the high-level and light industrial structure will be realized quickly.
Meanwhile, in the eastern region, the developmental level and energy efficiency are high. This region
possesses advanced pollution treatment technology and has perfected pollution treatment instruments.
In the pollution treatment process, lower carbon emissions can be realized. In Fujian, because of
historical factors, constraints posed by a mountainous and hilly geographical environment and a poor
economic foundation, in contrast to the other eastern provinces, there exist problems such as high
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proportion of the secondary industry and low technical efficiency. The pull effect of industrial pollution
emissions on the carbon emissions is obvious. Until 2011, the pulling effect of industrial pollution
emissions on the CD gradually weakens. In 2015, there appears a downtrend trend in the proportion
of secondary industry. In 2018, Fujian proposed that pollution control should be promoted. Therefore,
the pulling effect of industrial pollution emissions on the CD would become weaker and weaker.
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Figure 9. Parameter estimates of industrial pollution emissions in Eastern China.

In Guangdong and Liaoning, the parameter estimates of industrial pollution emissions are always
positive, and the fluctuation range is smaller than in other areas. In 1997, the industrial pollution
emission level in Guangdong ranked 23rd nationwide. In 2015, it ranked 7th, and was above the
national average. During 1997–2015, the industrial pollution emission level increased 33%, and the
rate of increase ranked 5th nationwide. The pull effect of increased industrial pollution emissions
on CD is obvious. Meanwhile, the rebound effect caused by the technological advance impacts the
previously reduced energy consumption that was achieved through energy efficiency improvement.
Liaoning is a key province in the initial period of industrial development. The proportion of the
secondary industry is high, and the industrial pollution emissions are always at a relatively high
level. There exists an accumulative effect for pollution. In the state-owned enterprises, the problems
such as solidified structures, rigid management systems and slow development gradually appear.
The government protection for state-owned enterprise results in the softening of environmental
constraints. Additionally, within the Northeast Revitalization Plan, the development speed of
Liaoning is the lowest among the three provinces. The improved effect of management techniques on
environmental quality is not apparent.

In Hainan, the parameter estimates of industrial pollution emissions increase significantly.
After 2004, industrial pollution emissions have a positive effect on CD. In Hainan, although the
leading industries are tourism and services, the proportion of secondary industry has been increasing.
In addition, the proportion of heavy industry in industrial structure is increasing. In 2011, heavy
industry was three times larger than light industry. The industrial pollution emission level has
gradually approached the national average. In the short term, there may be continuous pull effect of
industrial pollution emissions on CD.
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3.5.2. Industrial Pollution Emissions and Carbon Density in Central China

In Shanxi, there is a U-shaped curvilinear relationship between industrial pollution emissions and
CD (see Figure 10). The effect declines sharply from 1999, then reaches a minimum in 2006, and rises
continuously thereafter. Starting from the bid for the Olympic Games in 1999, Shanxi began to reinforce
the supervision to industrial enterprise and to control pollution emissions. In 2006, the policy “Control
Method for Major Industrial Pollution Sources in Shanxi Province” was passed, which targets heavily
polluting enterprises. However, since the 2008 Olympic Games, pollution control has been relaxed.
In addition, Shanxi is a natural resource-dependent province and industrial pollution emissions are
substantial. Medium and small enterprises (especially) face problems such as insufficient funds
for pollution treatment, immature treatment techniques and imperfect equipment. In the pollution
treatment process, an enormous amount of CO2 is generated. In the pursuit of GDP growth, there exist
problems such as failed environmental regulation in most of the region, aggravating the pull effect of
industrial pollution emissions on CD.
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Figure 10. Parameter estimates of industrial pollution emissions in Central China.

In Jilin, Heilongjiang and Hunan, the parameter estimates of industrial pollution emissions
fluctuate less than in other areas of the region. The values are negative for most years in Jilin and
Heilongjiang, and industrial pollution emissions did not promote CD. Jilin and Heilongjiang experience
problems similar to those in Liaoning, such as lagging industrial development, an unsound industrial
system and ageing equipment. The two provinces have grasped the strategic opportunity provided
by the “Northeast Area Revitalization Plan” to optimize industrial structure, strengthen economic
cooperation with foreign countries, and promote innovation ability. Due to natural geographic
conditions, some pollution in Jilin and Heilongjiang is transported to Liaoning, decreasing the apparent
level of pollution in the two provinces. In Hunan, industrial pollution emissions have a pull effect on
CD. In the process of transferring industries to the mainland in the eastern region, Hunan has a regional
development advantage in connecting east and west, as well as north and south, and especially for
joining with Guangdong. During 1997–2005, the proportion of the secondary industry increased by
5.3%. However, when Hunan accepts new transferring industry, it also accepts the resulting pollution
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emissions. Economic growth in Hunan has exhibited extensive characteristics, and its high population
density promotes CO2 emissions.

In Anhui, Jiangxi, Henan and Hubei, the parameter estimates of industrial pollution emissions
are decreasing over time. After 2008, the industrial pollution emissions does not show pull effect on
CD in Anhui and Henan, while this phenomenon appears in Jiangxi and Hubei only in the recent few
years. Anhui and Henan are the major agricultural provinces in China; consequently, the proportion of
industry in these provinces is relatively low. After implementation of the “Rise of Central China Plan”,
the industrial economy developed rapidly in Jiangxi and Hubei and energy consumption increased,
as did the industrial pollution emissions and carbon emissions. With this economic transition and
adjustment of industrial structure, the industrial economy has been reinforced, and energy saving and
emission reduction technology has been applied positively, improving the energy utilization efficiency.
The effect of industrial pollution emissions on CD is weakened.

3.5.3. Industrial Pollution Emissions and Carbon Density in Western China

There appears an increasing trend between industrial pollution emissions and CD in Inner
Mongolia, Guangxi, Chongqing, Ningxia and Guizhou (see Figure 11). In Inner Mongolia, the
relationship has become more strongly positive, but with fluctuation. After 2010, the pull effect
of industrial pollution emissions on CD has been reinforced. In 2000, Inner Mongolia was included
within the scope of China’s Western Development Plan. As a natural resource-oriented province, its
industrial structure is biased toward heavy industrialization.
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Figure 11. Parameter estimates of industrial pollution emissions in Western China.

During 1997–2015, industrial pollution emissions increased by 61.86%, and the rate of increase was
the highest in the country. In the short term, energy mix oriented toward coal cannot be changed, and
the pull effect on CD will become more obvious. In Guangxi, Chongqing and Ningxia, the increasing
trend between industrial pollution emissions and CD is small. Guangxi is in a period of rapid
development and environmental pollution is accompanying economic growth. Guangxi accepts
high-investment, high-emission and high-pollution industry in the eastern and central regions,
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especially in Guangdong. Recently, although the industrial pollution emissions have declined, the
governance of industrial pollution emission has not advanced in Chongqing and Ningxia. The pull
effect of industrial pollution emissions on CD is relatively strong in Guizhou because energy mix is
based mainly on raw coal. In 2010, the “industrialized province” strategy was launched. The pulling
effect of industrial pollution emissions on CD is gradually reinforced.

In Sichuan and Yunnan, the relationship between industrial pollution emissions and CD initially
increases but then decreases during the study period. The southwest region has one of the richest
mines in China. Since implementation of the Western Development Strategy in 2000, the industrializing
economy has developed quickly. The industrial pollution emissions have increased significantly, and
the pull effect on CD has become gradually stronger. In 2007, there appeared the industry transfer
phenomenon. Due to the advantages of low factor cost and great market potential, the western region
accepts some industries from the eastern and central regions. In recent years, the industry transfer has
given attention to both pollution control and treatment simultaneously. Consequently, the effect of
industrial pollution emissions on CD has weakened.

In Gansu and Qinghai, the parameter estimates of industrial pollution emissions decrease on the
whole, and in Shaanxi, the decrease is slight. In Gansu, a U-shaped curvilinear relationship between
industrial pollution emissions and CD develops after 2006. The industrial pollution emission level is
high in Gansu, particularly in Lanzhou. Due to the local terrain and relatively weak air convection,
industrial waste gas emissions have a stronger effect on CD here. After a pollution accident in 2004,
pollution control has gained increased importance. In the process of accepting industry transfer, more
attention has been placed on upgrading economic structure and applying high technology and new
technology. Thus, industrial pollution emissions did not promote CD after 2008. In Qinghai, an
N-shaped curvilinear relationship characterizes the effect of industrial pollution emissions on CD.
The ecological environment in Qinghai is fragile, and over the years, environmental protection has
always been greatly important. Due to the China Western Development plan, the number of industrial
enterprises has increased, as has the level of industrial pollution. Because of economic restrictions and
inadequate control techniques, the industrial pollution emissions promoted CD. After the industry
transfers became more numerous and Qinghai became more industrialized, new technology was
applied positively and pollution treatment shows an obvious beneficial effect. Shaanxi has received
major benefits from technological advances; as a result, the energy utilization efficiency and pollution
treatment efficiency have improved, so that industrial pollution emissions have no pulling effect
on CD.

In Xinjiang, a U-shaped curvilinear relationship exists between industrial pollution emissions and
CD. The values are negative from 2001 and trend tends to be stable after 2011. The industrial pollution
emission level increased continuously in Xinjiang. Due to the terrain surrounded by mountains,
pollutant diffusion is restricted. However, as Xinjiang is located along the border of the northwest
region, and positively advances opening itself to the outside world, introduces techniques and new
equipment, foreign-funded enterprises also have had a demonstrable effect. The governance of
industrial pollution emissions has also gradually improved. In 2014, the proportion secondary industry
started to decline. Thus, industrial pollution emissions did not promote CD.

4. Conclusions and Policy Implications

This paper applied a GTWR model to study the relationship between industrial pollution
emissions and carbon emissions, used the Herfindahl index to decompose space-time heterogeneity,
and then analyzed the situation in various regions at the time and space level. The results show
that the regression fit of GTWR model is high, therefore, the results are significant and reliable.
The spatio-temporal heterogeneity has different degrees of impact on different regions at different
times, therefore, different regions need to be analyzed according to different situations.

Overall, the average effect of industrial pollution emissions on carbon density is positive,
indicating that industrial pollution emissions exert a pull effect on carbon emissions. It specifies
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that it is possible to achieve both environmental quality improvement and emission reduction targets.
Besides China’s opening to the outside world, several other control variables (economic growth,
industrial structure, technological advances and population density) increase carbon density.

From the regional perspective, in Guizhou, Guangxi and Hunan, industrial pollution emissions
have pull effect on carbon density, and carbon emission reduction could be promoted through industrial
pollution emission control. However, in Shanghai and Shaanxi, the effect of industrial pollution
emissions on carbon density is negative, environmental quality improvement and carbon reduction
targets in these areas may not be achieved simultaneously.

By observing the variation trend of the parameter estimates, it is found that the industrial pollution
emission coefficient in some regions has an upward trend, such as Hainan. It indicates that the pull
effect of industrial pollution emissions on carbon density is increasing. However, the industrial
pollution emission coefficient of some regions shows a downward trend, such as Anhui and Jiangxi.
It demonstrates that the pull effect of industrial pollution emissions on carbon density is weakening
or disappearing.

In China, great differences exist in the natural and social conditions across the country, and
the economic development level in 30 provinces is vastly different. It is necessary to fully take the
spatial and temporal heterogeneity into consideration and implement a differentiated carbon emission
strategy. To develop and implement a differentiated strategy, the following suggestions are proposed.

(1) Adjust energy mix and change development mode

In the short term, energy supply and consumption dominated by coal cannot be changed. Thus,
industrial pollution emissions might increase continuously. For long-term reductions in industrial
pollution emissions, it is necessary to positively adjust the industrial energy consumption structure,
decrease the proportion of fossil energy consumption. Industrial pollution emissions from resource
provinces such as Shanxi and Inner Mongolia have a significant pull effect on carbon density. We should
actively optimize energy mix, apply new technologies to improve energy efficiency, and minimize
carbon dioxide emissions in the treatment of industrial pollutants. As problems such as structural
consolidation and difficulty in transforming state-owned enterprises have arisen in Liaoning, exchange
of experience with other regions should be strengthened. Shanghai, Zhejiang and other regions with
high economic level should build high-tech demonstration parks, strengthening itself while guiding
and demonstrating the central and western regions.

(2) Promote industry transfer and control the flow of pollution

In China, industry transfer mainly manifests as the transfer of “three high” industries (those that
have high pollution, high energy consumption and high emission). In the eastern region, international
industries should be selectively accepted, so as to prevent the region from becoming a “pollution
heaven” for inefficient and highly polluting enterprises. Likewise, in some areas such as Hebei and
Beijing, care must be given to assure that domestic industry transfer does not cause a “backflow”
of pollution. Because the central region is a crossroad in domestic industry transfer, during the
advancement of these industry transfers, all regions should seize the opportunity to eliminate the use
of outdated equipment, break the original property-right structural pattern and formulate reasonable
industry development plans, such as Shanxi. So is Liaoning in the east. The western region should
grasp the opportunity of industrial upgrading, reduce the repeated transfer of highly polluting industry
as far as possible, and avoid the old way of “pollution first, treatment later”. Areas such as Qinghai
and Yunnan with fragile ecology must prevent the ecological deterioration.

(3) Introduce advanced equipment and adopt high technology and new technology

In most Chinese provinces, the opening of society to the outside world inhibits carbon density.
Thus, especially for Liaoning, it is necessary to advance the opening to the outside world continuously,



Int. J. Environ. Res. Public Health 2018, 15, 2343 19 of 22

encourage indigenous industrial enterprises to learn from advanced international experience and to
adopt advanced technology for pollution treatment. Technological advances often cause an “energy
rebound effect”, thus, other supplementary means should be used, for example, strengthening the
cooperation among low-carbon and low-pollution projects and increasing the quality of industry
transfer that occurs due to opening to the outside world, such as Guangdong. In each province, the
evolution path for technological advances must be analyzed. Provinces should avoid the increase in
energy consumption due to the “energy rebound effect” of advanced technology, actively innovate
and improve pollution treatment technology, and continuously strive to control pollution emissions.

(4) Strengthen the legal system and play a role of government

Through its administrative powers, the government should audit industries strictly, especially as
regards project construction and factory establishment. Regulatory oversight also should be exercised
over operations in the heavy chemical industry. A mobile supervision group can be established, and
the frequency and proportion of spot tests should be increased. For industrial enterprises that do not
treat pollution discharges as required and remediate problems in a timely manner, public disclosure
can be used to highlight the unacceptable environmental behavior. Equally, it is vital to encourage
enterprises that have low emission levels and utilize positive pollution treatment techniques. In the
eastern region, such as Beijing, a “backflow pollution” phenomenon exists, and the government should
play a strict regulatory role in correcting this problem. The central region, such as Shanxi, is to reinforce
the legally binding environmental controls on enterprises, and strictly control the pollution emissions.
Provinces in the western region, such as Qinghai and Yunnan, must address the dual tasks of economic
development and ecological protection. It is necessary for the government to adopt a support policy
and accelerate the pace of economic development in this region by injecting capital.
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Appendix A

The spatial correlation analysis is the first step of spatial analysis. According to Tobler’s First
Law of Geography, there exists a closer relationship between adjacent objects than between objects
separated by some distance, i.e., spatial autocorrelation. The common method to test for spatial
autocorrelation is Moran’s index method (Moran’s I) [58]. The equation for calculating Moran’s I is:

I =

n
∑

i=1

n
∑

j=1
(xi − x)(xj − x)

S2
n
∑

i=1

n
∑

j=1
wij

(A1)

S2 =
n

∑
i=1

(xi − x)
2

/n (A2)

where i and j denote province, and both i and j = 1, 2, ..., 30. xi and xj are the carbon density in ith
and jth province, respectively. x is the mean carbon density. wij is the spatial weight matrix. To better
explain the relationships among adjacent regions, Rook’s spatial weight matrix is applied, which is
expressed as follows:

wij =

{
1, when ith province is adjacent to jth province
0, when ith province is not adjacent to jth province

(A3)
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The Z-test is carried out on Moran’s I values. In general, at the 0.05 significance level, when z is
larger than 1.96, there exists positive spatial autocorrelation. When z is smaller than −1.96, there exists
negative spatial autocorrelation. When z is in the range of [−1.96,1.96], no spatial autocorrelation exists.

Appendix B

The OLS model is:

yi = β0 +
n

∑
j=1
βjxij + εi (A4)

The GWR model is:

yi = β0(ui, vi) +
n

∑
j=1
βj(ui, vi)xij + εi (A5)

The spatial distance between the ith and jth province in GWR is:

d′ij =
√
(ui − uj)2 + (vi − vj)2 (A6)
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