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Abstract. Fibroblast‑like synoviocytes (FLSs) have functions 
in the pathogenesis of rheumatoid arthritis (RA) through the 
onset of synovitis, the growth of pannus and the destruction 
of cartilage and bone. The significant increase in the prolif‑
eration, migration and invasion of FLSs induces the onset 
and advancement of RA. To date, the exact function of core‑
pressor element‑1 silencing transcription factor (CoREST) in 
RA remains unclear, but its expression has been determined 
in RA synovial tissues. In this study, the effects of CoREST 
were investigated in a TNF‑α‑induced FLS activation model. 
Following the silencing of CoREST expression with small 
interfering (si)RNA, the viability and migration of FLSs were 
evaluated. Furthermore, the possible molecular mechanisms 
were explored by detecting the expression of key factors, 
including matrix metalloproteinases (MMPs), lysine‑specific 
histone demethylase 1 (LSD1) and associated cytokines, via 
reverse transcription‑quantitative PCR and western blotting. 
CoREST expression increased not only in the RA synovial 
tissues, but also in the TNF‑α‑induced FLS activation model. 
Following the silencing of CoREST in the FLSs treated with 
TNF‑α, cell viability was inhibited, and the migratory capacity 
of FLSs was suppressed, which was accompanied by the 
reduced expression of MMP‑3 and MMP‑9. The expression of 
LSD1 was also downregulated. There was a notable decrease 
in the synthesis of interferon‑γ and interleukin (IL)‑17, while 

IL‑10 expression was increased. The knockdown of CoREST 
inhibited the viability and migration of FLSs stimulated with 
TNF‑α. Thus, the suppression of CoREST may have crucial 
roles in the occurrence and development of RA.

Introduction

Rheumatoid arthritis (RA) is a complicated systemic disease 
that manifests as chronic synovial inflammation and leads 
to the gradual damage of the articular cartilage, loss of joint 
functions and comorbidity with the extraarticular organs (1). 
A study in Italy reported that the incidence rate of RA was 
0.038% in women and 0.013% in men (2,3). A study in South 
Korea reported that the incidence of RA was higher for 
individuals >60 years old (4). The pathogenesis of RA is not 
yet fully understood.

RA is associated with a number of factors, such as dysreg‑
ulated gene expression, and environmental and stochastic 
factors. Several studies have demonstrated that environ‑
mental factors, including smoking (5), exposure to inhaled 
particulate air pollution (6) and multiple dietary (7), are risk 
factors for rheumatoid‑factor positive RA. Early diagnosis of 
RA is important for effective treatment, and a longer course 
of disease can lead to worse outcomes (8). Thus, it is neces‑
sary to develop efficient diagnostic and therapeutic methods. 
Fibroblast‑like synoviocytes (FLSs) are one of the most 
common and dominant type of effector cells found in synovial 
joints that bear several features of malignant cells, such as 
abundant cytoplasm, large pale nuclei with several prominent 
nucleoli and a dense, rough endoplasmic reticulum (9‑12). 
Results of our previous studies demonstrated that dual‑spec‑
ificity tyrosine‑regulated kinase 1A (Dyrk1A) can promote 
the proliferation, migration and invasion of FLSs through the 
suppression of protein sprouty homolog 2 and the activation of 
the ERK/MAPK signaling pathway in patients with RA (13). In 
addition to the aggressive proliferative and migratory patterns, 
FLSs also secrete matrix metalloproteinases (MMPs), for 
example MMP‑9 and MMP‑3 (14), which destroy collagen 
bundles within the cartilages, thereby assisting the invasion of 
cartilage and bone (15).
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Researchers have been focusing on suppressing the abnormal 
activation of FLSs as a novel method to treat RA (16). The 
repressor element‑1 silencing transcription factor (REST) is a 
transcription factor consisting of a DNA‑binding domain and 
two repressor domains (17,18). REST corepressor (CoREST) is 
a functional corepressor that assumes several roles in regulating 
the expression of neuron‑specific genes. CoREST contains two 
SANT (SW13/ADA2/NCoR/TFIIIB B) domains, a structural 
feature of the nuclear receptor, and silencing mediator for 
retinoid and thyroid human receptors (SMRT)‑extended core‑
pressors that mediate inducible repression by steroid hormone 
receptors (19). The role of lysine‑specific histone demethylase 
1 (LSD1) in RA has been investigated. In CD4+T cells obtained 
from active RA synovial fluids, LSD1 knockdown can signifi‑
cantly promote cell proliferation, while also significantly 
increasing the synthesis of interferon‑γ (IFN‑γ), interleukin 
(IL)‑17 and IL‑10 (20). An in vivo study indicated that LSD1 
knockdown significantly alleviated disease severity (20). The 
repressed activity of LSD1 has been shown to depend on its 
interaction with CoREST (21‑23). It has been reported that 
LSD1 can act as a negative regulator of the Notch signaling 
pathway through its interaction with the deacetylase sirtuin 
1 (SIRT1) in cell cultures (24). Previous studies have shown 
that interfering with the CoREST/LSD1 complex can slow 
down the development of the cerebral cortex by delaying cell 
differentiation (25,26). However, the roles of CoREST in the 
pathogenesis of RA are still unknown.

In the present study, the expression levels of CoREST in 
the synovial tissues of patients with RA were investigated. 
Furthermore, the effects of CoREST on the proliferative, 
migratory and invasive patterns of RA‑FLSs were evaluated, 
and the fundamental processes involved in the pathological 
process of RA was explored.

Materials and methods

Patient selection. A total of 14  patients with RA were 
involved in this study, including 7 female and 7 male patients. 
Patients hospitalized in The Second Affiliated Hospital of 
Nantong University (Nantong, China) from October 2018 
to April 2019 were selected. They were selected according 
to the 2010 American College of Rheumatology/European 
League Against Rheumatism Classification Criteria for 
Rheumatoid Arthritis and other immune system related 
diseases were excluded (27). The inclusion criteria were as 
follows: i) DAS‑28 score was >2.6; ii) no previous diagnosis 
of other immune‑related diseases; and iii) had not taken any 
medication for RA within the year before the operation. The 
synovial tissues were obtained from the patients while they 
underwent total knee replacement or arthroscopic surgeries. 
Normal synovial tissues were obtained from another 
14 healthy volunteers through arthroscopic procedures. The 
average ages of patients were 45±6 and 47±5 years old for 
patients with RA and healthy controls, respectively. The 
procedures and processes of the present study were reviewed 
and approved by the institutional medical ethics committee 
of Affiliated Hospital 2 of Nantong University, Nantong, 
China (approval no. 2019KY126). Patients provided written 
informed consent to participate before they received any 
treatment.

Cell culture and TNF‑α treatment. The synovial tissues 
were sliced into 2‑4 mm sections and left to degrade for 4 h 
at 37˚C with collagenase I (Gibco; Thermo Fisher Scientific, 
Inc.) in Hanks' balanced salt solution (Beyotime Institute of 
Biotechnology). Following centrifugation at 111.8 x g and 
room temperature for 5 min, cells obtained from the syno‑
vial tissues were cultured in Dulbecco's modified Eagle's 
medium (DMEM)/F12 medium (Gibco; Thermo Fisher 
Scientific, Inc.) with 100 U/ml penicillin, 100 µg/ml strepto‑
mycin (HyClone; Cytiva) and 10% fetal bovine serum (FBS; 
Gibco; Thermo Fisher Scientific, Inc.). Cells were incubated 
in a humidified incubator with 5% CO2 at  37˚C. Cells at 
passages 3‑8 were utilized for the present study. A total of 
10  ng/ml TNF‑α (PeproTech, Inc.) was used to stimulate 
FLSs for 24 h in a humidified incubator with 5% CO2 at 37˚C. 
Following treatment with TNF‑α, FLSs were collected for 
subsequent experiments.

Immunohistochemistry (IHC) analysis. Harvested synovial 
tissues were fixed in 4% paraformaldehyde at 4˚C for 24 h 
and subsequently embedded in paraffin. The embedded tissue 
was cut into 5‑µm slices. A total of 100 µl blocking buffer 
[10% FBS (cat. no. F8318; Sigma‑Aldrich; Merck KGaA) in 
1X PBS (Sangon Biotech)] was added to the sections, and these 
were incubated in a humidified chamber at room tempera‑
ture for 1 h. The blocking buffer was subsequently drained 
from the slices. The IHC analysis was carried out using a 
primary antibody against CoREST (1:100; cat. no. 07‑455; 
Sigma‑Aldrich; Merck KGaA) at 4˚C overnight, and the slices 
were subsequently washed with 1X PBS (Sangon Biotech) 
twice for 5 min each. The slices incubated in a humidified 
chamber at room temperature for 1  h with a horseradish 
peroxidase (HRP)‑conjugated secondary antibody (1:4,000; 
cat. no. 12‑348; Sigma‑Aldrich; Merck KGaA). The slices were 
subjected to immunoperoxidase staining performed using an 
HRP/diaminobenzidine IHC detection kit (cat. no. ab64264; 
Abcam). The slices were photographed using a Bx53 LED 
fluorescent microscope (Olympus Corporation).

Knockdown of CoREST with small interfering (si)RNA 
transfection. The CoREST expression in FLSs was knocked 
down with human CoREST siRNA (siCoREST) and the 
synthetic siRNA was applied as a negative control (siNC; 
Guangzhou RiboBio Co., Ltd.). The target sequence of the 
CoREST siRNA was 5'‑AAG​AUU​GUC​CCG​UUC​UUG​
ACU‑3', and the sequence of the control siRNA was 5'‑UUG​
AUG​UGU​UUA​GUC​GCU​A‑3'. The control siRNA sequence 
was purchased from Guangzhou RiboBio Co., Ltd. The treat‑
ment concentration of all siRNAs was 40 nmol. Transient 
transfection of siRNA was achieved using riboFECTTM CP 
Reagent (Guangzhou RiboBio Co., Ltd.), according to the 
manufacturer's recommendations. Following the transfection 
of siRNA, cells were incubated and cultured in serum‑free 
medium for 6 h, and then transferred to total medium that 
contained 10% FBS for a further 48 h. After verifying the 
knockdown of CoREST, the cells were applied for further 
experiments.

Cell Counting Kit‑8 (CCK‑8) assay. In order to examine the 
proliferation of FLSs, a CCK‑8 assay was performed. Cells 
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were seeded into 96‑well plates at a density of 1x103 cells/well 
and tested for viability at 24 h. To determine cell proliferation, 
CCK‑8 reagent was added into each well (10 µl/well). The cells 
were incubated at 37˚C for 1.5 h with 5% CO2, and the absor‑
bance was recorded at 450 nm with an ELISA plate reader 
for each well. The histogram of cell viability was constructed 
using GraphPad Prism 8.0 software (GraphPad Software, Inc.).

Wound healing assay. FLSs were seeded into 6‑well plates at 
a density of 2x105 cells/well. Once the cell confluence reached 
90%, sterile pipette tips were used to create wounds. Detached 
cells were washed with phosphate buffer saline and the medium 
was replaced with DMEM/F12 containing 2% FBS. Images 
were captured at 0 and 24 h using a Bx53 LED fluorescent 
microscope (Olympus Corporation) and subsequently exam‑
ined using ImageJ software (version 1.51j8; National Institutes 
of Health) to count the cells beyond the reference line.

RNA isolation and reverse transcription‑quantitative PCR 
(RT‑qPCR). TRIzol® reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) was used mainly for total mRNA extraction 
from fibroblast‑like synoviocytes, following which, the prod‑
ucts were reverse transcribed into cDNA using a RevertAid 
First Strand cDNA Synthesis Kit according to the manufac‑
turer's protocol (Thermo Fisher Scientific, Inc.). qPCR was 
performed using PowerUp™ SYBR™ Green Master Mix 
(Thermo Fisher Scientific, Inc.) on a StepOnePlus™ Real‑Time 
PCR System (Applied Biosystems; Thermo Fisher Scientific, 
Inc.). The thermocycling conditions of qPCR were as follows: 
Initial denaturation at 95˚C for 5 min, followed by 35 cycles of 
denaturation at 95˚C for 30 sec, annealing at 60˚C for 30 sec 
and extension at 72˚C for 30 sec. The relative expression of 
target mRNA was normalized to β‑actin as an endogenous 
control and quantified using the 2‑ΔΔCq method  (28). The 
primers applied in this study were as follows: MMP‑3 forward 
(F), 5'‑GAC​AAA​GGA​TAC​AAC​AGG​GAC​CAA​T‑3' and 
reverse (R), 5'‑TGA​GTG​AGT​GAT​AGA​GTG​GGT​ACA​T‑3'; 
MMP‑9 F, 5'‑TGC​CCG​GAC​CAA​GGA​TAC​AG‑3' and R, 
5'‑CAG​GGC​GAG​GAC​CAT​AGA​G‑3'; and β‑actin F, 5'‑GTC​
GGT​GTG​AAC​GGA​TTT​G‑3' and R, 5'‑TCC​CAT​TCT​CAG​
CCT​TGA​C‑3'.

Western blotting. Total protein was extracted from cells 
obtained from the synovial tissues of patients using 
1X PBST [1X PBS (Sangon Biotech) and 1% Triton X‑100, 
(Sigma‑Aldrich; Merck KGaA)]. Total protein was quantified 
using a BCA assay kit (Beyotime Institute of Biotechnology). 
A total of 10 µg protein per lane was loaded on a 10% gel, and 
proteins were separated by SDS‑PAGE. Proteins were trans‑
ferred onto PVDF membranes, and these were incubated with 
10% milk at room temperature for 1 h. Subsequently, the PVDF 
membranes were incubated with the following antibodies: 
Anti‑CoREST (1:1,000; cat.  no.  07‑455; Sigma‑Aldrich), 
rabbit anti‑human LSD1 (1:1,000; cat. no. A8711; Abclonal), 
anti‑β‑actin (1:4,000; cat. no. ab8227; Abcam), anti‑prolifer‑
ating cell nuclear antigen (PCNA; 1:1,000; cat. no. ab18197; 
Abcam), anti‑MMP‑3 (1:1,000; cat. no. AF7482; Beyotime 
Institute of Biotechnology) and anti‑MMP‑9 (1:1,000; 
cat.  no.  AF5234; Beyotime Institute of Biotechnology) 
at 4˚C overnight. Following primary incubation, membranes 

were washed using PBS with 0.05% Tween‑20 five times, 
followed by incubation for 1 h at room temperature with a 
HRP‑conjugated secondary antibody (1:4,000; cat. no. 12‑348; 
Sigma‑Aldrich; Merck KGaA). The membrane was developed 
using an electrochemiluminescence kit (Pierce; Thermo Fisher 
Scientific, Inc.). β‑actin expression was used for normalization. 
All the experiments were performed in triplicate. The results 
of western blots were analyzed using the ImageJ software 
(version 1.38; National Institutes of Health).

Data analysis. Results are presented as the mean ± standard 
deviation (SD). Data were analyzed using SPSS software 
version 19.0 (IBM Corp.). An unpaired Student's t‑test was 
performed to compare statistically significant differences 
between two groups, while one‑way ANOVA followed by 
Dunnett's post hoc test was applied for >2 groups. P<0.05 was 
considered to indicate a statistically significant difference. All 
experiments in our study were performed independently at 
least three times.

Results

Upregulation of CoREST in RA synovial tissues. Western 
blotting was performed to detect the expression of CoREST in 
the synovial tissues of patients with RA and healthy controls 
(Fig. 1A). There was a significant increase in the expression 
of CoREST in the RA group compared with in the control 
group (Fig. 1B). The IHC analysis demonstrated that CoREST 
expression was higher in the RA group compared with the 
control group (Fig. 1C). FLSs, which have important roles in 
the onset and disease progression of RA (29), were found in 
both RA and healthy synovial tissues. The shredded tissue 
appeared as a black mass under the microscope (data not 
shown). After 3‑5 days of adhesion, the edge of the tissue 
appears as a gray image (Fig. 1D), indicating that cells had 
moved from the border of the adherent tissue. By passage 
three, the RA‑FLSs showed spindle‑shaped and whirlpool‑like 
morphological characteristics while growing under a light 
microscope (Fig. 1E).

CoREST knockdown alleviates TNF‑α‑induced CoREST 
expression and the proliferation of FLSs. To further evaluate 
the function of CoREST in RA‑FLSs, a TNF‑α‑induced FLS 
activation model was included as previously described (30‑32). 
Briefly, following treatment with TNF‑α (10 ng/ml), CoREST 
expression was significantly upregulated in FLSs in a 
time‑dependent manner (Fig. 2A). To elucidate the potential 
influence of CoREST on the proliferation of FLSs, CoREST 
expression was knocked down with siCoREST (Fig.  S1). 
Following transfection with siCoREST, the expression of 
CoREST in TNF‑α‑induced FLSs was significantly inhibited 
as compared with that of the control group (Fig. 2B). PCNA 
is a marker of cell proliferation (26). After the silencing of 
CoREST expression by siCoREST, the expression of PCNA 
was also significantly reduced as compared with that in the 
control group (Fig. 2B). The effects of CoREST on the cell 
proliferation of FLSs stimulated with TNF‑α were determined 
via a CCK‑8 assay. The cell viability of TNF‑α‑stimulated 
FLSs was significantly suppressed after the silencing of 
CoREST compared with the control group (Fig. 2C).
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Figure 1. CoREST expression is upregulated in RA synovial tissues. (A and B) The expression of CoREST in synovial tissues from patients with RA and healthy controls 
(unpaired t‑test). (C) Immunohistochemistry analysis of CoREST expression in synovial tissues from patients with RA and healthy controls (arrows indicate that 
CoREST is highly expressed in the tissues of patients with RA). (D) RA‑FLSs moved out of the synovial tissues. (E) RA‑FLSs at passage three showed spindle‑shaped 
and whirlpool‑like morphological characteristics. Data are presented as the mean ± SD of three independent experiments. *P<0.05 vs. control. CoREST, corepressor 
element‑1 silencing transcription factor; RA, rheumatoid arthritis; FLSs, fibroblast‑like synoviocytes; RA‑FLSs, fibroblast‑like synoviocytes from patients with RA.

Figure 2. CoREST expression in FLSs stimulated with TNF‑α. (A) CoREST expression in FLSs stimulated with TNF‑α (10 ng/ml) for 0, 6, 12, 24, 36 and 
48 h, as determined via western blotting. (B) The expression levels of CoREST and PCNA in TNF‑α‑stimulated FLSs were determined by western blotting 
following the knockdown of CoREST expression with siCoREST. The processed siRNA was applied as the negative control (siNC). (C) Transfection with 
siCoREST suppressed the proliferation of TNF‑α‑stimulated FLSs. Data are presented as the mean ± SD. *P<0.05 vs. the siNC group. CoREST, corepressor 
element‑1 silencing transcription factor; FLSs, fibroblast‑like synoviocytes; PCNA, proliferating cell nuclear antigen; si, small interfering RNA; NC, negative 
control.
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Knockdown of CoREST inhibits the migratory and invasive 
abilities of TNF‑α‑stimulated FLSs. MMPs are a group of 
zinc‑dependent homologous proteases (33). A distinct and 
typical clinical indicator observed in patients with RA is 
elevated levels of MMPs including MMP‑9 and MMP‑3, 
which are associated with the increased migration and 
invasion of FLSs  (14). Previous studies have shown that 
stimulation with TNF‑α elevated the expression levels of 
MMP‑9 and MMP‑3 (34). However, following transfection 
with siCoREST, the TNF‑α‑induced upregulation of MMPs 
was significantly inhibited compared with the control group 
(Fig. 3A and B). The effects of CoREST on the migration 
of FLSs were further explored by performing a wound 
healing assay. Transfection with siCoREST notably inhibited 
the migratory ability of FLSs compared with the control 
group (Fig. 3C).

Knockdown of CoREST downregulates the expression of 
LSD1. The expression of LSD1 was upregulated in patients 
with RA (Fig.  4A  and  B). The effect of CoREST on the 
expression of LSD1 was further explored. Following treat‑
ment with TNF‑α, the expression of LSD1 in FLSs was 
significantly increased at 12, 24 and 36 h, and then began to 
decrease at 48 h (Fig. 4C and D). Following transfection with 
siCoREST, the expression of LSD1 was significantly down‑
regulated compared with the control group (Fig. 4E and F). 
Furthermore, silencing of CoREST significantly suppressed 

the production of IFN‑γ and IL‑17 and promoted the 
expression of IL‑10 (P<0.05; Fig. 5A and B).

Discussion

RA is a complicated systemic disease (1), and a consider‑
able number of studies have demonstrated that increased 
proliferation, migration and invasion of FLSs leads to the 
damage of arthrodial cartilage that advances the pathogenesis 
of RA (12,35,36). The present study revealed that CoREST 
and its corepressor protein LSD1 were highly expressed 
in RA synovial tissues. A previous in vivo study indicated 
that LSD1 knockdown significantly alleviated disease 
severity (20). The results of the current study gave support 
for the hypothesis that there is a molecular relationship 
between the LSD1/CoRST complex in RA‑FLSs. However, 
to the best of our knowledge, there have been few functional 
investigations into the LSD1/CoREST complex outside of the 
neural system.

LSD1 is a well‑characterized histone demethylase that 
regulates gene transcription and chromatin configuration 
through epigenetic modifications (37). The tower motif, which 
is crucial for the catalytic activity of LSD1, acts as an adaptor to 
recruit other proteins, such as CoREST (37). LSD1 demethyl‑
ates H3K4me1/me2 in a CoREST complex‑dependent manner 
and functions as a transcription repressor (38). In the present 
study, the elevated expression of CoREST was observed in 

Figure 3. Silencing of CoREST inhibits the migratory and invasive abilities of TNF‑α‑stimulated FLSs. The (A) protein and (B) mRNA expression levels 
of MMP‑3 and MMP‑9 were determined via western blotting and reverse transcription‑quantitative PCR, respectively. The relative expression levels were 
normalized to that of the internal control. (C) The migratory ability of FLSs was examined by a wound healing assay. Scale bar, 500 µm. Data are presented 
as the mean ± SD. *P<0.05 vs. the siNC group. CoREST, corepressor element‑1 silencing transcription factor; FLSs, fibroblast‑like synoviocytes; si, small 
interfering RNA; NC, negative control.
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RA‑FLSs, which confirmed that the LSD1/CoREST complex 
may exert effects on RA‑FLSs.

FLSs are transferred to an activated state by stimulation 
with proinflammatory cytokines, such as TNF‑α, which induces 
increased proliferative, migratory and invasive abilities (39). 
The aforementioned effects resemble the features of active RA 

progression. The current study demonstrated that prolifera‑
tion, migration of FLSs treated with TNF‑α could be reduced 
by the inhibition of CoREST. With TNF‑α stimulation, the 
expression of CoREST in FLSs was increased as compared 
with that in the controls. Meanwhile, the expression of LSD1 
was also upregulated.

Figure 5. Knockdown of CoREST inhibits the expression of IFN‑γ and IL‑17, and promotes the expression of IL‑10 in the supernatant of TNF‑α‑stimulated 
fibroblast‑like synoviocytes. (A) Western blotting analysis demonstrated the effects of CoREST on IFN‑γ, IL‑17 and IL‑10. (B) Protein expression of the 
targeted protein was normalized to that of β‑actin. Data are presented as the mean ± SD. *P<0.05 vs. the siNC group. CoREST, corepressor element‑1 silencing 
transcription factor; si, small interfering RNA; NC, negative control; IFN‑γ, interferon‑γ; IL, interleukin.

Figure 4. Knockdown of CoREST expression leads to the downregulation of LSD1 expression in TNF‑α‑stimulated FLSs. (A and B) LSD1 expression was 
increased in synovial tissues from patients with RA compared with those from the healthy controls (unpaired t‑test). (C and D) The expression of LSD1 was 
gradually increased in FLSs following treatment with TNF‑α for 6, 12, 24, 36 and 48 h. (E and F) The expression of LSD1 was decreased after the silencing 
of CoREST in FLSs. Data are presented as the mean ± SD. *P<0.05 vs. the siNC group. CoREST, corepressor element‑1 silencing transcription factor; FLSs, 
fibroblast‑like synoviocytes; LSD1, lysine‑specific histone demethylase 1; RA, rheumatoid arthritis; si, small interfering RNA; NC, negative control.
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In the TNF‑α‑stimulated RA‑FLSs, CoREST expression 
was upregulated in a time‑dependent manner. LDS1 expres‑
sion was mildly elevated within the first 12 h, reaching a peak 
at 24 h and gradually deceasing at 36 h. This variation may 
be the result of effects in the early phase, in which TNF‑α 
may function in the activation process and also trigger the 
mechanisms responsible for self‑protection within FLSs. The 
expression of CoREST was relatively low, with limited effects, 
thus, the expression of LSD1 was only slightly elevated. After 
36 h, with the accumulation of CoREST, the function and 
expression of LSD1 was mostly eliminated. This hypothesis 
was further confirmed by the knockdown of CoREST with 
siRNA, which caused the expression of LSD1 to decrease, 
thus suggesting that CoREST had a positive regulatory 
effect on LSD1 in RA‑FLSs. These results indicated that the 
LSD1/CoREST complex may worked together towards the 
TNF‑α‑stimulated RA‑FLSs. The molecular mechanism of 
the role of the LSD1/CoREST complex in RA is still unclear. 
The Notch signaling pathway, a crucial pathway in RA patho‑
genesis, has been demonstrated to be upregulated in FLSs 
after stimulation with proinflammatory cytokines, such as 
TNF‑α and IL‑1β (40). LSD1 has been reported to act as a 
negative regulator of the Notch signaling pathway through its 
interaction with the deacetylase SIRT1 in cell cultures (24). 
The knockdown of LSD1 expression in CD4+T cells obtained 
from active RA synovial fluids has been demonstrated to 
inhibit cell proliferation and proinflammatory cytokine secre‑
tion (20). Consistent with the results in a previous study, the 
expression of LSD1 was downregulated by the knockdown 
of CoREST in the present study, and then the proliferation of 
FLSs was inhibited, in which the Notch signaling pathway may 
play a regulatory role in RA‑FLSs. However, further study is 
necessary to elucidate the detailed molecular mechanisms 
through which CoREST participates in RA progression.

The present study had a number of limitations. Primary 
cells derived from synovial tissues of knee joints were used, 
and in order to prevent phenotypic drift, cells at a low passage 
were cultured in medium without growth factors. However, 
the gene expression profile of synovial cells may have been 
altered due to adaptation of the cells in the culture conditions. 
Furthermore, this study was performed by using RA synovial 
tissues and a TNF‑α‑induced cell model, and an experimental 
design that more accurately mimics RA‑FLFs should be 
considered in future studies.

The present study revealed that CoREST expression 
was upregulated in RA‑FLSs. TNF‑α stimulation increased 
CoREST expression, which could also increase the prolif‑
eration, migration of FLSs through cooperating with LSD1. 
However, in vivo experiments are required to further verify 
the function of CoREST in RA and explore its potential 
applications in clinical practice.
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